Jump to content
Forum Kopalni Wiedzy

Forums

  1. Nasza społeczność

    1. Sprawy administracyjne i inne

      Uwagi odnośnie funkcjonowania serwisu i forum.

      2049
      posts
    2. Luźne gatki

      O wszystkim i nie na temat.

      12720
      posts
  2. Komentarze do wiadomości

    1. 18657
      posts
    2. 41147
      posts
    3. 13052
      posts
    4. 6088
      posts
    5. 2687
      posts
    6. 21345
      posts
    7. 14639
      posts
    8. 6657
      posts
    9. 25237
      posts
  3. Artykuły

    1. Artykuły

      Sponsored content.

      1106
      posts
  4. Inne

    1. 209
      posts
    2. 292
      posts
  • Who's Online (See full list)

    There are no registered users currently online

  • Najnowsze komentarze

    • Sihao Cheng z Institute for Advanced Study oraz Jiaxuan Li i Eritas Yang z Princeton University informują o odkryciu na krawędzi Układu Słonecznego niezwykłego obiektu transneptunowego 2017 OF201. Niewykluczone, że jest on na tyle duży, by zaliczyć go do planet karłowatych, zatem do tej klasy obiektów, co Pluton. Jest to jeden z najbardziej odległych widocznych obiektów Układu Słonecznego. Istnienie nieznanego dotychczas ciała niebieskiego zostało oficjalnie ogłoszone przez Minor Planet Center Międzynarodowej Unii Astronomicznej, a szczegóły odkrycia zostały opublikowane w artykule udostępnionym w arXiv. Obiekty transneptunowe (TNO) to planetoidy znajdując się poza orbitą Neptuna. Największe z nich to planety karłowate, zaliczane do plutoidów. Są to ciała niebieskie obiegające Słońce w czasie dłuższym niż 200 lat, o orbitach o dużym mimośródzie i nachyleniu do ekliptyki. Ich rozmiary muszą być na tyle duże, by obiekty przybierały kształt kulisty. Obiekt 2017 OF201 ma niezwykłą orbitę. Jej aphelium – najdalszy punkt od Słońca – znajduje się w odległości ponad 1600 razy większej, niż odległość Ziemi od Słońca. Tymczasem peryhelium – punkt najbliższy Słońcu – jest w odległości 44,5 jednostek astronomicznych, czyli podobnej do orbity Plutona, mówi Cheng. Tak niezwykle wydłużona orbita powoduje, że 2017 OF201 obiega Słońce w ciągu około 25 000 lat. To sugeruje, że w przeszłości doświadczał złożonych interakcji grawitacyjnych. Musiał mieć bliskie spotkania z wielkimi planetami, które wyrzuciły go na tak odległą orbitę, stwierdza Yang. Musiał to być wielostopniowy proces. Niewykluczone, że obiekt ten został najpierw wyrzucony do Obłoku Oorta, najbardziej odległego obszaru Układu Słonecznego, który jest domem wielu komet, a następnie przysłany tutaj z powrotem, dodaje Cheng. Naukowcy zauważają, że orbity wielu obiektów transneptunowych wydają się zbiegać w tym samym kierunku, a 2017 OF201 wymyka się tej regule. Takie zbieganie się orbit TNO może być pośrednim dowodem na istnienie w Układzie Słonecznym nieznanej planety, nazwanej roboczo Planetą X lub Dziewiątą Planetą. Cheng i jego koledzy szacują, że średnica 2017 OF201 może wynosić 700 kilometrów, co czyniłoby go drugim największym obiektem o tak ekstremalnej orbicie. To wciąż znacznie mniej niż średnica Plutona, która wynosi 2377 kilometrów. Żeby jednak dowiedzieć się czegoś więcej o potencjalnej nowej planecie karłowatej, potrzebne będą kolejne badania. 2017 OF201 tylko przez 1% swojej orbity wokół Słońca jest na tyle blisko nas, że możemy go wykryć. Jego obecność sugeruje jednak, że mogą istnieć setki obiektów o podobnych orbitach i rozmiarach, jednak są one obecnie zbyt daleko, byśmy mogli je zauważyć, wyjaśnia Cheng. « powrót do artykułu
