Skocz do zawartości
Forum Kopalni Wiedzy

Forum

  1. Nasza społeczność

    1. Sprawy administracyjne i inne

      Uwagi odnośnie funkcjonowania serwisu i forum.

      2074
      odpowiedzi
    2. Luźne gatki

      O wszystkim i nie na temat.

      12957
      odpowiedzi
  2. Komentarze do wiadomości

    1. 18665
      odpowiedzi
    2. 41198
      odpowiedzi
    3. 13055
      odpowiedzi
    4. 6098
      odpowiedzi
    5. 2687
      odpowiedzi
    6. 21365
      odpowiedzi
    7. 14707
      odpowiedzi
    8. 6677
      odpowiedzi
    9. 25253
      odpowiedzi
  3. Artykuły

    1. Artykuły

      Artykuły sponsorowane.

      1115
      odpowiedzi
  4. Inne

    1. 210
      odpowiedzi
    2. 295
      odpowiedzi
  • Kto jest online? (Zobacz pełną listę)

  • Najnowsze komentarze

    • W eksperymencie ATLAS potwierdzono niezwykle interesujące wyniki analiz przeprowadzonych w CMS. Otóż kolejne analizy wskazują, że w Wielkim Zderzaczu Hadronów w wyniku zderzeń protonów powstaje toponium. To mezon utworzony przez – najbardziej masywną cząstkę elementarną i najkrócej istniejący z kwarków – kwark t (wysoki) i antykwark t znajdujące się w stanie quasi-związanym. Podczas kolizji wysokoenergetycznych protonów w Wielkim Zderzaczu Hadronów standardowo powstają pary kwarków t i ich antykwarków. Badania ich przekroju czynnego jest ważnym elementem testowania Modelu Standardowego i sposobem na poszukiwanie nowych nieznanych cząstek, których Model nie opisuje. Gdy naukowcy z CMS analizowali w ubiegłym roku dane z lat 2016–2018 dotyczące produkcji par kwark t - antykwark t, zauważyli coś niezwykłego. Ich uwagę zwrócił nadmiar tych par, który może wskazywać na istnienie nieznanej cząstki. Jednak najbardziej intrygujący był fakt, że nadmiar ten pojawił się przy energiach stanowiących dolną granicę zakresu poszukiwań. Wysunęli wówczas hipotezę, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich tworzących stan quasi-związany, zwany toponium. Kwark wysoki jest samotnikiem. Jako jedyny nie tworzy hadronów. Kwarki u (górny), d (dolny) i s (dziwny) tworzą wszystkie powszechnie występujące hadrony, a kwarki c (powabny) i b (piękny) tworzą rzadkie i krótkotrwałe hadrony rejestrowane w akceleratorach. Kwark t ma tak dużą masę i istnieje tak krótko, że rozpada się, zanim zdąży utworzyć jakikolwiek stan związany. Jednak mechanika kwantowa przewiduje pojawienie się szczególnych okoliczności, w których para kwark t i antykwark t istnieje na dyle długo, że mogą wymienić gluony, tworząc toponium. Gdy CMS ogłaszał przed kilkoma miesiącami odkrycie, koordynator prac, Andreas Meyer mówił, że uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.]. Teraz naukowcy z ATLAS poinformowali o wynikach pełnej analizy danych z kampanii RUN-2 prowadzonej w latach 2015–2018. Zauważyli w nich to samo zjawisko, co wcześniej ich koledzy z CMS. Przekrój czynny określili na 9,0 pb ± 15%, co w wysokim stopniu zgadza się z wcześniejszymi danymi. O ile jednak nie ma wątpliwości, co do istnienia obserwowanych danych, ich interpretacja nastręcza pewne trudności. Istnienie toponium jest nie bowiem jedynym możliwym wyjaśnienie. Nie można bowiem wykluczyć, że dane wskazują na istnienie cząstki o masie dwukrotnie większej niż masa kwarka t, która powstaje w wyniku zderzeń gluonów i rozpada się na parę kwark t - antykwark t. Dokładna interpretacja danych będzie zależała od możliwości precyzyjnego modelowania interakcji kwarków i gluonów w złożonych środowiskach zderzeń protonów. Jeśli jednak uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie. Źródło: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2025-008/ « powrót do artykułu
