Skocz do zawartości
Forum Kopalni Wiedzy

Jarek Duda

Użytkownicy
  • Liczba zawartości

    1698
  • Rejestracja

  • Ostatnia wizyta

  • Wygrane w rankingu

    87

Ostatnia wygrana Jarek Duda w dniu 1 marca

Użytkownicy przyznają Jarek Duda punkty reputacji!

Reputacja

141 Wyśmienita

2 obserwujących

O Jarek Duda

  • Tytuł
    Lis Major
  • Urodziny 03.06.1980

Informacje szczegółowe

  • Płeć
    Mężczyzna

Ostatnie wizyty

Blok z ostatnimi odwiedzającymi dany profil jest wyłączony i nie jest wyświetlany użytkownikom.

  1. Z "Emergence of opposing arrows of time in open quantum systems" https://www.nature.com/articles/s41598-025-87323-x ze stycznia 2025: "the system is dissipative and decohering in both temporal directions" "revisit the standard microscopic derivations of the Lindblad master equation and the Pauli master equation, and find also in these cases that the time-reversal symmetry is maintained." Czyli dokładnie co potrzebuję do postparacji przez termalizację dla 2WQC. Z postera https://th.if.uj.edu.pl/~dudaj/2WQCposter.pdf :
  2. Jeśli takie popchnięcie mogło pochodzić z wirujących naładowanych cząstek np. z pulsara, to z perspektywy CPT to są dalej wirujące naładowane cząstki - ponieważ równania rządzące fizyką w CPT są te same, więc też powinny prowadzić do popchnięcie, które z naszej perspektywy jest pociągnięciem.
  3. https://en.wikipedia.org/wiki/Path_integral_formulation#Time-slicing_derivation https://physics.stackexchange.com/questions/263990/feynmans-derivation-of-the-schrödinger-equation https://web.physics.utah.edu/~starykh/phys7640/Lectures/FeynmansDerivation.pdf Jeśli wiemy tylko że cząstka np. w danym momencie przeszła przez szczelinę, to nasza informacja o jej położeniu później lub wcześniej wyglądają podobnie. "Dowodzenie" wzrostu entropii np. w https://en.wikipedia.org/wiki/H-theorem#Boltzmann's_H_theorem wymaga "Stosszahlansatz" przybliżenia średniopolowego ... podczas gdy równania są symetryczne, np. https://en.wikipedia.org/wiki/Poincaré_recurrence_theorem mówi że możemy wrócić dowolnie blisko danej sytuacji - też nisko entropijnej ... można taki dowód zastosować po symetrii czasowej - analogicznie "dowodząc" wzrost entropii w przeciwnym kierunku ...
  4. Zajrzałem, widzę choinki, machanie rękami bez matematyki i coś od Schrodingera ... którego standardowo wyprowadza się z zespołów po trajektoriach, np. poniżej z Boltzmanowskich (tu masz też dla zespołów gładkich trajektorii z prostymi symulacjami: https://community.wolfram.com/groups/-/m/t/3124320 ): Ale zespoły po trajektoriach, QM/QFT są CPT symetryczne - ewoluując wstecz w czasie dostajesz takie same równania - znając sytuację w jakimś czasie i próbują ją wykorzystać do przewidzenie późniejszej lub wcześniejszej sytuacji, tracisz część informacji. Jakbyś zrobił asymetryczne zespoły po trajektoriach: od teraz w przeszłość lub przeszłość, dostałbyś pierwszą potęgę amplitudy stanu podstawowego. Natomiast w symetrycznych: zespołach pełnych trajektorii, żeby wylosować jakiś punkt musisz go losowo dostać z przeszłych i przyszłych półtrajektorii - prawdopodobieństwo jest proporcjonalne do iloczynu ich prawdopodobieństw, dostając regułę Borna. Jeszcze takie kombinatoryczne wyprowadzenie - zakładając rozkład jednorodny po trajektoriach na grafie danym macierzą przystawania M - liczysz ich ilość poniższą sumą i przechodzisz t -> infinity, symetrycznie: jedną amplitudę dostajesz z przeszłości, drugą z przyszłości:
  5. Fizycy uznają symetrię CPT jako najgłębszy poziom: jest kluczowa w równaniach rządzących fizyką - używam argumentów opartych na niej, które ignorujesz i gadasz jakieś niezwiązane bujdy o entropii (na której spędziłem pół życia - m.in. ANS czy MERW) ... w analogu z rzuceniem kamienia do jeziora, ja używam argumentów o symetrii równań, co kontrargumentujesz że widzisz asymetryczne fale ... jasne jest asymetria: w rozwiązaniu, która nie przeczy głębszej symetrii w równaniach. Co do ANITA, wszystkie rozsądne możliwości byłyby widziane m.in. przez IceCube i Auger - zostały wykluczone ( https://icecube.wisc.edu/news/research/2020/01/icecube-rules-out-last-standard-model-explanation-of-anita-anomalous-neutrino-events/ ) ... a to że elektromagnetyzm może nie tylko podgrzewać/wzbudzać/pchać jest dobrze znane - m.in. w optical cooling, stimulated emission, optical pulling ( https://scholar.google.com/scholar?q=optical pulling )/tweezers ( https://en.wikipedia.org/wiki/Optical_tweezers ) ... może jednak nie trzeba wymyślać cząstek o nowych magicznych własnościach, a wystarczy zrobić coś dla niektórych bardziej groźnego: wyjść ze swojego więzienia mentalnego, np. że EM może tylko podgrzewać/wzbudzać/pchać.
