Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' ciemna materia'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 27 results

  1. Gdyby większość ciemnej materii istniała nie w postaci w formie cząstek, a mikroskopijnych czarnych dziur, to mogłyby one wpływać na orbitę Marsa tak, że bylibyśmy w stanie wykryć to za pomocą współczesnej technologii. Zatem zmiany orbity Czerwonej Planety mogłyby posłużyć do szukania ciemnej materii, uważają naukowcy z MIT, Uniwersytetu Stanforda i Uniwersytetu Kalifornijskiego w Santa Cruz. A wszystko zaczęło się od odrodzenia hipotezy z lat 70. XX wieku i pytania o to, co stałoby się z człowiekiem, przez którego przeszłaby miniaturowa czarna dziura. Pomysł, że większość ciemnej materii, której wciąż nie potrafimy znaleźć, istnieje w postaci miniaturowych czarnych dziur, narodził się w latach 70. Wysunięto wówczas hipotezę, że u zarania wszechświata z zapadających się chmur gazu powstały niewielkie czarne dziury, które w miarę ochładzania się i rozszerzania wszechświata, rozproszyły się po nim. Takie czarne dziury mogą mieć wielkość pojedynczego atomu i masę największych znanych asteroid. W ostatnich latach hipoteza ta zaczęła zdobywać popularność w kręgach naukowych. Niedawno jeden z autorów badań, Tung Tran, został przez kogoś zapytany, co by się stało, gdyby taka  pierwotna czarna dziura przeszła przez człowieka. Tran chwycił za coś do pisania i wyliczył, że gdyby tego typu czarna dziura minęła przeciętnego człowieka w odległości 1 metra, to osoba taka zostałaby w ciągu 1 sekundy odrzucona o 6 metrów.  Badacz wyliczył też, że prawdopodobieństwo, by taki obiekt znalazł się w pobliżu kogokolwiek na Ziemi jest niezwykle małe. Jednak Tung postanowił sprawdzić, co by się stało, gdyby miniaturowa czarna dziura przeleciała w pobliżu Ziemi i spowodowała niewielkie zmiany orbity Księżyca. Do pomocy w obliczeniach zaprzągł kolegów. Wyniki, które otrzymaliśmy, były niejasne. W Układzie Słonecznym mamy do czynienia z tak dynamicznym układem, że inne siły mogłyby zapobiec takim zmianom, mówi uczony. Badacze, chcąc uzyskać jaśniejszy obraz, stworzyli uproszczoną symulację Układu Słonecznego składającego się z wszystkich planet i największych księżyców. Najdoskonalsze symulacje Układu biorą pod uwagę ponad milion obiektów, z których każdy wywiera jakiś wpływ na inne. Jednak nawet nasza uproszczona symulacja dostarczyła takich danych, które zachęciły nas do bliższego przyjrzenia się problemowi, wyjaśnia Benjamin Lehmann z MIT. Na podstawie szacunków dotyczących rozkładu ciemnej materii we wszechświecie i masy miniaturowych czarnych dziur naukowcy obliczyli, że taka wędrująca we wszechświecie czarna dziura może raz na 10 lat trafić do wewnętrznych regionów Układu Słonecznego. Wykorzystując dostępne symulacje rozkładu i prędkości przemieszczania się ciemnej materii w Drodze Mlecznej, uczeni symulowali przeloty tego typu czarnych dziur z prędkością około 241 km/s. Szybko odkryli, że o ile efekty przelotu takiej dziury w pobliżu Ziemi czy Księżyca byłyby trudne do obserwowania, gdyż ciężko byłoby stwierdzić, że widoczne zmiany wywołała czarna dziura, to w przypadku Marsa obraz jest już znacznie jaśniejszy. Z symulacji wynika bowiem, że jeśli pierwotna czarna dziura przeleciałaby w odległości kilkuset milionów kilometrów od Marsa, po kilku latach orbita Czerwonej Planety zmieniłaby się o około metr. To wystarczy, by zmianę taką wykryły instrumenty, za pomocą których badamy Marsa. Zdaniem badaczy, jeśli w ciągu najbliższych dziesięcioleci zaobserwujemy taką zmianę, powinniśmy przede wszystkim sprawdzić, czy nie została ona spowodowana przez coś innego. Czy to nie była na przykład nudna asteroida, a nie ekscytująca czarna dziura. Na szczęście obecnie jesteśmy w stanie z wieloletnim wyprzedzeniem śledzić tak wielkie asteroidy, obliczać ich trajektorie i porównywać je z tym, co wynika z symulacji dotyczących pierwotnych czarnych dziur, przypomina profesor David Kaiser z MIT. A profesor Matt Caplan, który nie był zaangażowany w badania, dodaje, że skoro mamy już obliczenia i symulacje, to pozostaje najtrudniejsza część – znalezienie i zidentyfikowanie prawdziwego sygnału, który potwierdzi te rozważania. « powrót do artykułu
  2. Nowe dane z najczulszego na świecie wykrywacza ciemnej materii pozwalają zawęzić obszar poszukiwań, przybliżając nas do odkrycia jednej z największych tajemnic wszechświata. Jednocześnie jednak pokazują, że odnalezienie cząstek ciemnej materii będzie bardzo trudne. O ile w ogóle zostaną znalezione, gdyż eksperyment o którym mowa – LUX-ZEPLIN – szuka słabo oddziałujących masywnych cząstek (WIMP). Nigdy ich nie zarejestrowano, jednak są one jednym z głównych kandydatów na cząstki, z których składa się ciemna materia. Nowe dane opublikowano przed trzema dniami podczas TeV Particle Astrophysics 2024 Conference w Chicago oraz LIDINE 2024 Conference w São Paulo. Znajdujący się w Sanford Underground Research Facility w Dakocie Południowej LUX-ZEPLIN to najbardziej czuły eksperyment poszukujący ciemnej materii, przede wszystkim WIMPów. Pracuje przy nim ponad 250 naukowców z USA, Wielkiej Brytanii, Szwajcarii, Australii, Portugalii i Korei Południowej. Najnowsze dane oznaczają znaczący postęp w stosunku do wcześniejszych poszukiwań WIMP. Przeszukaliśmy wielki zakres mas, w których cząstki ciemnej materii mogłyby wchodzić w interakcje ze zwykłą materią i nie znaleźliśmy ciemnej materii. Jej poszukiwania to zdecydowanie maraton, a nie sprint. LZ zebrał trzykrotnie więcej danych, niż dotychczas przeanalizowaliśmy, więc piłka wciąż jest w grze, mówi profesor Henning Flaecher z Uniwersytetu w Bristolu. LZ nie znalazł WIMPów powyżej masy 9 GeV/c2. Trzeba tutaj zauważyć, że 1 GeV/c2 to masa atomu wodoru. Jeśli porównamy poszukiwania ciemnej materii z szukaniem zakopanego skarbu, to wykopaliśmy 5-krotnie głębszą dziurę niż wcześniejsi poszukiwacze. Jednak aby to zrobić nie wystarczy i milion łopat. Trzeba stworzyć nowe urządzenie, obrazowo opisuje wysiłki naukowców profesor Scott Kravitz z University of Texas w Austin. Wykrywacz musi pracować przez 1000 dni, by możliwe było wykorzystanie jego maksymalnej czułości. Obecna analiza zawiera dane z 280 dni pracy. Pochodzą one z 220 dni pomiędzy marcem 2023 a kwietniem 2024 oraz z 60 dni podczas pierwszej kampanii badawczej. Pełny zestaw 1000 dni pracy naukowcy chcą osiągnąć przed końcem 2028 roku. LZ usiłuje zarejestrować interakcje pomiędzy materią a ciemną materią. Urządzenie musi być więc niezwykle precyzyjnie skalibrowane, by maksymalnie zredukować szum tła. Wykrywacz znajduje się niemal 1,5 kilometra pod ziemią. To w znacznym stopni chroni go przed promieniowaniem kosmicznym. Jego sercem jest zbiornik zawierający 7 ton czystego ksenonu oraz 500 fotodetektorów, które mają zarejestrować rozbłysk światła pochodzący z interakcji pomiędzy WIMP a jądrem ksenonu. Urządzenie zbudowane zostało z tysięcy ultraczystych elementów o bardzo niskim promieniowaniu. Jego konstrukcja jest warstwowa, przypomina cebulę. Każda z warstw ma blokować zewnętrzne promieniowanie lub śledzić interakcje pomiędzy cząstkami, by wykluczyć fałszywe sygnały. Podczas najnowszej analizy po raz pierwszy zastosowano też technikę celowego dodawania fałszywych sygnałów. Dzięki temu podczas analizy naukowcy wiedzą, że mają w danych fałszywe sygnały – nie wiedzą jednak które to – a to pozwala na uniknięcie sytuacji, w której zbyt pochopnie uzna się jakiś sygnał na wskazujący na istnienie WIMP. Ludzie mają tendencję do dostrzegania wzorców w danych. Jest więc bardzo ważnym, by unikać wszelkich tego typu pomyłek, dodaje profesor Scott Haselschwardt z University of Michigan. « powrót do artykułu
  3. Po 10 latach pionierskiej pracy naukowcy z amerykańskiego SLAC National Accelerator Laboratory ukończyli wykrywacze ciemnej materii SuperCDMS. Dwa pierwsze trafiły niedawno do SNOLAB w Ontario w Kanadzie. Będą one sercem systemu poszukującego dość lekkich cząstek ciemnej materii. Urządzenia mają rejestrować cząstki o masach od 1/2 do 10-krotności masy protonu. W tym zakresie będzie to najbardziej czuły na świecie wykrywacz ciemnej materii. Twórcy detektorów mówią, że przy ich budowie wiele się nauczyli i stworzyli wiele interesujących technologii, w tym elastyczne kable nadprzewodzące, elektronikę działającą w ekstremalnie niskich temperaturach czy lepiej izolowane systemy kriogeniczne, dzięki czemu całość jest znacznie bardziej czuła na ciemną materię. A dodatkową zaletą całego eksperymentu jest jego umiejscowienie 2 kilometry pod ziemią, co pozwoli na wyeliminowanie znaczniej części zakłóceń ze strony promieniowania kosmicznego. SNOLAB i SuperCDMS są dla siebie stworzone. Jesteśmy niesamowicie podekscytowani faktem, że detektory SuperCDMS mają potencjał, by bezpośrednio zarejestrować cząstki ciemnej materii i znacząco zwiększyć nasza wiedzę o naturze wszechświata, mówi Jodi Cooley, dyrektor SNOLAB. Zrozumienie ciemnej materii to jedno z najważniejszych zadań nauki, dodaje JoAnne Hewett ze SLAC. Wiemy, że materia widzialna stanowi zaledwie 15% wszechświata. Cała reszta to ciemna materia. Jednak nikt nie wie, czym ona jest. Wiemy, że istnieje, gdyż widzimy jej oddziaływanie grawitacyjne z materią widzialną. Jednak poza tym nie potrafimy jej wykryć. Eksperyment SuperCDMS SNOLAB to próba zarejestrowania cząstek tworzących ciemną materię. Naukowcy chcą w nim wykorzystać schłodzone do bardzo niskich temperatur kryształy krzemu i germanu. Stąd zresztą nazwa eksperymentu – Cryogenic Dark Matter Search (CDMS). Uczeni mają nadzieję, że w temperaturze o ułamek stopnia wyższej od zera absolutnego uda się zarejestrować wibracje kryształów powodowane interakcją z cząstkami ciemnej materii. Takie kolizje powinny zresztą wygenerować pary elektron-dziura, które – przemieszczając się w krysztale – wywołają kolejne wibracje, wzmacniając w ten sposób sygnał. Żeby jednak tego dokonać, detektory muszą zostać odizolowane od wpływu czynników zewnętrznych. Dlatego też eksperyment będzie prowadzony w SNOLAB, laboratorium znajdującym się w byłej kopalni niklu, ponad 2000 metrów pod ziemią. Stopień trudności w przeprowadzeniu tego typu eksperymentów jest olbrzymi. Nie tylko bowiem konieczne było stworzenie nowatorskich wykrywaczy, co wymagało – jak już wspomnieliśmy – 10 lat pracy. Wyzwaniem był też... transport urządzeń. Aby chronić je przed promieniowaniem kosmicznym, należało jak najszybciej dostarczy je z USA do Kanady. Oczywiście na myśl przychodzi przede wszystkim transport lotniczy. Jednak im wyżej się wzniesiemy, tym cieńsza warstwa atmosfery nas chroni, zatem tym więcej promieniowania kosmicznego do nas dociera. Wybrano więc drogę lądową, ale... naokoło. Pomiędzy Menlo Park w Kalifornii, gdzie powstały wykrywacze, a kanadyjską prowincją Ontario znajdują się Góry Skaliste. Ciężarówka z wykrywaczami musiałaby więc wjechać na sporą wysokość nad poziomem morza, co wiązałoby się z większym promieniowaniem docierającym do detektorów. Dlatego też jej trasa wiodła na południe, przez Teksas. Już następnego dnia po dotarciu do Ontario urządzenia zostały opuszczone pod ziemię, gdzie czekają na instalację. Jeszcze w bieżącym roku do Kanady trafią kolejne SuperCDMS, a wstępne przygotowania do uruchomiania laboratorium mają zakończyć się w 2024 roku. Naukowcy mówią, że po 3-4 latach pracy laboratorium powinno zebrać na tyle dużo danych, że zdobędziemy nowe informacje na temat ciemnej materii. « powrót do artykułu
  4. Lekkie antyatomy mogą przebyć w Drodze Mlecznej duże odległości zanim zostaną zaabsorbowane, poinformowali na łamach Nature Physics naukowcy, którzy pracują przy eksperymencie ALICE w CERN-ie. Dodali oni do modelu dane na temat antyatomów helu wytworzonych w Wielkim Zderzaczu Hadronów. Pomoże to w poszukiwaniu cząstek antymaterii, które mogą brać swój początek z ciemnej materii. Fizycy potrafią uzyskać w akceleratorach cząstek lekkie antyatomy, jak antyhel czy antydeuter. Dotychczas jednak nie zaobserwowano ich w przestrzeni kosmicznej. Tymczasem z modeli teoretycznych wynika, że antyatomy, podobnie zresztą jak antyprotony, mogą powstawać zarówno w wyniku zderzeń promieniowania komicznego z materią międzygwiezdną, jak i podczas wzajemnej anihilacji cząstek antymaterii. Sygnałów takich poszukuje m.in. zbudowany przez CERN instrument AMS (Alpha Magnetic Spectrometer) zainstalowany na Międzynarodowej Kosmicznej. Jeśli jednak instrumenty naukowe zarejestrują lekkie antyatomy pochodzące z przestrzeni kosmicznej, skąd będziemy wiedzieli, że ich źródłem jest ciemna materia? Żeby to określić, naukowcy muszą obliczyć liczbę, a konkretne strumień pola, antyatomów, które powinny dotrzeć do instrumentu badawczego. Wartość ta zależy od źródła antymaterii, prędkości tworzenia antyatomów oraz ich anihilacji lub absorpcji pomiędzy źródłem powstania a instrumentem je rejestrującym. I właśnie ten ostatni element stał się przedmiotem badań naukowców skupionych wokół eksperymentu ALICE. Uczeni badali jak jądra antyhelu-3, który uzyskano w Wielkim Zderzaczu Hadronów, zachowują sią w kontakcie z materią. Uzyskane w ten sposób dane wprowadzili do publicznie dostępnego oprogramowania GALPROP, które symuluje rozkład cząstek kosmicznych, w tym antyjąder, w przestrzeni kosmicznej. Pod uwagę wzięli dwa scenariusze. W pierwszym z nich założyli, że źródłem antyhelu-3 są zderzenia promieniowania kosmicznego a materią międzygwiezdną, w drugim zaś, że są nim hipotetyczne cząstki ciemnej materii, WIMP (słabo oddziałujące masywne cząstki). W każdym z tych scenariuszy obliczali przezroczystość Drogi Mlecznej dla jądra antyhelu-3. Innymi słowy, sprawdzali, z jakim prawdopodobieństwem takie antyjądra mogą przelecieć przez Drogę Mleczną zanim zostaną zaabsorbowane. Dla modelu, w którym antyjądra pochodziły z WIMP przezroczystość naszej galaktyki wyniosła około 50%. Dla modelu interakcji promieniowania kosmicznego z materią międzygwiezdną wynosiła zaś od 25 do 90 procent, w zależności od energii antyjąder. To pokazuje, że w obu przypadkach antyjądra mogą przebyć olbrzymie odległości, liczone w kiloparsekach (1 kpc ≈ 3261 lat świetlnych), zanim zostaną zaabsorbowane. Jako pierwsi wykazaliśmy, że nawet jądra antyhelu-3 pochodzące z centrum galaktyki mogą dotrzeć w pobliże Ziemi. To oznacza, że ich poszukiwanie w przestrzeni kosmicznej jest bardzo dobrą metodą poszukiwania ciemnej materii, stwierdzają autorzy badań. « powrót do artykułu
  5. Troje astronomów –  José Luis Bernal, Gabriela Sato-Polito i Marc Kamionkowski – uważa, że sonda New Horizons mogła zarejestrować rozpadające się cząstki ciemnej materii. Uważają oni, że niespodziewany nadmiar światła zarejestrowany przez sondę, może pochodzić z rozpadających się aksjonów, hipotetycznych cząstek ciemnej materii. Na optyczne promieniowanie tła składa się całe światło widzialne emitowane przez źródła znajdujące się poza Drogą Mleczną. Światło to może nieść ze sobą istotne informacje na temat struktury wszechświata. Problem w badaniu tego światła polega na trudności w jego odróżnieniu od światła, którego źródła znajdują się znacznie bliżej, szczególnie od światła Słońca rozproszonego na pyle międzyplanetarnym. Wystrzelona w 2006 roku sonda New Horizons znajduje się obecnie w Pasie Kuipera. Pył międzyplanetarny jest tam znacznie bardziej rozproszony niż bliżej Słońca. Niedawno sonda użyła instrumentu o nazwie Long Range Reconnaissance Imager (LORRI) do pomiaru światła. Ku zdumieniu specjalistów okazało się, że optyczne promieniowanie tła jest dwukrotnie bardziej jasne, niż należałoby się spodziewać z ostatnich badań dotyczących rozkładu galaktyk. Astronomowie z Uniwersytetu Johnsa Hopkinsa uważają, że ten nadmiar światła może pochodzić z rozpadu aksjonów. Uczeni, chcąc wyjaśnić wyniki obserwacji LORRI, zbadali model, w którym aksjony rozpadałyby się do fotonów. Obliczyli, jak rozkładałaby się energia fotonów z takiego rozpadu i w jaki sposób przyczyniałoby się to zarejestrowania nadmiarowego światła przez LORRI. Wyniki sugerują, że nadmiar fotonów mógłby pochodzić z aksjonów o masie mieszczącym się w zakresie 8–20 eV/c2. Powinny one dawać wyraźny sygnał w przyszłych pomiarach intensywności światła. « powrót do artykułu
  6. Dwaj członkowie Czeskiej Akademii Nauk zaproponowali nową hipotezę zmodyfikowanej dynamiki newtonowskiej (MOND), która wzbudziła zainteresowanie środowiska fizycznego. MOND modyfikuje zasady dynamiki Newtona o nieliniową zależność siły od przyspieszenia. Obywa się ona bez ciemnej materii oraz ciemnej energii, dobrze opisuje zjawiska zachodzące w galaktykach, ale nie radzi sobie z opisem w większej skali. Nie zyskała więc powszechnej akceptacji. Praca Constantinosa Skordisa i Toma Złośnika ma to zmienić. Od wielu lat fizycy akceptują hipotezę istnienia ciemnej materii, dzięki której można wyjaśnić pewne obserwowane zjawiska, których w standardowy sposób wyjaśnić się nie da. Nie wszyscy jednak się z nią zgadzają, wskazując na brak fizycznych dowodów na obecność ciemnej materii. Dlatego też pojawiła się hipoteza MOND mówiąca o istnieniu grawitacji nieznanego typu. Jednak różne odmiany MOND nie były w stanie wyjaśnić pewnych cech mikrofalowego promieniowania tła (CMB). Skordis i Złośnik twierdzą, że stworzyli model MOND, który opisuje i CMB i soczewkowanie grawitacyjne. Ich model wychodzi od oryginalnego założenia MOND o istnieniu dwóch pól zachowujących się razem jak grawitacja. Jedno pole jest skalarne, drugie wektorowe. Czescy uczeni dodali parametry sugerujące utworzenie we wczesnym wszechświecie pól modyfikujących grawitację. Pola takie zachowują się jak ciemna materia z innych hipotez. Pola te, jak twierdzą badacze, ewoluowały tak, że stały się siłami opisywanymi przez MOND. Skordis i Złośnik twierdzą, że ich model wyjaśnia zarówno soczewkowanie grawitacyjne, jak i cechy CMB. Na następnym etapie swoich rozważań chcą sprawdzić, czy wyjaśnia ona obfitość litu we wszechświecie oraz różnice w pomiarach tempa rozszerzania się wszechświata. Hipotezy zakładające istnienie ciemnej materii nie potrafią bowiem wyjaśnić tych zagadek. Szczegóły pracy przeczytamy w artykule New Relativistic Theory for Modified Newtonian Dynamics opublikowanym na łamach Physical Review Letters. « powrót do artykułu