    • Odkopałem ten wątek w celu upewnienia się, że w wielu kwestiach byłem jednak prorokiem...  Poważniej, to tak jak kiedyś nie przyznawałem się do słuchania Depeche Mode, bo nie wypadało, to po latach coraz bardziej jestem pewien, że nie tylko wyprzedzili epokę, bo byli zwyczajnie prorokami. Załatwiam przy okazji prywatę, celowo TU, na KW: https://youtu.be/_-QPvffO1gs?list=RD_-QPvffO1gs (Mariusz wybacz) no bo w końcu "You can run, but you cannot hide" i zdecydowanie "I'll be fine I'll be waiting patiently 'Till you see the signs". Znaki są zawsze wokół, ale niekoniecznie je widać. Skoro już Phil, to może z głębi serca https://youtu.be/Ccs2rt0oSzQ?list=RDCcs2rt0oSzQ P.S. Przy okazji dla wszystkich Forumowiczów. Nie tyle że lgbt, "wojenki" na granicy i inne bzdury, co zwyczajnie od zawsze bardzo fajny kawałek: https://youtu.be/88sARuFu-tc?list=RDCcs2rt0oSzQ Dedykuję jednak bąki nie tyle d*upą, co drugą stroną wyprowadzającemu - salut rzymski codziennie rano ćwiczymy?
    • Jak widzisz, wszyscy nie bardzo, ale cholernie ciekaw jestem... Czyżby ten deseń? P.S. Z dwojga złego, to już chyba lepiej niż poszedłbyś tropem Baudeleaire'a w Les Fleurs du mal... 
    • W środowisku naukowym od dawna trwa debata, czy w czasie okresów największego ochłodzenia Arktyka była cała pokryta lodowcem szelfowym o grubości dochodzącym do 1 kilometra. O istnieniu takiego lodowca ma świadczyć podmorski krajobraz Arktyki i dane geochemiczne. Międzynarodowy zespół naukowy z Norwegii, Niemiec i Wielkiej Brytanii poinformował na łamach Science Advances, że zmiany bioproduktywności wody nie uprawniają do stwierdzenia, by w czasie ostatnich 750 tysięcy lat w Arktyce istniał lodowiec rozciągający się mniej więcej od Svalbardu po Islandię. Naukowcy zbadali próbki pobrane z dna morskiego na północny zachód od Svalbardu i na północ od Islandii. Analizowali znajdujące się tam chemiczne ślady obecności glonów sprzed tysiącleci. Niektóre z tych glonów żyją w otwartych wodach, inne pod sezonowym lodem, który znika co roku. Badania pokazały, że życie istniało tam nawet w najzimniejszych okresach. To oznacza, że w powierzchni musiało docierać światło, wody były otwarte. Takie ślady by nie istniały, gdyby cała Arktyka była pokryta kilometrową warstwą lodu, mówi główny autor badań, Jochen Knies z Arktycznego Uniwersytetu Norwegii. Jednym z kluczowych dowodów była obecność molekuły IP25 wytwarzanej przez glony żyjące pod sezonowym lodem. Jej ciągła obecność pokazuje, że lód regularnie pojawiał się i znikał. Naukowcy, chcąc zweryfikować swoje odkrycie, przeprowadzili symulacje komputerowe pokazujące warunki panujące w Arktyce w czasie szczytu ostatniej epoki lodowej przed 21 tysiącami lat oraz podczas jeszcze większego ochłodzenia sprzed 140 tysięcy lat, gdy znaczne części Arktyki pokrywał lodowiec szelfowy. Modele potwierdziły to, co znaleźliśmy w osadach. Nawet w najbardziej chłodnych okresach, ciepłe wody Atlantyku wciąż wpływały do Arktyki. Dzięki temu części oceanu nie zamarzły, dodaje Knies. Autorzy badań uważają, że przez cały badany przez nich okres jedynym momentem, gdy cały Ocean Arktyczny mógł być pokryty jednym wielkim lodowcem, nastąpił być może około 650 tysięcy lat temu. Zaobserwowali bowiem gwałtowny spadek zapisu aktywności biologicznej w osadach z tego okresu. Jednak nawet jeśli tak było, to zjawisko takie było krótkotrwałe. Źródło: Seasonal sea ice characterized the glacial Arctic-Atlantic gateway over the past 750,000 years, https://www.science.org/doi/10.1126/sciadv.adu7681 « powrót do artykułu
