Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' sygnał'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. W ramach pionierskich badań prześledzono aktywność pojedynczych neuronów znajdujących się głęboko w mózgu, a dokonane odkrycia mogą wyjaśnić, skąd się bierze ludzka inteligencja i dlaczego jesteśmy podatni na choroby psychiczne. Autorami wyjątkowych badań są Rony Paz z izraelskiego Instytutu Weizmanna, który specjalizuje się w badaniu dynamiki neuronów zaangażowanych w procesy uczenia się u makaków oraz neurochirurg Itzhak Fried z Uniwersytetu Kalifornijskiego w Los Angeles. Dzięki badaniom pojedynczych neuronów naukowcy byli w stanie, po raz pierwszy w historii, odkryć różnice pomiędzy „oprogramowaniem” ludzkiego i małpiego mózgu. Okazało się, że ludzki mózg potrafi wykorzystać stabilność sygnałów, czyli poziom im synchronizacji pomiędzy neuronami, do bardziej efektywnego przetwarzania informacji. Na łamach Cell odkrywcy sugerują, że to właśnie ta umiejętność przyczynia się zarówno do ludzkiej inteligencji, jak i do powstawania chorób psychicznych. Badacze wykorzystali dane na temat aktywności pojedynczych neuronów, które zbierali od ludzi z epilepsją w czasie, gdy ci przechodzili zabiegi neurochirurgiczne. Przeprowadzenie takich badań jest tak trudne, że jedynie kilka klinik na świecie mogło wziąć w nich udział. Dla porównania zebrano podobne, istniejące już wcześniej dane od trzech małp oraz pozyskane je od dwóch kolejnych. Przez ostatnich kilka dziesięcioleci naukowcy odnotowali wiele mniejszych i większych różnic w budowie mózgu człowieka i naczelnych. Teraz przeprowadzono pierwsze badania pokazujące różnice w sygnałach przebiegających w mózgu. Istnieje wyraźna różnica w zachowaniu i psychologii pomiędzy ludźmi a innymi naczelnymi. Teraz zaobserwowaliśmy te różnice w biologii mózgu i są to niezwykle ważne badania, mówi Mark Harnett z MIT, który specjalizuje się w badaniu, w jaki sposób biofizyka neuronów wpływa na ich zdolności obliczeniowe. Rony Paz w swoich badaniach skupia się na ciele migdałowatym, przetwarzającym podstawowe sygnały potrzebne do przetrwania, jak konieczność ucieczki przed drapieżnikiem, oraz zakręcie obręczy, który jest zaangażowany w bardziej złożone zadania, jak uczenie się. Izraelski uczony chciał wiedzieć, czy neurony z obu wymienionych obszarów różnią się u ludzi i u małp. O pomoc poprosił Frieda, który jest twórcą techniki rejestrowania aktywności pojedynczych neuronów u ludzi z epilepsją nie reagujących na leczenie. Metoda Frida polega na wszczepieniu do mózgu pacjenta wielu miniaturowych elektrod. Pacjent pozostaje w szpitalu do czasu, aż dozna ataku epilepsji. Elektrody określają miejsce, które zapoczątkowało atak. Są one następnie usuwane, a obszar odpowiedzialny za epilepsje jest niszczony. Pacjenci w czasie pobytu w szpitalu często biorą udział w eksperymentach pozwalających na pogłębienie wiedzy o mózgu. Paz i Fried zebrali dane o niemal 750 neuronach z ciała migdałowatego i zakrętu obręczy z mózgów pięciu małp i siedmiu ludzi. W danych poszukiwali informacji o poziomie stabilności sygnałów rozumianym jako ich synchronizacja oraz o wydajności ich przetwarzania, rozumianych jako liczba różnych wzorców aktywności. Okazało się, że i u ludzi i u małp sygnały w ciele migdałowatym były bardziej stabilne niż w zakręcie obręczy. Jednak te w zakręcie obręczy były bardziej efektywne. U ludzi oba regiony były mniej stabilne i bardziej efektywne niż u małp. Tak więc wydaje się, że nasze mózgi poświęcają nieco stabilności na rzecz zwiększonej efektywności. Jak mówi Paz, takie odkrycie ma sens. Jeśli sygnał jest bardziej stabilny, jest on bardziej jednoznaczny i mniej podatny na błędy. Gdy widzę tygrysa, chcę, by wszystkie neurony w moim ciele migdałowatym dały mi sygnał do szybkiej ucieczki, mówi Paz. Jednak u wyżej zorganizowanych zwierząt, jak np. u naczelnych, w mózgu