  7. Badanie grawitacyjnych deformacji galaktyk karłowatych wydaje się wspierać zmodyfikowane teorie grawitacji, a nie teorię o istnieniu ciemnej materii. Ciemna materia to kluczowy element standardowego modelu kosmologicznego, a jej istnienie wynika z teorii względności Einsteina. Międzynarodowy zespół naukowy opublikował na łamach Monthly Notices of the Royal Astronomical Society wyniki badań, które są niekompatybilne z modelem Lambda-CDM – jednym z najpowszechniej uznawanych modeli kosmologicznych – a wspierają alternatywną zmodyfikowaną dynamikę newtonowską (MOND), która wyjaśnia pewne zjawiska bez odwoływania się do ciemnej materii. Zgodnie z powszechnie przyjmowanym poglądem ciemna materia stanowi około 85% materii we wszechświecie. Nie możemy jej dostrzec, jednak widzimy jej wpływ na otoczenie. Jej istnienie nie wyjaśnie jednak wszelkich obserwowanych zjawisk, a fakt, że jej nigdy nie wykryto, przyczynił się do powstania alternatywnych teorii. Uważa się, że ciemna materia tworzy halo galaktyk i wpływa na ich rozwój oraz ewolucję. Takie wielkie sferyczne halo ma otaczać też Drogę Mleczną. Elena Asencio z Uniwersytetu w Bonn, we współpracy z uczonymi z University of St Andrews w Szkocji, Europejskiego Obserwatorium Południowego w Chile i Uniwersytetu w Oulu w Finlandii poszukiwali halo wokół galaktyk karłowatych w Gromadzie w Piecu. Galaktyki takie, ze względu na swoją niską masę, są szczególnie podatne na działanie sił pływowych działających w samej gromadzie lub pochodzących z sąsiednich większych galaktyk. Działanie sił pływowych byłoby jednak zredukowane, gdyby gromada galaktyk była otoczona halo ciemnej materii. Spodziewany stopień zaburzeń zależy od praw grawitacji oraz obecności dominującego halo ciemnej materii. To zaś czyni galaktyki karłowate użytecznymi obiektami do testowania różnych modeli grawitacji, wyjaśniają autorzy badań. Naukowcy obserwowali galaktyki karłowate z Gromady w Piecu, a następnie próbowali odtworzyć zaobserwowane zjawiska za pomocą symulacji komputerowych opartych na standardowym modelu kosmologicznym, który zakłada istnienie ciemnej materii. Okazało się, że model ten nie pasuje do tych galaktyk. Zgodnie z nim galaktyki z Gromady w Piecu powinny zostać rozerwane. Uczeni, chcąc sprawdzić, co utrzymuje galaktyki, przeprowadzili kolejne symulacje, tym razem z wykorzystaniem zmodyfikowanej dynamiki newtonowskiej (MOND). W MOND zasady dynamiki Newtona zostały zmodyfikowane o nieliniową zależność siły od przyspieszenia. W 1983 roku Mordechaj Milgrom postanowił wyjaśnić rozbieżności pomiędzy przewidywanymi i obserwowanymi prędkościami orbitalnymi gwiazd bez odwoływania się do ciemnej materii. Zaproponował, że prawo mówiące iż siła jest wprost proporcjonalna do masy i odwrotnie proporcjonalna do kwadratu odległości ulega modyfikacji w momencie, gdy oddziaływanie jest bardzo słabe. MOND nie wyjaśnia problemu brakującej masy, ale za to pozwala na dobre przewidywanie rotacji galaktyk. Badania Asencio i jej zespołu pokazały, że na gruncie MOND – w przeciwieństwie do teorii zakładającej istnienie ciemnej materii – można odtworzyć zjawiska obserwowane w Gromadzie w Piecu. To już kolejne badania pokazujące, że przyjmując istnienie ciemnej materii nie można wyjaśnić wielu zjawisk, za to dobrze można je opisać na gruncie teorii alternatywnych. Musimy jednak pamiętać, że te teorie alternatywne również mają swoje ograniczenia i nie opisują dobrze zjawisk, które możemy opisać odwołując się do ciemnej materii. « powrót do artykułu
  8. Międzynarodowy zespół naukowy pracujący przy projekcie GNOME, w skład którego wchodzą uczeni z Polski, Niemiec, Serbii, Izraela, Korei Południowej, Chin, Australii i USA, ogłosił pierwsze wyniki poszukiwań ciemnej materii za pomocą ogólnoświatowej sieci magnetometrów optycznych. We wspomnianych 8 krajach znajduje się 14 magnetometrów, a do obecnie opublikowanej analizy wykorzystano dane z 9 z nich. GNOME to skrót od Global Network of Optical Magnetometers for Exotic Physics Searches. Celem projektu jest wykrycie charakterystycznego sygnału, który powinien być generowany przez pola ciemnej materii. Właśnie opublikowano dane z miesiąca nieprzerwanej pracy GNOME. Co prawda sygnał z ciemnej materii nie został wykryty, jednak pomiary pozwoliły na ściślejsze określenie, w jakich zakresach należy sygnału poszukiwać. Obecnie wiemy, że wiele obserwowanych zjawisk, jak np. prędkość obrotową gwiazd w galaktykach czy spektrum promieniowania tła, można wyjaśnić przyjmując istnienie ciemnej materii. Jednak samej ciemnej materii nie udało się dotychczas wykryć. Niezwykle lekkie cząstki bozonowe to najbardziej obiecujący kandydaci na ciemną materię. Są wśród nich cząstki podobne do aksjonów (ALP). Można je rozpatrywać jako klasyczne pole oscylujące w określonej częstotliwości. Cechą szczególną takich pól bozonowych jest – wedle jednego z teoretycznie możliwych scenariuszy – że mogą tworzyć one pewne wzorce i struktury. To zaś powoduje, że ciemna materia może mieć różną gęstość w różnych miejscach, tworząc na przykład rodzaj ścian mniejszych niż galaktyka, ale większych niż Ziemia, mówi profesor Dmitry Budker z Uniwersytetu Gutenberga z Moguncji. Jeśli taka ściana napotka Ziemię, będzie się przez nią przesuwała i będzie po kolei wykrywana przez poszczególne magnetometry sieci GNOME, generując w nich charakterystyczne sygnały. Co więcej, sygnały te będą ze sobą skorelowane, w zależności od tego, jak szybko ta ściana będzie się przesuwała i kiedy dotrze do poszczególnych magnetometrów, wyjaśnia jeden ze współautorów badań, doktor Arne Wickenbrock. Sygnał w magnetometrach powinien powstać w wyniku interakcji ciemnej materii ze spinem atomów w urządzeniach. Zgromadzone w nich atomy są wzbudzane za pomocą lasera o określonej częstotliwości, dzięki czemu ich spiny zwrócone są w tym samym kierunku. Przechodzące przez magnetometr pole ciemnej materii powinno zaburzyć ułożenie spinów, co można zmierzyć. Hector Masia-Roig, doktorant pracujący w grupie profesora Budkera, porównuje atomy do chaotycznie tańczących osób. Gdy jednak „usłyszą” odpowiednią częstotliwość lasera, atomy koordynują swój taniec. Ciemna materia może wytrącić je z równowagi, a my możemy bardzo precyzyjnie zmierzyć te zaburzenia. Możliwość skorzystania z ogólnoświatowej sieci magnetometrów pozwoli na określenie, co zaburzyło spiny atomów. Gdy bowiem Ziemia będzie przechodziła przez ścianę ciemnej materii, atomy w poszczególnych stacjach będą stopniowo zaburzane. Dopiero gdy porównamy ze sobą sygnały ze wszystkich stacji, będziemy mogli stwierdzić, co je zaburzyło. Wracając do analogii z tańczącymi – będziemy mogli powiedzieć, czy do zaburzenia doszło dlatego, że pojawił się tancerz, który wypadł z rytmu i przeszkadzał innym, czy też było to zjawisko globalne, spowodowane przez ciemną materię. Wspomniane na wstępie pomiary całego miesiąca pracy GNOME pozwoliły na stwierdzenie, że statystycznie znaczący sygnał nie pojawia się w badanym zakresie masy od 1 do 100 000 femtoelektronowoltów (feV). To zaś oznacza, że naukowcy mogą zawęzić obszar poszukiwań masy cząstek ciemnej materii. W przyszłości naukowcy chcą skupić się na udoskonaleniu magnetometrów i metod analizy danych. Głównym celem ich pracy będzie zwiększenie stabilności działania magnetometrów, by mogły pracować dłużej bez przerw. Ponadto wykorzystywane obecnie atomy metali z grupy litowców zostaną zastąpione atomami gazów szlachetnych. Tak udoskonalony Advanced GNOME ma pozwolić na zwiększenie precyzji pomiarów. « powrót do artykułu
  9. Międzynarodowy zespół naukowy, na którego czele stoją uczeni z Holandii, informuje, że nie znalazł śladów ciemnej materii w galaktyce AGC 114905. Obecnie powszechne jest przekonanie, że galaktyki mogą istnieć wyłącznie dzięki ciemnej materii, której oddziaływanie utrzymuje je razem. Przed dwoma laty Pavel Mancera Piña i jego zespół z Uniwersytetu w Groningen poinformowali o zidentyfikowaniu sześciu galaktyk, zawierających niewiele lub nie zawierających w ogóle ciemnej materii. Wówczas usłyszeli od swoich kolegów, by lepiej poszukali, a przekonają się, że musi tam ona być. Teraz, po prowadzonych przez 40 godzin obserwacjach za pomocą Very Large Array (VLA) uczeni potwierdzili to, co zauważyli wcześniej – istnienie galaktyk bez ciemnej materii. AGC 114905 znajduje się w odległości 250 milionów lat świetlnych od Ziemi. To skrajnie rozproszona galaktyka (UDG – ultra diffuse galaxy) karłowata, ale określenie „karłowata” odnosi się w jej przypadku do jasności, a nie wielkości. Galaktyka jest bowiem wielkości Drogi Mlecznej, ale zawiera około 1000-krotnie mniej gwiazd. Przeprowadzone obserwacje i analizy przeczą przekonaniu, jakoby wszystkie galaktyki, a już na pewno karłowate UDG, mogły istnieć tylko dzięki utrzymującej je razem ciemnej materii. Pomiędzy lipcem a październikiem 2020 roku naukowcy przez 40 godzin zbierali za pomocą VLA dane dotyczące ruchu gazu w tej galaktyce. Na podstawie obserwacji stworzyli grafikę pokazującą odległość gazu od galaktyki na osi X oraz jego prędkość obrotową na osi Y. To standardowy sposób badania obecności ciemnej materii. Tymczasem analiza wykazała, że ruch gazu w AGC 114905 można całkowicie wyjaśnić odwołując się wyłącznie do widocznej materii. Tego oczekiwaliśmy i spodziewaliśmy się, gdyż potwierdza to nasze wcześniejsze obserwacje. Problem jednak pozostaje, gdyż obecnie obowiązujące teorie mówią, że AGC 114905musi zawierać ciemną materię. Nasze obserwacje wskazują, że jej tam nie ma. Po kolejnych badaniach mamy zatem coraz większą rozbieżność między teorią a obserwacjami, stwierdza Pavel Mancera Piña. Naukowcy próbują więc wyjaśnić, co stało się z ciemną materią. Wedle jednej z wysuniętych przez nich hipotez, AGC 114905 mogłaby zostać pozbawiona ciemnej materii przez wielkie sąsiadujące z nią galaktyki. Problem w tym, że nie ma takich galaktyk. Zeby wyjaśnić ten brak ciemnej materii na gruncie powszechnie akceptowanego modelu kosmologicznego Lambda-CDM musielibyśmy wprowadzić do niego parametry o ekstremalnych wartościach, znajdujących się daleko poza akceptowanym zakresem. Również na gruncie alternatywnego modelu – zmodyfikowanej dynamiki newtonowskiej – nie jesteśmy w stanie wyjaśnić ruchu gazu w tej galaktyce. Uczeni mówią, że istnieje pewne założenie, które mogłoby zmienić wnioski z ich badań. Założeniem tym jest kąt, pod jakim sądzą, że obserwowali AGC 114905. Jednak kąt ten musiałby się bardzo mocno różnić od naszych założeń, by we wnioskach było miejsce na istnienie ciemnej materii, mówi współautor badań Tom Oosterloo. Tymczasem zespół badań kolejną UDG. Jeśli i tam nie znajdzie śladów ciemnej materii, będzie to bardzo silnym potwierdzeniem dotychczasowych spostrzeżeń. Warto tutaj przypomnieć, że już 3 lata temu donosiliśmy, że zespół z Yale University odkrył pierwszą galaktykę bez ciemnej materii. Metoda wykorzystana przez Holendrów jest bardziej wiarygodna i odporna na zakłócenia. « powrót do artykułu