    • We Wrocławskim Centrum Sieciowo-Superkomputerowym Politechniki Wrocławskiej uruchomiono pierwszy w Polsce i Europie Środkowo-Wschodniej komputer kwantowy, który wykorzystuje kubity nadprzewodzące w niskiej temperaturze. Maszyna Odra 5 została zbudowana przez firmę IQM Quantum Computers. Posłuży do badań w dziedzinie informatyki, dzięki niej powstaną nowe specjalizacje, a docelowo program studiów w dziedzinie informatyki kwantowej. Odra 5 korzysta z 5 kubitów. Waży 1,5 tony i ma 3 metry wysokości. Zwisający w sufitu metalowy walec otacza kriostat, który utrzymuje temperaturę roboczą procesora wynoszącą 10 milikelwinów (-273,14 stopnia Celsjusza). Rektor Politechniki Wrocławskiej, profesor Arkadiusz Wójs przypomniał, że sam jest fizykiem kwantowym i zajmował się teoretycznymi obliczeniami na tym polu. Idea, żeby w ten sposób prowadzić obliczenia, nie jest taka stara, bo to lata 80. XX w., a teraz minęło kilka dekad i na Politechnice Wrocławskiej mamy pierwszy komputer kwantowy nie tylko w Polsce, ale też w tej części Europy. Oby się po latach okazało, że to start nowej ery obliczeń kwantowych, stwierdził rektor podczas uroczystego uruchomienia Odry 5. Uruchomienie komputera kwantowego to ważna chwila dla Wydziału Informatyki i Telekomunikacji Politechniki Wrocławskiej. Jego dziekan, profesor Andrzej Kucharski, zauważył, że maszyna otwiera nowe możliwości badawcze, a w przyszłości rozważamy również uruchomienie specjalnego kierunku poświęconego informatyce kwantowej. Powstało już nowe koło naukowe związane z kwestią obliczeń kwantowych, a jego utworzenie spotkało się z ogromnym zainteresowaniem ze strony studentów. Mamy niepowtarzalną okazję znalezienia się w awangardzie jeśli chodzi o badania i naukę w tym zakresie i mam nadzieję, że to wykorzystamy. Odra 5 będzie współpracowała z czołowymi ośrodkami obliczeń kwantowych. Dzięki niej Politechnika Wrocławska zyskała też dostęp do 20- i ponad 50-kubitowych komputerów kwantowych stojących w centrum firmy IQM w Finlandii. « powrót do artykułu
    • Ewolucja roślin i ich zapylaczy jest zwykle badana pod kątem sygnałów optycznych i chemicznych. Nauka analizowała, jak i co widzą zapylacze, jakie sygnały chemiczne odbierają oraz w jaki sposób rośliny wykorzystują kolor, kształt oraz substancje chemiczne, by przyciągnąć zapylaczy. Nauka wie też, że zarówno zwierzęta, jak i rośliny, są zdolne do wytwarzania oraz odbierania sygnałów akustycznych. Francesca Barbero z Uniwersytetu w Turynie oraz jej zespół składający się z entomologów, inżynierów dźwięku i fizjologów roślin, postanowili sprawdzić, czy w jakiś sposób rośliny i zapylacze mogą się nawzajem słyszeć i na siebie reagować. Naukowcy odtwarzali w pobliżu rosnącego wyżlinu (Antirrhinum) dźwięki wydawane przez zapylającą go makatkę czerwoną i sprawdzali reakcję rośliny. Okazało się, że na sam dźwięk skrzydeł pszczoły, wyżlin zwiększał produkcję cukrów i nektaru, zmieniając przy tym ekspresję genów odpowiedzianych za transport i produkcję tych składników. Zdaniem badaczy, jest to świetny przykład koewolucji roślin i zapylaczy. Zdolność do odróżniania od siebie zbliżających się zapylaczy na podstawie sygnałów akustycznych przez nich generowanych może być strategią adaptacyjną. Reagując na sygnał zapylacza – na przykład tego najbardziej efektywnego – rośliny mogą zwiększyć swój sukces reprodukcyjny, jeśli doprowadzą do odpowiedniej modyfikacji jego zachowania, mówi Barbero. Dostarczając owadowi więcej cukru czy nektaru, roślina może – na przykład – skłonić go, by dłużej na niej pozostał. Widzimy tutaj, że dźwięk wydawany przez zapylacza, wpływa na zachowanie rośliny. O wiele trudniej jest sprawdzić oddziaływanie w drugą stronę – czy dźwięki roślin mogą wpłynąć na owady. Na przykład czy mogą one przyciągać wybranych zapylaczy. Jeśli okaże się, że tak, to dźwięki można będzie wykorzystywać do przyciągania zapylaczy do upraw. « powrót do artykułu
    • „Inteligentne” tkaniny, o których słyszymy od lat, mają zbierać dane za pomocą sygnałów elektrycznych. Tymczasem naukowcy z ETH Zurich stworzyli tkaninę, która rejestruje fale dźwiękowe, by dokonywać precyzyjnych pomiarów. Jest lekka, tania, przepuszcza powietrze i może sprawdzić się w medycynie, codziennym życiu i podczas uprawiania sportu. SonoTextiles to tkanina, która reaguje na dotyk, zmiany ciśnienia i ruch. Naukowcy wszyli w materiał światłowody w regularnych odstępach. Na jednym końcu każdego ze światłowodów znajduje się nadajnik emitujący fale radiowe, na drugim zaś odbiornik, który sprawdza, czy fale te uległy zmianie. Każdy z nadajników działa na innej częstotliwości, dzięki czemu potrzebujemy