  6. Owszem bez lepkości nie ma "tarcia", oporów ruchu ... ale jest promieniowanie synchrotronowe, które rzeczywiście jest trochę czymś innym ... W QFT: na diagramie Feynmana, taki wyemitowany foton jest elektromagnetycznym sprzężeniem między np. dwoma elektronami - przy stymulowanej emisji mniej więcej wiadomo co go zaobserwuje, przy spontanicznej zwykle nie wiadomo, ale raczej też taki foton coś zaabsorbuje - dalej jest sprzężeniem między np. dwoma elektronami, tylko jeszcze nic nie wiemy o tym drugim. Podejrzewam że asymetria że zwykle łatwiej tak emitować niż absorbować, co brzmi wbrew CPT, jak zwykle jest w własnościach rozwiązania a nie równaniach: że teraz łatwo znaleźć drugi do sprzężenia dla emisji (absorber), ale znacznie trudniej dla absorpcji (emiter) ... ale np. podczas przyszłej śmierci termicznej wszechświata, oba prawdopodobieństwa mogą się wyrównać: elektron na okręgu statystycznie podobnie zaabsorbuje co wyemituje. Mając taki diagram Feynmana ze sprzężeniem np. dwóch elektronów fotonem, symetria CPT mówi że odwrócony diagram jest równie poprawny ( https://en.wikipedia.org/wiki/Antiparticle#Feynman–Stückelberg_interpretation ). Więc przygotowując sytuację która z perspektywy CPT powinna emitować fotony (działając na cel równaniem absorpcji), w normalnej perspektywie powinna je absorbować - działając na cel stymulowaną emisją ... Np. ładunek po okręgu jest tym samym z perspektywy CPT, więc jeśli może popchnąć coś EM, to symetrycznie powinien też być w stanie stanie pociągnąć EM - np. tłumacząć obserwacje typu ANITA bez nowych cząstek poza SM o magicznych własnościach.
  7. Właśnie o nim rozmawialiśmy na https://forum.kopalniawiedzy.pl/topic/47909-kierunek-przyczynowości-a-symetria-cpt/page/13/#comments Wcześniej ANITA-I, III, IV, teraz Auger ( https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.134.121003 , dobre slajdy: https://www.mpi-hd.mpg.de/lin/seminar_theory/talks/Talk_Salvado_220124.pdf ) - coś "popchnęło przez ziemię" naładowane cząstki ... tylko że wszystko co znane zostało wykluczone (tau neutrino, model standardowy: https://icecube.wisc.edu/news/research/2020/01/icecube-rules-out-last-standard-model-explanation-of-anita-anomalous-neutrino-events/ ) Czyli trzeba szukać nowych egzotycznych cząstek ... a może jednak nie: zostaje (nieegzotyczna acz pomijana) opcja ich pociągnięcia zamiast popchnięcie ("z góry": nie przez Ziemię), jak np. w https://en.wikipedia.org/wiki/Optical_tweezers Mając z perspektywy CPT mechanizm ich popchnięcia, z normalnej perspektywy staje się on mechanizmem pociągnięcia ... i np. pulsary to wiry cząstek - z perspektywy CPT wygląda prawie tak samo - jeśli może wymusić jedno, powinien móc i symetryczne drugie ... czyli może nie trzeba nowych cząstek o egzotycznych własnościach.
  8. W elektromagnetyzmie nie ma lepkości, czyli w tej analogii należy myśleć o nadcieczy - której dynamika jest odwracalna. Ale zawsze tworząc dodatnie ciśnienie, równocześnie tworzymy ujemne w drugą stronę, z perspektywy CPT one się odwracają. Np. elektronem po okręgu prowadzimy do wzbudzenia celu, z perspektywy CPT on też porusza się po okręgu - też powinien prowadzić do wzbudzenia celu, co z naszej perspektywy oznacza powodowanie deekscytacji równianami stymulowanej emisji. Celem jest np. zrozumienie co obserwuje ANITA (też Auger: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.134.121003 ) - coś "popchnęło przez ziemię" naładowane cząstki ... tylko że wszystko znane zostało wykluczone (tau neutrino, model standardowy: https://icecube.wisc.edu/news/research/2020/01/icecube-rules-out-last-standard-model-explanation-of-anita-anomalous-neutrino-events/ ) Czyli trzeba szukać nowych egzotycznych cząstek ... a może jednak nie: zostaje (nieegzotyczna acz pomijana) opcja ich pociągnięcia ("z góry": nie przez Ziemię). Z perspektywy CPT potrzeba mechanizm ich popchnięcia, wtedy z normalnej perspektyw stanie się on mechanizmem pociągnięcia ... i np. pulsary to wirujące cząstki - z perspektywy CPT wygląda prawie tak samo - jeśli może wymusić jedno, powinien móc i symetryczne drugie.