  10. Prowadzony głęboko pod włoskimi Alpami eksperyment XENON1T mógł wykryć ciemną energię, twierdzą członkowie międzynarodowej grupy badawczej, na której czele stali uczeni z Cambridge University. W artykule opublikowanym na łamach Physical Review D uczeni z Wielkiej Brytanii, Włoch, Holandii, Francji i USA donoszą, że część z niewyjaśnionych sygnałów mogło zostać spowodowanych interakcją z ciemną energią, a nie ciemną materią dla której XENON1T został zaprojektowany. XENON1T znajduje się we włoskim Laboratorium Narodowym Gran Sasso położonym 1400 metrów pod masywem Gran Sasso. To wykrywacz ciemnej materii, a jego umiejscowienie głęboko pod ziemią ma chronić przed promieniowaniem kosmicznym generującym fałszywe sygnały. Zgodnie z teoretycznymi założeniami, cząstki ciemnej materii mają zderzać się z atomami w detektorze, a sygnały ze zderzeń będą rejestrowane. Centralna część XENON1T to cylindryczny zbiornik o długości 1 metra wypełniony 3200 kilogramami płynnego ksenonu o temperaturze -95 stopni Celsjusza. Gdy ciemna materia zderzy się z atomem ksenonu, energia trafia do jądra, które pobudza jądra innych atomów. Wskutek tego pobudzenia pojawia się słaba emisja w zakresie ultrafioletu, którą wykrywają czujniki na górze i na dole cylindra. Te same czujniki są też zdolne do zarejestrowania ładunku elektrycznego pojawiającego się wskutek zderzenia. Przed rokiem informowaliśmy, że „Najczulszy detektor ciemnej materii zarejestrował niezwykłe sygnały. Fizycy nie wiedzą, czym one są", a kilka miesięcy później pojawiła się informacja o kilku interesujących hipotezach dotyczących tych sygnałów. Nikt wówczas nie przypuszczał, że rozwiązaniem zagadki może być ciemna energia, gdyż XENON1T nie został przygotowany do jej rejestrowania. Autorzy najnowszych badań stworzyli model fizyczny, który wyjaśnia część z tych niezwykłych sygnałów. Zgodnie z nim, mamy tu do czynienia z cząstkami ciemnej energii, które powstały w regionie Słońca o silnych polach magnetycznych. To, co jesteśmy w stanie obecnie dostrzec stanowi mniej niż 5% wszechświata. Cała reszta jest dla nas ciemna. Wszechświat składa się w 27% z ciemnej materii, a 68% stanowi ciemna energia. Pomimo tego, że obie te składowe są dla nas niewidoczne, znacznie więcej wiemy o ciemnej materii, gdyż jej obecność sugerowano już w latach 20. ubiegłego wieku. O tym, że musi istnieć też ciemna energia dowiedzieliśmy się dopiero w 1998 roku, wyjaśnia doktor Sunny Vagnozzi z Kavli Institute for Cosmology na Cambridge University. Wielkie eksperymenty, jak XENON1T zostały zaprojektowane tak, by bezpośrednio wykrywać ciemną materię, rejestrując zderzenia jej cząstek z cząstkami zwykłej materii. Jednak uchwycenie ciemnej energii jest jeszcze trudniejsze. Chcąc wykryć ciemną energię naukowcy poszukują dowodów jej oddziaływania grawitacyjnego na otoczenie. Wiemy, że w największej skali – całego wszechświata – ciemna energia odpycha obiekty od siebie, dlatego też wszechświat rozszerza się coraz szybciej. Przy tego typu złożonych badaniach często pojawiają się niewytłumaczalne sygnały, które po analizach zwykle okazują się różnego typu zakłóceniami. Gdy w XENON1T zarejestrowano w ubiegłym roku wspomniane już tajemnicze sygnały, pojawiło się kilka pomysłów na to, czym mogą one być. Najpopularniejsze wyjaśnienie brzmiało, że zarejestrowano aksjony, hipotetyczne cząstki tworzące ciemną materię, oraz że pochodziły one ze Słońca. Jednak analizy wykazały, że liczba aksjonów, które musiałyby dotrzeć do nas ze Słońca, by wywołać taki sygnał w XENON1T musiałaby być bardzo duża. Tak duża, że gdyby gwiazdy emitowały tyle aksjonów, to gwiazdy o masie większej od masy Słońca ewoluowałyby w inny sposób, niż ewoluują. Autorzy najnowszych badań przyjęli więc założenie, że tajemnicze sygnały wywołała ciemna energia. I stworzyli model, który pokazuje, co powinien zarejestrować XENON1T gdyby dotarła doń ciemna energia wygenerowana w tachoklinie, obszarze Słońca, w którym pola magnetyczne są wyjątkowo silne. Naukowcy byli zaskoczeni, gdy okazało się, że ich model pasuje do obserwacji. Uzyskane wyniki sugerują bowiem, że wykrywacze takie jak XENON1T mogą być też używane do poszukiwania ciemnej energii. Vagnozzi i jego koledzy zastrzegają jednak, że ich badania wciąż wymagają potwierdzenia. Musimy wiedzieć, że to nie jest jakieś zakłócenie. Jeśli jednak XENON1T coś zarejestrował, to w niedalekiej przyszłości powinniśmy zarejestrować podobne, ale znacznie silniejsze sygnały, mówi Luca Visinelli z Narodowych Laboratoriów Frascati we Włoszech. Uczony ma tutaj na myśli badania prowadzone przez znacznie większe i doskonalsze urządzenia. Takie jak LUX-ZEPLIN, XENONnT czy PandaX-xT, które już rozpoczęły pracę lub w najbliższym czasie ją rozpoczną. « powrót do artykułu
  11. Nowa mapa ciemnej materii ujawniła istnienie nieznanych wcześniej struktur łączących galaktyki. Mapa, stworzona za pomocą technik maszynowego uczenia, pomoże w badaniach nad ciemną materią oraz w opisaniu historii i przyszłości naszego lokalnego wszechświata. Jest ona dziełem międzynarodowego zespołu naukowego. Jako że nie potrafimy bezpośrednio obserwować ciemnej materii, o jej rozkładzie dowiadujemy się, badając wpływ grawitacyjny, jaki wywiera na inne obiekty we wszechświecie, np. na galaktyki. Co interesujące, łatwiej jest badać rozkład ciemnej materii znajdującej się znacznie dalej, gdyż pokazuje to daleką przeszłość, kiedy budowa wszechświata była mniej złożona. Z czasem wielkie struktury tylko się powiększyły, stopień złożoności wszechświata wzrósł, więc znacznie trudniej jest dokonywać lokalnych pomiarów ciemnej materii, mówi jeden z autorów badań, profesor Donghui Jeong z Pennsylvania State University. Już wcześniej próbowano tworzyć podobne mapy rozpoczynając od modelu wczesnego wszechświata i symulując jego ewolucję przez miliardy lat. Jednak to metoda wymagająca olbrzymich mocy obliczeniowych i dotychczas nie udało się za jej pomocą stworzyć mapy na tyle szczegółowej, by można było zobaczyć nasz lokalny wszechświat. Autorzy najnowszych badań wykorzystali inną metodę – za pomocą maszynowego uczenia się stworzyli model, który na podstawie znanych informacji o rozkładzie i ruchu galaktyk, przewiduje rozkład ciemnej materii. Naukowcy zbudowali i wyćwiczyli swój model na Illustris-TNG, wielkim zestawie symulacji galaktyk, który zawiera informacje o galaktykach, gazach, innej widzialnej materii oraz ciemnej materii. Szczególnie skupiono się na strukturach podobnych do Drogi Mlecznej. W końcu udało się określić, które dane są niezbędne do poznania rozkładu ciemnej materii. Do tak stworzonego modelu wprowadzono prawdziwe dane o lokalnym wszechświecie pochodzące z katalogu Cosmicflow-3. Zawiera on informacje o rozkładzie i ruchu ponad 17 000 galaktyk znajdujących się w odległości 200 megaparseków od Drogi mlecznej. Na tej podstawie powstała mapa rozkładu ciemnej materii. Model prawidłowo odtworzył w niej Lokalną Grupę Galaktyk, Gromadę w Pannie, puste przestrzenie i inne struktury. Pokazał też struktury, o których istnieniu nie wiedzieliśmy, w tym włókna łączące galaktyki. Możliwość stworzenia mapy lokalnej sieci kosmicznej otwiera nowy rozdział w kosmologii. Możemy teraz badać, jak rozkład ciemnej materii ma się do innych danych, co pozwoli nam na lepsze zrozumienie ciemnej materii. Możemy też bezpośrednio badać te włókna, tworzące wielkie pomocy pomiędzy galaktykami, mówi Jeong. Uczeni sądzą, że dodając informacje o mniejszych galaktykach, będą mogli poprawić rozdzielczość mapy. Bardzo więc liczą na dane z Teleskopu Kosmicznego Jamesa Webba. « powrót do artykułu