    • Lód w przestrzeni kosmicznej jest inny, niż dotychczas sądzono, wynika z badań przeprowadzonych przez uczonych z University College London i University of Cambridge. Ich zdaniem, zawiera on niewielkie kryształki i nie jest całkowicie nieuporządkowanym amorficznym materiałem, jak woda. Przez dekady uważano, że lód poza Ziemią nie posiada struktury, jest amorficzny, gdyż znacznie niższe niż na Ziemi temperatury nie zapewniają wystarczająco dużo energii, by podczas zamarzania uformowały się kryształy. Autorzy nowych badań przyjrzeli się najpowszechniej występującej formie lodu we wszechświecie, amorficznemu lodowi o niskiej gęstości, który występuje w kometach, na lodowych księżycach czy w chmurach materiału, z których powstają gwiazdy i planety. Przeprowadzone przez nich symulacje komputerowe wykazały, że lód taki najlepiej odpowiada wynikom analiz gdy nie jest w pełni amorficzny, a zawiera niewielkie kryształki o średnicy 3 nanometrów. Naukowcy przeprowadzili też badania, w czasie których krystalizowali (np. poprzez podgrzewanie) uzyskane w różny sposób próbki amorficznego lodu. Zauważyli, że ostateczna struktura krystaliczna lodu zależała od tego, w jaki sposób został oryginalnie utworzony. Stwierdzili też, że gdyby taki lód był w pełni amorficzny, to nie zachowałby żadnych informacji o swojej wcześniejszej strukturze. Teraz mamy dobre pojęcie, jak na poziomie atomowym wygląda najbardziej rozpowszechniony lód we wszechświecie. To bardzo ważna wiedza, gdyż lód bierze udział w wielu procesach kosmologicznych, na przykład w formowaniu się planet, ewolucji galaktyk czy przemieszczaniu materii we wszechświecie, wyjaśnia główny autor badań doktor Michael B. Davies. Lód na Ziemi to kosmologiczny ewenement z powodu wysokich temperatur panujących na naszej planecie. Ma dzięki nim uporządkowaną naturę. Uznawaliśmy, że lód w pozostałych częściach wszechświata jest jak unieruchomiona ciekła woda, nieuporządkowana struktura. Nasze badania pokazują, że nie jest to do końca prawda. I każą zadać pytanie o amorficzne struktury w ogóle. Takie materiały są niezwykle ważne dla nowoczesnych technologii. Na przykład światłowody powinny być amorficzne. Jeśli jednak zawierają niewielkie kryształki, a my będziemy potrafili je usunąć, poprawimy ich wydajność, dodaje profesor Christoph Salzmann. Badania prowadzono zarówno metodą symulacji komputerowych, jak i tworząc amorficzny lód. Metodami obliczeniowymi sprawdzano dwa rodzaje wirtualnego lodu. Jeden powstawał podczas obniżania temperatury wirtualnych molekuł wody do -120 stopni Celsjusza. W zależności od tempa schładzania otrzymany lód składał się ze struktury krystalicznej i amorficznej w różnych proporcjach. Okazało się, że właściwości wirtualnego lodu zawierającego 20% struktury krystalicznej i 80% amorficznej blisko odpowiadają właściwościom prawdziwego lodu amorficznego o niskiej gęstości, który badano metodą dyfrakcji promieniowania rentgenowskiego. Drugi rodzaj lodu składał się z niewielkich ściśniętych razem kryształków pomiędzy którymi symulowano istnienie struktury amorficznej. Taki lód wykazywał największe podobieństwo do prawdziwego kosmicznego lodu gdy zawierał 25% kryształków. Natomiast podczas badań eksperymentalnych uzyskiwano amorficzny lód o niskiej gęstości albo poprzez osadzanie pary wodnej na bardzo zimnej powierzchni, albo podgrzewając amorficzny lód o dużej gęstości. Następnie tak uzyskany amorficzny lód o niskiej gęstości był delikatnie podgrzewany, by miał wystarczająco dużo energii do utworzenia kryształów. Różnice w uzyskanej w ten sposób strukturze zależały od pierwotnej metody wytworzenia lodu. W ten sposób naukowcy doszli do wniosku, że gdyby lód taki był całkowicie amorficzny, nie zachowałby pamięci o swojej pierwotnej strukturze. Lód to potencjalnie bardzo przydatny materiał w kosmosie. Mógłby posłużyć do ochrony pojazdu kosmicznego przed promieniowaniem czy do wytworzenia paliwa. Dlatego musimy lepiej rozumieć jego różne rodzaje i właściwości, podsumowuje doktor Davies. Źródło: Low-density amorphous ice contains crystalline ice grains, https://journals.aps.org/prb/abstract/10.1103/PhysRevB.112.024203 « powrót do artykułu