niewielkiej mocy obliczeniowej by stwierdzić, w którym z włókien doszło do zmiany. To znacznie bardziej efektywne rozwiązanie w porównaniu z wcześniejszymi, kiedy tekstylia musiały radzić sobie z nadmiarem danych i pojawiały się problemy z przetwarzaniem sygnałów. Nowe rozwiązanie jest na tyle proste, że w przyszłości możliwe będzie wysyłanie danych na komputer czy smartfon w czasie rzeczywistym. Gdy wszyty w materiał światłowód się porusza, zmienia się długość fali dźwiękowej. W przypadku koszulki ruch światłowodu może być wywołany ruchem ciała czy oddychaniem. Naukowcy wykorzystali fale dźwiękowe o częstotliwości około 100 kHz. To zdecydowanie poza zakresem słyszalności człowieka, który wynosi od 20 Hz do 20 kHz. Na razie badacze wykazali, że ich pomysł sprawdza się w laboratorium. W przyszłości opracowana przez nich technologia może np. przydać się pacjentom z astmą. Możemy bowiem wyobrazić sobie podkoszulkę monitorującą oddech i wszczynającą alarm gdy dojdzie do jego zaburzenia. Z kolei sportowcy będą mogli dzięki takiej koszulce na bieżąco monitorować sposób poruszania się, by zwiększyć wydajność czy uniknąć kontuzji. Twórcy SonoTextile mówią też o rękawiczkach, które w czasie rzeczywistym będą przekładały język migowy na tekst lub mowę. Ubrania mogą posłużyć do korygowania postawy podczas siedzenia czy chodzenia oraz informować opiekunów osób niepełnosprawnych, że należy zmienić ich pozycję, by uniknąć odleżyn. Nowy materiał może znaleźć wiele zastosowań, ale wciąż wymaga usprawnień. Światłowody mogą pękać wskutek codziennego używania. Na szczęście można zastąpić je metalowymi włóknami, które również przewodzą fale dźwiękowe. Tego typu usprawnienia będą tematem dalszych prac badawczo-rozwojowych nad SonoTextiles. « powrót do artykułu
    • Co o tym sądzicie? Macie jakieś bardziej rozsądne koncepcje  ? Ma ktoś może zdjęcie na tle saturna. Bo coś nie dowierzam, że spłaszczenie jest równoległe do obrotu w okół saturna  W necie nic nie znalazłem. 
    • Astronomowie nazywają Jowisza „architektem” Układu Słonecznego. Jego potężne pole grawitacyjne odegrało ważną rolę w ukształtowaniu orbit pozostałych planet, wpłynęło na kształt ich dysków protoplanetarnych. Teraz profesorowie Konstantin Batygin z California Institute of Technology i Fred C. Adam z University of Michigan poinformowali na łamach Nature Astronomy, że w przeszłości Jowisz był znacznie większy i wywierał znacznie silniejsze oddziaływanie grawitacyjne. Naszym celem jest zrozumienie, skąd się wzięliśmy. Żeby to wiedzieć, musimy poznać wczesne fazy formowania się planet. To prowadzi nas do zrozumienia, a jaki sposób swój obecny kształt nabył nie tylko Jowisz, ale cały Układ Słoneczny, stwierdza Batygin. Naukowcy przyjrzeli się niewielkim księżycom Jowisza, Amaltei i Tebe. Orbity obu są nieco nachylone względem Jowisza, naukowcy wykorzystali je do obliczenia pierwotnej wielkości Jowisza. Z obliczeń tych wynika, że 3,8 miliona lat po tym, jak uformowały się pierwsze planety skaliste Układu Słonecznego, Jowisz miał dwukrotnie, a może nawet dwuipółkrotnie, większą średnicę niż obecnie. Jego pole magnetyczne było zaś 50-krotnie silniejsze niż obecnie. Nasze obliczenia są całkowicie zgodne z teorią o formowaniu się olbrzymich planet i pozwalają na wgląd w system Jowisza pod koniec istnienia mgławicy przedsłonecznej - czytamy na łamach Nature Astronomy. Ważnym aspektem badań jest oparcie się przez naukowców na danych, które nie są obarczone takim poziomem niepewności jak zwykle używane modele, w których przyjmuje się założenia odnośnie przejrzystości gazu, tempa akrecji czy masy jądra formującej się planety. Batygin i Adams wykorzystali dynamikę orbitalną księżyców Jowisza oraz moment pędu samej planety, czyli wartości, które można bezpośrednio zmierzyć. « powrót do artykułu
  • Latest active topics

  • Forum Statistics

    • Total Topics
      38357
    • Total Posts
      166186
  • Member Statistics

    • Total Members
      5996
    • Most Online
      10625

    Newest Member
    irawaweldom@gmail.com
    Joined
×
×
  • Create New...