  12. Układ Słoneczny przemieszcza się przez wszechświat z prędkością 370 km/s. Wraz z nim przemieszcza się Ziemia, która na swojej drodze napotyka ciemną materię. Wykrywacze ciemnej materii, jak XENON1T, rejestrują zderzenia z cząstkami ciemnej materii. Jednak nie określają, z jakiego kierunku nadeszła cząstka. A to poważnie ogranicza możliwości badawcze. XENON1T to wyjątkowe urządzenie. To jeden z najczulszych wykrywaczy ciemnej materii, w którym zaobserwowano najrzadsze zjawisko we wszechświecie, wykryto tajemnicze sygnały, a naukowcy zaproponowali kilka interesujących pomysłów na ich interpretację. Teraz Ciaran O'Hare i jego koledzy z University of Sydney przetestowali projekt nowego detektora ciemnej materii, który nie tylko wykryje obecność jej cząstek, ale również określi kierunek, z którego nadeszły. Uczeni przeprowadzili pierwszą symulację działania ich wykrywacza i poinformowali o bardzo obiecujących wynikach. Nowy wykrywacz ciemnej materii ma bazować na DNA. Podwójne helisy kwasów nukleinowych miałyby tworzyć gęsty las zwisając z warstw złotych płacht. Pozycja każdej z nici DNA byłaby znana z nanometrową dokładnością. Gdy cząstka ciemnej materii trafi do takiego wykrywacza i uderzy w którąkolwiek z nici DNA, rozbije ją, a odłamane fragmenty wpadną do położonego poniżej specjalnego układu mikroprzepływowego. Za pomocą techniki PCR potrafimy precyzyjnie badać sekwencję par bazowych kwasów nukleinowych, zatem będziemy mogli z nanometrową precyzją określić oryginalną pozycję każdego z odłamanych fragmentów, stwierdzają naukowcy. W ten sposób możliwe będzie śledzenie trasy cząstek ciemnej materii w detektorze. Pomysł detektora ciemnej materii opartego na DNA pojawił się już w 2012 roku. Teraz po raz pierwszy udało się przeprowadzić symulację pracy takiego detektora, by sprawdzić, czy ma on szansę działać. Badacze wzięli pod uwagę różne potencjalne typy cząstek, różne energie i kierunki. Doszliśmy do wniosku, że oparty na DNA detektor byłby ekonomicznym, przenośnym i potężnym wykrywaczem nowych cząstek, stwierdzają uczeni. Nowy detektor byłby znacznie mniejszy i tańszy niż obecnie istniejące i budowane wykrywacze ciemnej materii. Nie jest jednak doskonały. Detektor DNA nie jest w stanie dostarczyć wystarczająco dużo informacji, by móc określić rodzaj cząstki czy jej dokładną energię. Dlatego też takie wykrywacze będą prawdopodobnie używane jako uzupełnienie tych tradycyjnych. « powrót do artykułu
  13. Astrofizycy uważają, że znaleźli potężne i unikatowe narzędzie do wykrywania ciemnej materii – egzoplanety. W opublikowanym przez siebie artykule naukowcy stwierdzają, że obecność ciemnej materii można wykryć, mierząc jej wpływ na temperaturę egzoplanet. Sądzimy, że istnieje 300 miliardów egzoplanet. Jeśli odkryjemy i przebadamy niewielki odsetek z nich, to zyskamy olbrzymią ilość informacji na temat ciemnej materii, stwierdził Juri Smironv z Ohio State University. Smirnov i Rebecca Lane ze SLAC National Accelerator Laboratory są autorami artykułu opublikowanego w Physical Review Letters. Uczony dodaje, że gdy ciemna materia zostaje przechwycona przez grawitację egzoplanet, jest wciągana do jądra planety, gdzie dochodzi do jej anihilacji, co wiąże się z uwolnieniem ciepła. Im więcej ciemnej materii, tym więcej ciepła jest w ten sposób emitowane. Ciepło to może zaś zostać zarejestrowane przez Teleskop Kosmiczny Jamesa Webba (James Webb Space Telescope – JWST), który ma zostać wystrzelony w październiku bieżącego roku. Jeśli egzoplanety będą wydzielały nadmiarowe ciepło związane z obecnością ciemnej materii, powinniśmy być w stanie to zauważyć, dodaje Smirnov. Zdaniem uczonych planety spoza Układu Słonecznego mogą być szczególnie pomocne w wykrywaniu lżejszej ciemnej materii, tej o niższej masie. Dotychczas nie prowadzono poszukiwań ciemnej materii w takich zakresach masy. Naukowcy uważają, że gęstość ciemnej materii rośnie w kierunku centrum Drogi Mlecznej. Jeśli to prawda, to powinniśmy zauważyć, że planety bliżej centrum galaktyki rozgrzewają się bardziej niż te na jej obrzeżach. Jeśli byśmy coś takiego zarejestrowali byłoby to niesamowite odkrycie. Wskazywałoby, że znaleźliśmy ciemną materię, mówi Smirnov. Smirnov i Lane proponują, by przyjrzeć się „gorącym Jowiszom” oraz brązowym karłom. To w tych obiektach najłatwiej będzie zauważyć nadmiarowe ciepło spowodowane obecnością ciemnej materii. Uczeni uważają też, że warto poszukać i badać swobodne planety, takie, które nie orbitują wokół gwiazd. W ich przypadku nadmiarowe ciepło powinno być jeszcze bardziej oczywistym sygnałem obecności ciemnej materii, gdyż nie dociera do nich energia z gwiazd macierzystych. Olbrzymią zaletą wykorzystania egzoplanet jako wykrywaczy ciemnej materii jest fakt, że nie potrzeba do tego nowych rodzajów urządzeń lub technologii czy przeprowadzania takich badań, jakich dotychczas nie wykonywano. Obecnie znamy ponad 4300 egzoplanet i niemal 6000 kandydatów na planety. W ciągu najbliższych lat misja Gaia, wysłana przez Europejską Agencję Kosmiczną, powinna wykryć dziesiątki tysięcy kolejnych egzoplanet. Będziemy więc mieli olbrzymią liczbę obiektów, które można badać w poszukiwaniu ciemnej materii. « powrót do artykułu
  14. W Wielkim Zderzaczu Hadronów zainstalowano nowe urządzenie o nazwie FASER (Forward Search Experiment), którego współtwórcą jest dr Sebastian Trojanowski. FASER będzie badał cząstki, co do których naukowcy mają podejrzenie, że wchodzą w interakcje z ciemną materią. Testy nowego urządzenia potrwają do końca roku. To krok milowy dla tego eksperymentu. FASER będzie gotowy do zbierania danych z Wielkiego Zderzacza Hadronów, gdy tylko na nowo podejmie on pracę wiosną 2022 roku, mówi profesor Shih-Chieh hsu z University of Washington, który pracuje przy FASER. Eksperyment będzie badał interakcje z wysokoenergetycznymi neutrinami i poszukiwał nowych lekkich słabo oddziałujących cząstek, które mogą wchodzić w interakacje z ciemną materią. Stanowi ona około 85% materii we wszechświecie. Zbadanie cząstek, które mogą z nią oddziaływać, pozwoli na określenie właściwości ciemnej materii. W pracach eksperymentu FASER bierze udział 70 naukowców z 19 instytucji w 8 krajach. Naukowcy sądzą, że podczas kolizji w Wielkim Zderzaczu Hadronów powstają słabo reagujące cząstki, które FASER będzie w stanie wykryć. Jak informowaliśmy przed dwoma laty, w LHC mogą powstawać też niewykryte dotąd ciężkie cząstki. FASER został umieszczony w nieużywanym tunelu serwisowym znajdującym się 480 metrów od wykrywacza ATLAS. Dzięki niewielkiej odległości FASER powinien być w stanie wykryć produkty rozpadu lekkich cząstek. Urządzenie ma 5 metrów długości, a na jego początku znajdują się dwie sekcje scyntylatorów. Będą one odpowiedzialne za usuwanie interferencji powodowanej przez naładowane cząstki. Za scyntylatorami umieszczono 1,5-metrowy magnes dipolowy, za którym znajduje się spektrometr, składający się z dwóch 1-metowych magnesów dipolowych. Na końcu, początku i pomiędzy magnesami znajdują się 3 urządzenia rejestrujące zbudowane z krzemowych detektorów. Na początku i końcu spektrometru znajdują się dodatkowe stacje scyntylatorów. Ostatnim elementem jest elektromagnetyczny kalorymetr. Będzie on identyfikował wysokoenergetyczne elektrony i fotony oraz mierzył całą energię elektromagnetyczną. Całość jest schłodzona do temperatury 15 stopni Celsjusza przez własny system chłodzenia. Niektóre z elementów FASERA zostały zbudowane z zapasowych części innych urządzeń LHC. FASER zostanie też wyposażony w dodatkowy detektor FASERv, wyspecjalizowany w wykrywaniu neutrin. Powinien być on gotowy do instalacji pod koniec bieżącego roku. « powrót do artykułu
  15. Dane z chińskiego detektora cząstek PandaX-II mogą wskazywać, że w ubiegłym roku eksperyment XENON1T zarejestrował sygnały świadczące o odkryciu nieznanych zjawisk fizycznych. Jak informowaliśmy, XENON1T zarejestrował dziesiątki nietypowych sygnałów, które można było interpretować na trzy sposoby. Najbardziej banalna z interpretacji to wystąpienie zanieczyszczenia, dwie pozostałe interpretacje to możliwe odkrycie nowych zjawisk, w tym przełomowe odkrycie cząstek ciemnej materii. Chińskie PandaX-II uzyskało właśnie dane, które mogą potwierdzać, że nie mamy do czynienia z zanieczyszczeniem, a rzeczywistym odkryciem. Znajdujący się we Włoszech XENON1T został zbudowany z myślą o poszukiwaniu słabo oddziałujących masywnych cząstek (WIMP), które mają stanowić ciemną materię. W czerwcu ubiegłego roku naukowcy pracujący przy tym eksperymencie poinformowali o zaobserwowaniu 53+/-15 sygnałów, których nie potrafili wyjaśnić. Jako że nie byli w stanie podać jednej możliwej interpretacji, zaproponowali cztery wyjaśnienia. Najbardziej banalne to rozpad beta trytu, który mógł zanieczyścić ksenon używany w detektorze. Trzy pozostałe interpretacje są już bardziej interesujące. Sygnały mogły być wywołane obecnością nowego typu neutrina, tworzących ciemną materię aksjonów ze Słońca albo też obecnością bozonowej ciemnej materii. Uczeni wyliczyli też prawdopodobieństwo dla wszystkich czterech interpretacji i uznali, że najmniej prawdopodobne, bo wynoszące 3,0 sigma, jest zarejestrowanie bozonowej ciemnej materii. Z kolei prawdopodobieństwo zanieczyszczenia trytem oraz odkrycia nowego neutrina wyliczono na 3,2 sigma. Najbardziej zaś prawdopodobne – szacowane na 3,4 sigma – jest odkrycie słonecznych aksjonów. Informacja o sygnałach z XENON1T wywołała spore poruszenie. Naukowcy zabrali się do pracy, próbując wyjaśnić obserwowane zjawiska. Na przykład fizycy teoretyczni zaproponowali kilka interesujących rozwiązań problemu dotyczącego aksjonów słonecznych. Gdyby bowiem rzeczywiście one istniały, to białe karły powinny mieć mniejszą jasność, niż mają. Jednymi z naukowców, którzy postanowili bliżej przyjrzeć się danym z XENON1T, byli uczeni z Uniwersytetu Jiao Tong z Szanghaju, na czele których stał Jianglai Liu. Chińczycy użyli do swoich badań detektora PandaX-II z Jinping Underground Laboratory w Syczuanie. Chociaż zawiera on nieco ponad 0,5 tony ksenonu (dla porównania, XENON1T korzysta z 3,2 tony), to uczeni z Państwa Środka prowadzili swoje badania dłużej, dzięki czemu uzyskali tylko o połowę danych mniej niż uczeni pracujący przy XENON1T. Naukowcy pracujący przy PandaX-II mają pewną przewagę. Dzięki przeprowadzonej w odstępie 3 lat kalibracji z użyciem metanu, są w stanie lepiej scharakteryzować sygnały generowane w ich urządzeniu przez tryt zanieczyszczający ksenon. Przeprowadzony przez nich eksperyment zwiększył prawdopodobieństwo, że XENEN1T dokonał rzeczywistego odkrycia. Wciąż nie wiadomo, czym jest to odkrycie. Ponadto Chińczycy nie byli w stanie z całą pewnością wykluczyć, że nie doszło do zanieczyszczenia. Obecnie w Chinach trwają prace nad zwiększeniem czułości PandaX-II. Masa urządzenia zostanie zwiększona do 6 ton, w tym masa samego ksenonu wyniesie 4 tony. Nowe urządzenie, PandaX-4%, rozpocznie pracę jeszcze w bieżącym roku. Również w bieżącym roku ma ruszyć zmodernizowany 8,3-tonowy XENOnT, a w USA rozpoczyna właśnie pracę 10-tonowy LUX-ZEPLIN. Dzięki nowym, większym i bardziej czułym detektorom powinniśmy w niedługim czasie dowiedzieć się, co tak naprawdę zarejestrował XENON1T. « powrót do artykułu