wyewoluowały bardziej elastyczne obszary, które dają możliwość pojawienia się większej liczby rozwiązań na widok zbliżającego się niebezpieczeństwa. U ludzi ta elastyczność poszła dalej niż u innych naczelnych. Jesteśmy dzięki temu bardziej inteligentni, ale i bardziej podatni na błędy w sygnałach pomiędzy neuronami, co wyjaśnia podatność ludzi na zaburzenia umysłowe. Co interesujące, jak zauważa Robert Knight z Uniwersytetu Kalifornijskiego w Berkeley, powyższe odkrycie zgadza się z już istniejącymi teoriami psychologicznymi, które mówią, że stopień synchronizacji aktywności neuronów w mózgu może być skorelowany z występowaniem psychoz i depresji. To bardzo ważne badania, gdyż większość eksperymentów neurologicznych jest prowadzonych na zwierzętach z założeniem, że podstawowe wzorce aktywności neuronów odnoszą się też do ludzi, mówi. Christopher Petkov z Newcastle University zauważa jednak, że w kolejnych badaniach konieczne jest potwierdzenie spostrzeżeń Paza i Frieda. Bezpośrednie porównanie danych pozyskanych od ludzi i małp jest trudne, gdyż trudno jest stwierdzić, czy oba badane gatunki znajdowały się podczas zbierania danych w tym samym stanie umysłu. Paz przyznaje, że może być to problem, a długi, liczony w godzinach, czas rejestrowania danych oznacza, iż prawdopodobnie pojawiło się wiele różnic w stanie umysłu ludzi i małp. Uczony mówi jednak, że już planuje kolejne eksperymenty, w czasie których małpy i ludzie będą wykonywali podobne zadania wprowadzające je w konkretny stan, jak na przykład w niepokój. Badania takie nie będą jednak proste. Jako, że elektrody umieszczane są u epileptyków tylko w tych obszarach, gdzie prawdopodobnie pojawiają się napady, to – jak zauważa Fried – w klinikach zdolnych do przeprowadzenia badań pojawia się w ciągu roku jedynie 10–15 odpowiednich pacjentów i trzeba ich namówić, by pozostali w szpitali i wzięli udział w nudnych eksperymentach. « powrót do artykułu
  2. Przed dwoma laty nad Antarktyką zarejestrowano zjawisko, którego fizycy wciąż nie potrafią jednoznacznie wyjaśnić. Niewykluczone, że nie pasuje ono do Modelu Standardowego. W marcu 2016 roku należący do NASA Antarctic Impulsive Transient Antenna (ANITA), dryfujący nad Antarktyką balon z anteną wykrywającą promieniowanie kosmiczne, zarejestrował dwa impulsy promieniowania kosmicznego, które... pochodziły z Ziemi. Od tamtej pory zaproponowano szereg wyjaśnień tego zjawiska. Mówiono o sterylnych neutrino i o nietypowym rozkładzie ciemnej materii we wnętrzu Ziemi. Astrofizycy z Penn State University opublikowali artykuł, w którym informują, że to, co zarejestrowała ANITA nie jest jedynym zjawiskiem tego typu. Okazało się, że trzykrotnie podobne impulsy wykryło IceCube, umieszczone w lodzie Antarktyki obserwatorium neutrin. Z artykułu autorstwa Dereka Foxa, Steinna Sigurdsonna i innych dowiadujemy się też, że szansa, iż zaobserwowane zjawisko jest zgodne z Modelem Standardowym wynosi 1/3.500.000. Fox, Sigurdsson i ich koledzy sprawdzili dane z innych detektorów, poszukując w nich sygnałów podobnych do tych, jakie zarejestrowała ANITA. Gdy okazało się, że promieniowanie kosmiczne pochodzące z Ziemi zostało trzykrotnie zarejestrowane przez IceCube, naukowcy zdali sobie sprawę, że wpadli na trop czegoś, co może zmienić współczesną fizykę. To skłoniło mnie do poważnego przyjrzenia się danym z ANITA. Właśnie po to jest się fizykiem. By łamać modele, ustalać nowe stałe, dowiadywać się o świecie czegoś, czego nie wiemy, mówi Fox. Nawet jeśli Model Standardowy świetnie wyjaśnia nam szereg zjawisk, to ma on wiele luk. Na przykład nie pasuje do niego istnienie ciemniej materii, masa neutrino czy asymetria materii i antymaterii we wszechświecie, mówi Seyda Ipek, fizyk cząstek z Uniwersytetu Kalifornijskiego w Irvine. Nadzieją na jakiś przełom w fizyce był Wielki Zderzacz Hadronów. Urządzenie wykryło bozon Higgsa, brakujący element