    • Naukowcy z Instytutu Francisa Cricka i Liverpool John Moores University (LJMU) zskewencjonowali najstarsze DNA z Egiptu. Pochodzi ono od człowieka, który żył 4800–4500 lat temu, a więc w czasach, gdy powstawały pierwsze piramidy. Osiągnięcie zespołu Adelina Morez Jacobs, Pontusa Skoglunda i Linusa Girdlanda-Flinka jest tym bardziej imponujące, że mamy tutaj do czynienia nie tylko z najstarszym, ale i z pierwszym kompletnym ludzkim genomem ze starożytnego Egiptu. To świetnie pokazuje, jak wielkiego postępu dokonano od czasu, gdy w 1985 roku Svante Pääbo rozpoczynał pionierskie badania nad starożytnym egipskim DNA. Materiał genetyczny do obecnych badań pozyskano z zęba mężczyzny pochowanego w Nuwayrat, wsi położonej 265 kilometrów na południe od Kairu. Pochówek został odkryty na początku XX wieku przez Johna Garstanga. Zwłoki były przechowywane początkowo w Liverpoolskim Instytucie Archeologii (obecnie to część University of Liverpool), a następnie zostały przeniesione do World Museum Liverpool. Mężczyzna zmarł w czasie, gdy Egipt przechodził od wczesnego okresu dynastycznego do Starego Państwa, pomiędzy rządami II (wczesny okres dynastyczny), a IV (Stare Państwo) dynastii. Został pochowany w dużym naczyniu ceramicznym w grobie wykutym na zboczu wzgórza. Było to w czasach, gdy nie stosowano jeszcze technik mumifikacyjnych, co być może pomogło zachować DNA. Badania pokazały, że około 80% jego materiału genetycznego wskazuje na pochodzenie z Afryki Północnej, a pozostałe 20% jest zgodne z DNA osób zamieszkujących Żyzny Półksiężyc, przede wszystkim dawną Mezopotamię. Widać też pokrewieństwo z neolitycznymi mieszkańcami Anatolii i Lewantu. Takie wyniki potwierdzają to, co wiemy z badań archeologicznych – starożytny Egipt miał ożywione kontakty ze wschodnimi regionami Śródziemiomorza. Nie były to, jak widać, wyłącznie kontakty handlowe i kulturowe, dochodziło też do mieszania się populacji. Dodatkowe badania pokazały, że mężczyzna najprawdopodobniej dorastał w Egipcie. Nasza wiedza o starożytnym Egipcie pochodzi w znacznej mierze z badań archeologicznych. Dzięki dekadom badań bioarcheologicznym, na przykład badaniom nad morfologią zębów, naukowcy mogli do pewnego stopnia określać pokrewieństwo starożytnych Egipcjan z populacjami Afryki Północnej i Azji Zachodniej. Poważna barierą był jednak brak badań genetycznych, szczególnie dotyczących genomów z okresu Starego Państwa. To wciąż utrudnia zrozumienie składu ludnościowego i przepływu genów u początków Egiptu. Dotychczas najstarsze jądrowe DNA – niekompletne – pochodziło od trzech osób, żyjących pomiędzy VIII wiekiem p.n.e., a pierwszą połową I wieku naszej ery. Teraz zaś możemy porównać te dane z danymi pochodzącymi z czasów pierwszych egipskich dynastii. Mężczyzna z Nuwayrat zmarł pomiędzy 2855 a 2570 rokiem przed naszą erą. Pochówek w dużym glinianym naczyniu wskazuje, że należał do wyższej klasy w porównaniu z innymi pochowanymi w tym samym miejscu. Prawdopodobnie miał brązowe oczy i włosy oraz ciemną lub czarną skórę. Miał 157–160 centymetrów wzrostu, zmarł w wieku 44–64 lat, a bardziej prawdopodobna jest górna granica. Zajmował się pracą fizyczną, co stoi w sprzeczności z typem pochówku. Ślady pozostały na szkielecie sugerują, że mógł być garncarzem.  Być może jednak był wyjątkowo utalentowany lub awansował w hierarchii społecznej, stąd taki a nie inny pochówek. Badania izotopowe wskazują, że dorastając spożywał dietę typową dla suchego gorącego klimatu Doliny Nilu, jadł białko zwierzęce i roślinne, pszenicę, jęczmień, ryby. Porównanie jego genomu z innymi starożytnymi DNA wskazuje na niemal 80% pokrewieństwa z Afryką Północą i 20% z neolityczną Mezopotamią, trzeci najsłabiej reprezentowany komponent genetyczny pochodzi z Lewantu. Źródło: Whole-genome ancestry of an Old Kingdom Egyptian, https://www.nature.com/articles/s41586-025-09195-5 « powrót do artykułu
  • Ostatnio aktywne tematy

  • Statystyki forum

    • Tematów
      38463
    • Odpowiedzi
      166657
  • Statystyki użytkowników

    • Użytkowników
      5999
    • Najwięcej online
      10625

    Najnowszy użytkownik
    irawaweldom@gmail.com
    Rejestracja
×
×
  • Dodaj nową pozycję...