  16. W lutym i marcu do amerykańskiego Fermilab dostarczono trzy zestawy miedzianych płyt, które natychmiast zostały zabrane do magazynu znajdującego się 100 metrów pod ziemią. Miedź wydobyto w Finlandii, walcowano w Niemczech i dostarczono do USA, a wszystko odbyło się w ciągu zaledwie 120 dni. Pośpiech był bardzo wskazany. Miedź posłuży do wykrywania ciemnej materii i musi być jak najbardziej czysta, a każdy dzień, jaki spędziła na powierzchni ziemi przyczyniał się do jej zanieczyszczenia. Jak wyjaśnia Dan Bauer z Fermilab, powierzchnia Ziemi jest zalewana ciągłym deszczem promieni kosmicznych. Gdy pochodzące z kosmosu cząstki uderzają w atomy miedzi, wybijają z nich protony i neutrony. Powstaje kobalt-60. Jest on radioaktywny, a więc niestabilny, zatem spontanicznie rozpada się na inne cząstki. Dla codziennego użycia miedzi nie ma to żadnego znaczenia, jednak wspomniane płyty zostaną wykorzystane w eksperymencie o nazwie Super Cryogenic Dark Matter Search (SuperCDMS), więc Bauer i jego koledzy muszą być pewni, że miedź jest jak najbardziej czysta. Eksperyment SuperCDMS będzie prowadzony w podziemnym laboratorium SNOLAB z Kanadzie. Z płyt powstanie sześć naczyń przypominających duże puszki na napoje. Będą one wchodziły jedna w drugą. Najbardziej wewnętrzne z naczyń będzie zawierało germanowe i krzemowe urządzenia, których zadaniem będzie wykrywanie WIMP-ów, czyli masywnych słabo reagujących cząstek. Naukowców szczególnie interesują WIMP o masie mniejszej niż 1/10 masy protonu. Średnica najbardziej zewnętrznej „puszki” wyniesie nieco ponad 1 metr. Całość, zwana SNOBOX, będzie podłączona do specjalnego urządzenia, które schłodzi germanowe i krzemowe czujniki do ułamków stopnia powyżej zero absolutnego. W takich temperaturach drgania wywołane przepływem ciepła są tak minimalne, że urządzenia powinny zarejestrować drgania spowodowane uderzeniem WIMP-a w atom. Bauer mówi, że cały eksperyment jest poszukiwaniem igły w stogu siana. W najlepszym wypadku uda nam się zarejestrować może kilka WIMP rocznie. Eksperyment prowadzony będzie dwa kilometry pod ziemią. Czujniki zostaną zamknięte we wspomnianych miedzianych puszkach, a całość będzie dodatkowo chroniona warstwami ołowiu, plastiku i wody. Wszystko po to, by powstrzymać wszelkie inne cząstki – z wyjątkiem WIMP – przed dotarciem do czujników. Jednak pomiędzy czujnikami a miedzią nie będzie żadnej bariery. Dlatego właśnie miedź musi być jak najczystsza. Wszystkie zanieczyszczenia mogą bowiem generować w czujnikach dodatkowe sygnały. Właśnie dlatego naukowcy starają się, by miedź jak najkrócej przebywała na powierzchni ziemi, żeby nie powstawał w niej kobalt-60. Jednak kobalt nie nie jedyny problem. W skorupie ziemskiej występuje wiele radioaktywnych izotopów uranu, toru czy potasu. Zatem już samo źródło miedzi, kopalnia, musiało być jak najczystsze. Problemem mogą być też pierwiastki, które nie są radioaktywne. Wszelkie znajdujące się w miedzi zanieczyszczenia zmniejszają jej zdolność do odprowadzania ciepła, co utrudni utrzymanie odpowiednio niskiej temperatury czujników. Czystość SuperCDMS musi wynosić ponad 99,99%. Zanieczyszczenia radioaktywne zaś mogą stanowić tam mniej niż 0,1 części na miliard. Mimo najlepszych starań fińskich i niemieckich specjalistów, nie wszystkie zanieczyszczenia można z miedzi wyeliminować. Chociażby dlatego, że do końca nie wiemy, jakie procesy zachodzą w miedzi podczas jej obróbki. Dlatego też, gdy płyty dotarły do Fermilab zostały pobrane z nich próbki, które trafiły do Pacific Northwest National Laboratory. Tam przeprowadzono testy, mające na celu dokładne opisanie pozostałych zanieczyszczeń. Wkrótce płyty wyjadą z Fermilab do zakładu, gdzie powstaną z nich „puszki”. Znajdą się wówczas na powierzchni, więc „kobaltowy zegar” będzie tykał. Zatrzyma się dopiero gdy całość trafi do podziemnego laboratorium w Kanadzie. Ostatnią czynnością, jaką wykonamy przed zabraniem ich pod ziemię będzie spryskanie ich kwasem, który usunie z nich kilkadziesiąt mikrometrów powierzchni, mówi Bauer. Kwas ten to mieszanina wody utlenionej i rozcieńczonego kwasu solnego. Następnie całość zostanie pokryta słabym roztworem kwasu cytrynowego, który będzie chronił „puszki” przed utlenianiem w czasie prowadzenia eksperymentu. « powrót do artykułu
  17. Rozpoczyna się rozruch najbardziej czułego wykrywacza ciemnej materii LUX-ZEPLIN. W ubiegłym miesiącu amerykański Departament Energii oficjalnie uznał, że budowa instalacji została ukończona. Teraz pozostaje ją uruchomić i rozpocząć eksperymenty. LUX-ZEPLIN (LZ) wykorzysta 10 ton ciekłego ksenonu do poszukiwania sygnałów pochodzących ze słabo oddziałujących masywnych cząstek (WIMP). WIMP to hipotetyczne – ich istnienia nie udowodniono – cząstki tworzące ciemną materię. LZ ma wykrywać obecność WIMP poprzez rejestrowanie rozbłysków światła, jakie mają się pojawiać, gdy WIMP wejdzie w interakcję z atomem ksenonu. Kończymy odbiór LZ. Jesteśmy obecnie w fazie testów. W przyszłym roku chcemy uzyskać pierwsze dane z LZ, mówi Simon Fiorucci, fizyk z Lawrence Berkeley National Laboratory, który jest menedżerem ds. operacyjnych LZ. LUX-ZEPLIN to następca opisywanego przez nas urządzenia LUX (Large Underground Xenon). LUX zakończył poszukiwania ciemnej materii w 2016 roku, a w roku 2017 rozpoczęto budowę LUX-ZEPLIN. Urządzenie umieszczono w tym samym miejscu, w którym znajdował się LUX, czyli w znajdującym się 1,5 kilometra pod ziemią Sanford Underground Research Facility w Południowej Dakocie. LUX nie znalazł ciemnej materii. Jednak naukowcy się nie poddają, stąd pomysł na LUX-ZEPLIN. Nowe urządzenie jest 100-krotnie bardziej czułe od LUX, między innymi dlatego, że używa 10 ton ksenonu. W LUX wykorzystywano 300 kg ksenonu. Ponadto rozbłyski, do jakich ma dochodzić przy zderzeniu WIMP z jądrami ksenonu będą rejestrowane przez 500 czujników. To 4-krotnie więcej niż w LUX. W pracach nad LZ brali udział specjaliści ze SLAC National Accelerator Laboratory, których zadaniem było usunięcie kryptonu z ksenonu. Jego śladowe ilości pozostają bowiem po standardowych procedurach oczyszczających. Za budowę systemu oczyszczającego i schładzającego ksenon byli z kolei odpowiedzialni eksperci z Fermilab, których zadaniem było też stworzenie narzędzi do analizy danych. Z kolei wspomniane czujniki to wspólne dzieło uczonych ze SLAC i Berkeley lab. W budowie LZ brali też udział eksperci spoza Stanów Zjedoczonych. Brytyjczycy i Włosi zbudowali pojemnik na ksenon. Powstał on z ultra czystego tytanu, co pozwoliło na dalszą redukcję szumów tła. To jednak nie jedyna osłona przed niekorzystnym wpływem czynników zewnętrznych. Tytanowy pojemnik z 10 tonami ksenonu znajduje się w drugim, większym pojemniku. To zbiornik osłonowy wypełniony scyntylatorem, którego zadaniem jest dodatkowa osłona przed promieniowaniem. « powrót do artykułu
  18. W czerwcu informowaliśmy, że najczulszy detektor ciemnej materii – XENON1T – zarejestrował niezwykłe sygnały. Jak wówczas pisaliśmy, możliwe są trzy interpretacje tego, co zauważono. Najmniej interesująca z nich to zanieczyszczenie urządzenia. Drugim możliwym wyjaśnieniem jest zarejestrowanie aksjonu, hipotetycznej cząstki tworzącej ciemną materię, a trzecim – równie interesująca możliwość wchodzenia neutrin w niezwykłe interakcje z wypełniającym detektor ksenonem. Na łamach Physical Review D i Physical Review Letters ukazało się właśnie 5 artykułów, których autorzy dokonują niezwykle interesujących interpretacji sygnałów. Fuminotu Takahashi, Masaki Yamada i Wen Yin uważają, że zarejestrowane sygnały świadczą o zauważeniu cząstek podobnych do aksjonów. Mają mieć one masę kilku keV/c2 i wchodzić w interakcje z elektronami. Ich zdaniem cząstki o takich właściwościach tłumaczą zarejestrowany sygnał, stanowią ciemną materię i wyjaśniają pewne anomalie obserwowane w białych karłach i czerwonych olbrzymach. Z kolei niemiecki zespół naukowy, Andreas Bally, Sudip Jana i Andreas Trautner, pisze, że sygnał może pochodzić od nieznanego bozonu cechowania, który pośredniczy w interakcjach pomiędzy pochodzącymi ze Słońca neutrinami a elektronami. Jeszcze inny pomysł ma Nicole F. Bell z University of Melbourne i jej koledzy z USA. Uważają oni, że źródłem sygnału jest cząstka ciemnej materii o relatywnie niskiej masie. Ich zdaniem cząstka taka można trafiać do detektora w "lekkim stanie" i rozpraszać się do "stanu ciężkiego", który rozpada się z towarzyszącą emisją fotonu. I to właśnie ten foton wchodzi w reakcje z elektronem, dając obserwowany sygnał. Bartosz Fornal z University of Utah oraz naukowcy z Pekinu i Hongkongu również uważają, że mamy do czyeniania z cząstką ciemnej materii. Ma ona pochodzić z centrum galaktyki. Sygnał zaś bierze się z jej interakcji z elektronami w XENON1T. Autorami ostatniego artykułu są Joseph Bramante i Ningqiang Song z Kanady. Naukowcy sądzą, że źródłem sygnału są rozpraszające się cząstki ciemnej materii będącej termicznym reliktem wczesnego wszechświata. Na ostateczne rozstrzygnięcie zagadki będziemy musieli jeszcze poczekać. Uda się to pod warunkiem, że podobny sygnał zostanie zarejestrowany w kolejnych eksperymentach związanych z poszukiwaniem ciemnej materii. « powrót do artykułu