  9. Nie kojarzę tutaj żadnego akcelerometru, nawet własnie sprawdziłem poprzednią stronę i nic ... może podkreślaj gdy uważasz że piszesz coś z sensem, ciężko to przefiltrować. Ale ogólnie mówimy o elektromagnetyzmie - jak chcesz analogi to najlepiej hydrodynamiczne: prawie te same równania ( https://scholar.google.pl/scholar?q=hydrodynamics electrodynamics analogy ) Poruszając wiosłem w wodzie, tworzysz zarówno dodatnie ciśnienie, ale i ujemne - z perspektywy CPT zamieniają się one miejscami. Dalej ten przykład tej śruby okrętowej - która zarówno pcha jak i ciągnie, odwrotnie z perspektywy CPT ... Coś ktoś chyba krytykował, proszę: https://www.reddit.com/r/askscience/comments/1nvyqj/how_do_boats_with_propellers_move_in_reverse/ Przechodząc do elektromagnetyzmu, analogicznie poruszamy elektronami - które tworzą analogi fali, szczególnie gdy przyspieszają - jak w hydro, z dodatnim ciśnieniem musi symetrycznie iść ujemne, z perspektywy CPT zamieniają się one miejscami.
  10. Konkretny przykład podaję promieniowania synchrotronowego: ładunek poruszający się po okręgu emituje fotony (dodatnie ciśnienie radiacyjne), powodujące wzbudzenie celu (równanie absorpcji). Z perspektywy CPT: równania rządzące fizyką mają być te same, dalej mamy ładunek po okręgu - powinien emitować fotony, powodując wzbudzenie celu ... co z naszej perspektywy oznacza ujemne ciśnienie radiacyjne, działanie równaniem stymulowanej emisji. Błysków z promieniowania synchrotronowego np. pulsarów jest pełno ... z perspektywy CPT też powinny tam być podobne warunki - które z naszej perspektywy oznaczałyby impuls ujemnego ciśnienia radiacyjnego, co mogłyby pociągnąć naładowane cząstki ... coś w stylu obserwacji ANITA, ale bez wprowadzenia nowej egzotycznej fizyki, cząstek.
  11. SM, tau neutrino nie wystarczy ... chyba że przypomnimy sobie że ciśnienie radiacyjne jest wektorem - zwykle jest do nas, ale może być i od nas ... ignorowana dozwolona odpowiedź, która niedługo powinna znacznie poprawić nasze obserwacje kosmosu i mieć wiele innych zastosowań. https://icecube.wisc.edu/news/research/2020/01/icecube-rules-out-last-standard-model-explanation-of-anita-anomalous-neutrino-events/
  12. Liczba znanych cząsteczek ciągle rośnie, ale tutaj nie pomogą. Ciągnięcie EM jest dziś codziennością np. w https://en.wikipedia.org/wiki/Optical_tweezers Lokalizacja źródeł ujemnego ciśnienia radiacyjnego powinna w zasięgu, tylko potrzeba dedykowane detektory ... jak ANITA
  13. Np. w przybliżeniu perturbacyjnym przyjmuje się że oddziaływanie np. Coulomba jest poprzez wymianę fotonów ... ale to jest tylko przybliżenie, "szereg Taylora", nieperturbacyjnie tam powinna być ciągła ewolucja pola np. w jak w wyprowadzeniu potencjału Coulomba poniżej (jak obserwowany w ciekłych kryształach) ... co można sobie przybliżać szeregiem z "fotonami". Kwantyzację fotonów mamy przy emiterze/absorberze np. jako atomy - gdzie kwantyzacja bierze się z fali stojącej opisywanej stacjonarnym Schrodingerem. Fala w wodzie też może być skwantowane w emiterze/absorberze, ale ogólnie nie musi być ... też np. CMBR: po prostu 2.7K EM szum termiczny, który kwantujemy w absorberze będącym rezonatorem. Ale np. liniowa antena powinna tworzyć cylidrycznie symetryczny sygnał, o mocy spadającej 1/r lub r^2 do 0 - ja tam nie widzę miejsca na skwantowane fotony (?)
  14. Ciśnienie radiacyjne to jest wektor P =<E x H>/c ( https://en.wikipedia.org/wiki/Radiation_pressure ) - zależy bezpośrednio od B, E ... wymiana fotonów optycznych jest np. przy przejściach atomowych - dających kwantyzację typu fala stojąca, ale np. przy antenach pracuje się bezpośrednio na E, B, chyba nikt tam nie szuka skwantowanych fotonów (?) Są też anteny bliskie śruby okrętowej:
×
×
  • Dodaj nową pozycję...