Modelu Standardowego, i na tym się skończyło. Tymczasem fizycy na całym świecie szukają nowych idei, które pozwoliłyby lepiej zrozumieć wszechświat. Teraz część naukowców twierdzi, że artykuł fizyków z Penn State dostarcza solidnych podstaw dających nadzieję, że w końcu w fizyce wydarzy się coś nowego. Od samego początku było jasne, że jeśli wydarzenia zarejestrowane przez ANITA są spowodowane cząstkami, które przebyły tysiące kilometrów przez naszą planetę, to cząstki te z bardzo dużym prawdopodobieństwem nie należą do Modelu Standardowego, stwierdza Mauricio Bustamante, astrofizyk z Uniwersytetu w Kopenhadze. Opublikowany artykuł to pierwsze solidne wyliczenie prawdopodobieństwa, które pokazuje, jak mało możliwe jest, że mamy tu do czynienia z czymś, co zgadza się z Modelem Standardowym, dodaje. Podobnego zdania jest Bill Louis, fizyk neutrino z Los Alamos National Laboratory. Jeśli wspomniane sygnały pochodziłyby od cząstek z Modelu Standardowego, to cząstkami tymi byłyby neutrino. Żadne inna cząstka nie przedostałaby się przez cały przekrój naszej planety. Jednak, jak mówi Louis, neutrino zdolne do przelecenia przez przekrój Ziemi mają tak małą energię, że nie powinny zostać wykryte przez ANITA i IceCube. Te o większych energiach, które mogłyby zostać zarejestrowane, zostałyby wcześniej przechwycone przez Ziemię. Zdaniem Louisa artykuł z Penn State wskazuje, że to, co wywołało zarejestrowane sygnały jest zgodne z teorią o supersymetrii. Zdaniem autorów artykułu, najbardziej prawdopodobnym wyjaśnieniem pojawienia się zarejestrowanych sygnałów jest istnienie sleptonów stau. Wedle teorii o supersymetrii są one supersymetrycznymi partnerami leptonów tau Modelu Standardowego. Louis dodaje, że na obecnym etapie badań tak dokładne wskazanie na konkretne cząstki jest nieco naciągane. Autorzy z Penn State dokonali solidnych obliczeń wskazujących, że najprawdopodobniej żadna znana cząstka nie mogła przebyć Ziemi w taki sposób, jak te zarejestrowane. Jednak wciąż nie ma całkowitej pewności. Na pewno zaś mamy za mało danych, by wskazywać na konkretną cząstkę. Fox zgadza się z tym, co mówi Louis. Jako obserwator nie mam możliwości definitywnego stwierdzenia,  że to stau. Analizowałem dane, próbując dowiedzieć się czegoś nowego o wszechświecie i trafiłem na dziwaczne zjawisko. Potem wraz z kolegami przejrzeliśmy literaturę fachową, by sprawdzić, czy ktoś już tego nie wyjaśnił. Znaleźliśmy artykuły, w tym jeden sprzed 14 lat, których autorzy przewidywali coś podobnego, dodaje. Okazuje się, że niektórzy fizycy teoretycy przewidywali, iż sleptony stau mogą dawać takie właśnie sygnały w detektorach neutrin. Jako, że prace te były pisane na długo zanim ANITA zarejestrowała sygnały, nie można wykluczyć, iż fizycy ci byli na dobrym tropie. Fox nie wyklucza, że jeśli naukowcy pracujący przy IceCube sięgną głębiej do swoich archiwów, to znajdą tam kolejne sygnały, których wcześniej nie zauważono. Louis i Bustamante uważają, że NASA powinna przeprowadzić więcej badań za pomocą ANITA i spróbować zarejestrować kolejne sygnały tego typu. Musimy być pewni, że zjawiska te nie są związane z jakimiś nieznanymi nam czynnikami, na przykład z nierozpoznanymi właściwościami lodu Antarktyki. Potrzebujemy kolejnych instrumentów, które wykryłyby podobne sygnały, mówi Bustamante. Jeśli dokonane dotychczas obserwacje się potwierdzą, może okazać się, że ANITA może mieć większy wkład w naukę niż Wielki Zderzacz Hadronów (LHC). Każdy przypadek zaobserwowania cząstek nienależących do Modelu Standardowego będzie przełomem, gdyż pokaże nam, gdzie mamy poszukiwać fizyki spoza Modelu Standardowego. W LHC bardzo trudno byłoby uzyskać i wykryć cząstki supersymetryczne, stwierdza Ipek. Naukowcy dodają, że dzięki danym z ANITA można będzie ewentualnie tak dostroić LHC by Zderzacz zaczął badań supersymetryczne cząstki. « powrót do artykułu
×
×
  • Create New...