  19. Wśród wielu niezwykłych idei Stephena Hawkinga jest i taka, zgodnie z którą ciemną materię stanowią czarne dziury, które powstały krótko po Wielkim Wybuchu. Pomysł taki jednak odrzucono, jednak nowe badania wskazują, że hipoteza taka może być prawdziwa. Pierwotne czarne dziury miałyby powstać nie w wyniku zapadania się gwiazd, a bezpośrednio z gęstej materii powstałej tuż po Wielkim Wybuchu. Tym samym ich masa mogłaby być znacznie mniejsza od masy Słońca. Obecnie znamy olbrzymie czarne dziury w centrach galaktyk oraz czarne dziury o masie gwiazdowej. Te drugie powstają w wyniku kolapsu grawitacyjnego gwiazd. Przed uruchomieniem wykrywacza fal grawitacyjnych LIGO znaliśmy czarne dziury o masie gwiazdowej nie przekraczającej około 20 mas Słońca. Jednak dzięki LIGO i europejskiemu VIRGO zaczęliśmy wykrywać bardziej masywne czarne dziury. Okazało się, że istnieją takie obiekty o masach od ponad 20 do nawet 85 mas Słońca. Udało się też zidentyfikować dziury o znacznie mniejszej masie. A najmniej masywna znana czarna dziura miała zaledwie 2,59 masy Słońca. Jeśli uda się wykryć czarne dziury o mniejszych niż masy gwiazd, z których obiekty takie mogą powstawać, może to oznaczać, że mamy do czynienia właśnie z pierwotnymi czarnymi dziurami. Zresztą już same prace tandemu LIGO/Virgo pokazały, że zakres mas czarnych dziur jest znacznie większy niż dotychczas przypuszczano, więc i samych czarnych dziur jest znacznie więcej, niż nam się wydaje. Jednak w 2017 roku Yacine Ali-Haïmoud, astrofizyk z New York University, opublikował pracę, w której wyliczał, że gdyby zaraz po Wielkim Wybuchu powstało tyle czarnych dziur, iż wyjaśniałyby one istnienie ciemnej materii, to z czasem dziury takie tworzyłyby pary, zaczynały wokół siebie krążyć, a w końcu łączyłyby się emitując fale grawitacyjne. Wydarzeń takich, wyliczał uczony, powinno być tak wiele, że LIGO/Virgo wykrywałyby tysiące razy więcej fal grawitacyjnych niż obecnie. Argumenty naukowca z Nowego Jorku były tak przekonujące, że wielu entuzjastów hipotezy pierwotnych czarnych dziur straciło dla niej serce. W ubiegłym tygodniu na łamach Cosmology and Astroparticle Physics Karsten Jedamzik z Uniwersytetu w Monpellier opublikował obliczenia, z których wynika, że w wielkiej populacji pierwotnych czarnych dziur zachodziłoby dokładnie tyle zderzeń ile obecnie obserwują wykrywacze fal grawitacyjnych. Jeśli jego obliczenia są prawidłowe, a wydaje się, że przeprowadził je skrupulatnie, to pogrzebał nasze własne wyliczenia, przyznaje Ali-Haïmoud. To by oznaczało, że czarne dziury rzeczywiście mogą stanowić całą ciemną materię. W latach 70. Stephen Hawking i Bernard Carr wysunęli hipotezę, że w czasie pierwszych ułamków sekundy po Wielkim Wybuchu, w rozszerzającym się wszechświecie pojawiały się niewielkie fluktuacje materii, które zamieniały się w czarne dziury. Hawking przeprowadził nawet zgrubne obliczenia, z których wynikało, że jeśli te czarne dziury miały rozmiar większy od małych asteroid, to istnieją do dzisiaj. W latach 90. zarysowano nieco bardziej szczegółowy obraz wydarzeń. Produkcję takich czarnych dziur przyspieszało ochładzanie się materii. Gdy po tysięcznych częściach sekundy od Wielkiego Wybuchu wszechświat nieco się ochłodził, kwarki i gluony z pierwotnej zupy zaczęły łączyć się w cięższe cząstki. Spadło ciśnienie, co spowodowało, że jeszcze więcej regionów zapadło się do czarnych dziur. Jednak przed 30 laty nie rozumiano dobrze fizyki plazmy kwarkowo-gluonowej, więc nikt nie potrafił precyzyjnie obliczyć, jak pojawienie się innych cząstek wpłynęło na tworzenie się czarnych dziur, jak masywne były to dziury, ani jak wiele mogło ich powstać. Ponadto zbytnio się tym tematem nie zajmowano. Pierwotne dziury nie były potrzebne, gdyż panował szeroko rozpowszechniony pogląd, że ciemną materię tworzą WIMPy (słabo oddziałujące masywne cząstki). Pierwotne czarne dziury odeszły w zapomnienie, stawały się przedmiotem kpin. Jednak WIMP-ów nie odkryto, za to coraz więcej wiemy od warunkach, jakie mogły panować na samym początku wszechświata. Od kilku lat niektórzy naukowcy bardziej intensywnie zajmują się pierwotnymi czarnymi dziurami. Publikowane prace pokazują, w jaki sposób mogły one powstać. Pierwsza generacja czarnych dziur mogła pojawić się po spadku temperatury wszechświata i utworzeniu przez kwarki i gluony pierwszych protonów i neutronów. Spowodowany tym spadek ciśnienia wywołał tworzenie się czarnych dziur, z których każda mogła wchłonąć ze swojej okolicy materię o masie około 1 masy Słońca. Oddziaływanie czarnej dziury było ograniczone horyzontem. Jednak wszechświat nadal się ochładzał. Zaczęły formować się kolejne cząstki, jak piony. To znowu spowodowało spadek ciśnienia i masowe pojawianie się kolejnych pierwotnych czarnych dziur. Jako, że wszechświat ciągle się rozszerzał, dziury należące do tej drugiej generacji mogły wchłaniać już więcej materii. Z obliczeń wynika, że było to około 30 mas Słońca. Dokładnie tyle, ile czarne dziury wykrywane przez LIGO/Virgo. Po uruchomieniu LIGO zainteresowanie koncepcją pierwotnych czarnych dziur wzrosło. Jednak Ali-Haïmoud przedstawił wspomnianą wcześniej pracę, w której odrzucił tę koncepcję. Obliczył bowiem, że dziur powinno być tak dużo, że rejestrowalibyśmy obecnie tysiące razy więcej fal grawitacyjnych niż rejestrujemy. Z zagadnieniem tym postanowił zmierzyć się Karsten Jedamzik, kosmolog z Montpellier. Gdy stworzył numeryczną symulację wszechświata pełnego obecnie czarnych dziur, odkrył zjawisko, którego Ali-Haimoud nie zauważył. Stwierdził otóż, że we wszechświecie pełnym czarnych dziur rzeczywiście dochodziłoby do bardzo częstego tworzenia się układów podwójnych takich obiektów. Jednak równie często do takiego układu podwójnego zbliżyłaby się trzecia czarna dziura i zamieniłaby się miejscami z jedną z dziur układu. Taki proces ciągle by się powtarzał. Z czasem, jak wylicza Jedamzik, takie ciągle zmieniające partnera czarne dziury tworzyłyby układy podwójne o niemal kołowych orbitach. W takich układach do zderzeń dochodziłoby bardzo rzadko. Z obliczeń Jedamzika wynika, że z powodu opisanego zjawiska nawet we wszechświecie pełnym czarnych dziur, notowalibyśmy fale grawitacyjne równie rzadko co obecnie. Co więcej Jedamzik oblicza, że pierwotne czarne dziury tworzą gromady o średnicy niemal 4 lat świetlnych. W takich gromadach może znajdować się około 1000 czarnych dziur. W centrum gromady skupiają się dziury o masie około 30 mas Słońca, na jej obrzeżach krążą mniej masywne czarne dziury. Takie gromady mogą znajdować się dosłownie wszędzie. Prace Jedamzika niczego jeszcze nie przesądzają. One wypełniają luki w nieistniejącej teorii, mówi Carl Rodriguez, astrofizyk z Carnegie Mellon Univeristy. Zwolennicy hipotezy pierwotnych czarnych dziur mają jeszcze wiele do zrobienia. W sygnałach z LIGO obserwujemy pewne dziwne zjawiska, jednak wszystko, co dotychczas zarejestrowaliśmy, można wytłumaczyć istnieniem standardowego procesu ewolucji gwiazd. Wygląda jednak na to, że istnienie bądź nieistnienie pierwotnych czarnych dziur zostanie dość szybko rozstrzygnięte. To nie jest nic w rodzaju teorii strun, gdzie dekadę czy trzy dekady później wciąż trwa dyskusja, stwierdza Chrisitan Byrnes z University of Sussex. Rosnąca czułość LIGO już wkrótce powinna pozwolić albo na wykrycie czarnej dziury o masie poniżej masy gwiazdowej, albo też na znalezienie ścisłego limitu minimalnej masy dla czarnych dziur. « powrót do artykułu
  20. Japoński akcelerator cząstek SuperKEKB pobił światowy rekord świetlności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć świetlność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati. Świetlność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego. SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki. Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 nanometrów, czyli około 1/1000 grubości ludzkiego włosa. Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania świetlności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi. Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało ze świetlnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął świetlność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął świetlność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje ze świetlnością wynoszącą 2,40x1034 cm-2s-1. W ciągu najbliższych lat świetlność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1. Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji. Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleźć ciemną materię i rozpocząć badania jej właściwości. « powrót do artykułu
  21. Fizycy pracujący przy najbardziej czułym eksperymencie poszukującym ciemnej materii poinformowali o zarejestrowaniu nietypowych sygnałów. Istnieją trzy możliwe interpretacje tego, co zauważono. Ta najmniej interesująca, to wystąpienie zanieczyszczenia. Dwie alternatywne są za to bardzo ekscytujące. Pierwsza z nich mówi o nieznanych właściwościach neutrin. Druga zaś – i to byłaby największa sensacja – dopuszcza, że po raz pierwszy w historii zdobyto dowód na istnienie aksjonu, hipotetycznej cząstki spoza Modelu Standardowego. Jesteśmy bardzo podekscytowani tym sygnałem, ale musimy uzbroić się w cierpliwość, powiedział Luca Grandi z University of Chicago, jeden z liderów eksperymentu XENON1T. Jak wyjaśnia uczony, najpierw trzeba sprawdzić, czy nie doszło do zanieczyszczeniem atomami trytu. Wykaże to następca eksperymentu XENON1T – XENONnT – który rozpocznie pracę jeszcze w bieżącym roku. Wielu specjalistów zauważa, że zwykle prawdziwe okazuje się to wyjaśnienie, na które najmniej czekamy. Jednak nie zawsze tak jest i jeśli istnieje chociaż cień szansy, że XENON1T zarejestrował coś więcej niż zanieczyszczenie trytem, warto to sprawdzić. Jeśli okaże się, że to nowa cząstka, będziemy mieli przełom, na który czekamy od 40 lat, stwierdza Adam Falkowski z Uniwersytetu Paris-Saclay. Takiego odkrycia nie da się przecenić, dodaje. Z kolei Kathryn Zurek, fizyczka-teoretyczka z California Institute of Technology mówi, że jeśli sygnały pochodzą z aksjonów, które są głównymi kandydatami na cząstki tworzące ciemną materię, lub z niestandardowych neutrin to będzie to niezwykle ekscytujące. Uczona pozostaje jednak ostrożna i dodaje, że jej zdaniem najbardziej prawdopodobne jest jednak zanieczyszczenie trytem. XENON1T to wspólny projekt, przy którym pracuje 160 naukowców z Europy, USA i Bliskiego Wschodu. Laboratorium Narodowe Gran Sasso, którego właścicielem jest włoski Narodowy Instytut Fizyki Jądrowej, znajduje się na głębokości 1400 metrów pod masywem Gran Sasso. To wykrywacz ciemnej materii, a jego umiejscowienie głęboko pod ziemią ma chronić przed promieniowaniem kosmicznym generującym fałszywe sygnały. Zgodnie z teoretycznymi założeniami, cząstki ciemnej materii mają zderzać się z atomami w detektorze, a sygnały ze zderzeń będą rejestrowane. Centralna część XENON1T to cylindryczny zbiornik o długości 1 metra wypełniony 3200 kilogramami płynnego ksenonu o temperaturze -95 stopni Celsjusza. Gdy ciemna materia zderzy się z atomem ksenonu, energia trafia do jądra, które pobudza jądra innych atomów. Wskutek tego pobudzenia pojawia się słaba emisja w zakresie ultrafioletu, którą wykrywają czujniki na górze i na dole cylindra. Te same czujniki są też zdolne do zarejestrowania ładunku elektrycznego pojawiającego się wskutek zderzenia. W ubiegłym roku informowaliśmy, że XENON1T zarejestrował najrzadsze wydarzenie we wszechświecie, rozpad ksenonu-124. Obecnie XENON1T jest wyłączony, gdyż trwa jego rozbudowa do XENONnT. Nowy detektor będzie zawierał 3-krotnie więcej ksenonu i będzie lepiej zabezpieczony przed szumem tła. Dzięki temu jego czułość będzie o cały rząd wielkości lepsza. Eksperymenty z serii XENON to pomysł fizyczki Eleny Aprile z Columbia University. Ona opracowała metody detekcji i od początku stoi na czele eksperymentów. XENON zostały zaprojektowane do poszukiwania hipotetycznych cząstek ciemnej materii o nazwie WIMP (weakly interacting massive particles). Przez 14 lat niczego nie znaleziono. Brak sukcesów odnotowały też konkurencyjne projekty naukowe. Wiele lat temu naukowcy pracujący przy XENON zdali sobie sprawę, że mogą wykorzystać swój eksperyment do poszukiwań cząstek inną metodą. Zamiast rejestrować cząstki, które zderzą się z jądrem ksenonu, można spróbować wychwycić takie, które zderzają się z elektronem. Zwykle tego typu zderzenia traktowane są jako szum tła i odfiltrowywane, gdyż wiele z takich sygnałów pochodzi z prozaicznych źródeł, jak ołów czy krypton. Jednak z czasem uczeni coraz bardziej udoskonalali swoje urządzenia, eliminowali coraz więcej źródeł potencjalnych zakłóceń i w końcu eksperymenty XENON stały się tak czułe i dobrze izolowane od zakłóceń, że stwierdzono, iż szum tła również może przynieść interesujące informacje. I właśnie na nim się teraz skupiono. Naukowcy przeanalizowali szum tła z pierwszego roku eksperymentu XENON1T. Spodziewali się, że w danych znajdą 232 sygnały zderzeń z elektronami, pochodzące ze znanych źródeł zanieczyszczeń. Tymczasem okazało się, że sygnałów takich jest 285. To spory naddatek świadczący o istnieniu nieznanego źródła sygnału. Naukowcy przez rok trzymali swoje spostrzeżenie w tajemnicy. Przez ten czas próbowali zrozumieć sygnały i odnaleźć ich źródło. W końcu, po wyeliminowaniu wszystkich możliwych źródeł sygnału pozostały wspomniane na wstępie trzy wyjaśnienia, które pasują do nadmiarowych danych. Pierwsze z nich, i najbardziej interesujące, to zarejestrowanie „słonecznych aksjonów”, hipotetycznych cząstek ciemnej materii powstających wewnątrz Słońca. To cząstki spoza Modelu Standardowego. Ich odkrycie byłoby dowodem, że aksjony istnieją, można więc znaleźć i te, które tworzą ciemną materię, jaka powstała po Wielkim Wybuchu. Druga hipoteza mówi, że zarejestrowane sygnały mogą świadczyć o tym, iż neutrino mają silny moment magnetyczny. Właściwość ta pozwalałaby im zwiększać rozpraszanie elektronów, co tłumaczyłoby nadmiarowy sygnał. Neutrino z momentem magnetycznym również nie mieści się w Modelu Standardowym. W końcu trzecia z możliwości, to zanieczyszczenie zbiornika z ksenonem śladową ilością trytu. Zdaniem naukowców niezaangażowanych w XENON1T, najbardziej prawdopodobna jest ostatnia odpowiedź. Jeśli bowiem Słońce tworzy aksjony, to powstają one również w innych gwiazdach. Aksjony unoszą zaś ze sobą energię od gwiazdy. W najgorętszych gwiazdach, jak czerwone olbrzymy czy białe karły, produkcja aksjonów powinna być największa, a ilość unoszonej przez nie energii powinna być wystarczająca, by ochłodzić gwiazdy. Biały karzeł wytwarzałby tyle aksjonów, że nie obserwowalibyśmy tak wielu gwiazd tego typu, co obecnie, mówi Zurek. Podobnie wygląda problem z neutrino z dużym momentem magnetycznym. Również ono powinno ochłodzić gwiazdy, więc tych gorących nie powinno być tyle, ile jest. Na odpowiedź nie powinniśmy długo czekać. Eksperyment XENONnT ruszy w najbliższych miesiącach. Jeśli i tam zaobserwujemy nadmiar sygnałów na podobnym poziomie, powinniśmy w ciągu kilku miesięcy być w stanie stwierdzić, która z hipotez jest prawdziwa, mówi Grandi. « powrót do artykułu
  22. Hiszpańscy naukowcy stworzyli nowy atomowy magnetometr (komagnetometr) do pomiaru precesji spinu. Urządzenie zostanie wykorzystane do poszukiwania aksjonów, hipotetycznych cząstek tworzących ciemną materię. Nowy czujnik wykorzystuje dwa różne stany kwantowe ultrazimnych atomów rubidu. Dzięki temu dochodzi do zniesienia wpływu zewnętrznych pól magnetycznych, co pozwala naukowcom skupić się na egzotycznych interakcjach zależnych od spinu. Niektóre z hipotez dotyczących ciemnej materii mówią o istnieniu aksjonów, hipotetycznych cząstek zaproponowanych w latach 70., które pozwalają rozwiązać problemy odnoszące się do chromodynamiki kwantowej. Jeśli aksjony istnieją, to mogą pośredniczych w egzotycznych interakcjach pomiędzy spinami. Interakcje takie powinny być słabe, ale – przynajmniej teoretycznie – można je zmierzyć za pomocą specjalnego atomowego magnetometru zawierającego znajdujące się w tym samym miejscu dwa różne wykrywacze pola magnetycznego. Urządzenie takie jest tak dostrojone, by znosić wpływ zewnętrznych pół magnetycznych w obu detektorach. Zatem pojawiające się tam sygnały powinny pochodzić z interakcji spinów mających miejsce w samym detektorze. Nowy rodzaj czujnika opracowali naukowcy z Instytutu Nauk Fotonicznych w Barcelonie (Institut de Ciències Fotòniques): Pau Gomez, Ferran Martin, Chiara Mazzinghi, Daniel Benedicto Orenes, Silvana Placios i Morgan Mitchell. Wykorzystali przy tym atomy rubidu-87, których spiny znajdują się w dwóch różnych stanach i różnie reagują na pola magnetyczne. Wspomniane atomy zostały schłodzone niemal do zera absolutnego i tworzą kondensat Bosego-Einsteina. Gdy atomy znajdują się w tym stanie, istnieje niewielkie ryzyko,że interakcje zostaną zakłócone przez czynniki termicnze. To zaś oznacza, że przez kilkanaście sekund spin atomów w sposób spójny reaguje na interakcje spinów. Jako, że sam kondensat zajmuje niewiele przestrzeni, zaledwie 10 mikronów średnicy, zwiększa to czułość urządzenia i pozwala badać interakcje pomiędzy aksjonami odbywające się na niewielkiej przestrzeni. Reakcja spinów na pole magnetyczne jest mierzona za pomocą spolaryzowanego światła i sprawdzaniu, w jaki sposób zmieniła się jego polaryzacja. Porównanie wyników z dwóch różnych spinów pozwala na usunięcie wpływu zewnętrznych pól magnetycznych. Pozostaje wówczas tylko wpływ wewnętrzny, wywoływany przez aksjony. Dotychczas nowy magnetometr nie wykazał istnienia aksjonów. Udało się jednak udowodnić, że jest on wysoce odporny na zakłócenia ze strony zewnętrznych pól magnetycznych. To zaś oznacza, że może pracować wraz z innymi magnetometrami używanymi do poszukiwania aksjonów. « powrót do artykułu
  23. ADMX, prowadzony w Fermilab superczuły eksperyment, w ramach którego poszukiwane są aksjony, wykluczył, że istnieją one w pewnych zakresach masy. Aksjony to hipotetyczne cząstki tworzące ciemną materię. Axion Dark Matter eXperiment (ADMX) szuka ich sprawdzając, czy w silnym polu magnetycznym w skutek reakcji aksjonu ze znanymi cząstkami nie dojdzie do pojawienia się fotonu. Gdy poszukuje się nieznanych cząstek, takich jak aksjon, bada się interakcje, których wynikiem są znane cząstki, jak fotony, mówi Rakshya Khatiwada, która przez ostatnie cztery lata była odpowiedzialna za eksperyment ADMX. Wewnątrz ADMX znajduje się wnęka i nadprzewodzący magnes, który generuje silne pole magnetyczne. Teoria przewiduje, że w takich warunkach w niskiej temperaturze dochodzi do rozpadu aksjonu na 2 fotony z części mikrofalowej widma elektrycznego.Detektor można dostroić do różnych częstotliwości odpowiadających różnej masie aksjonów pochodzących z halo ciemnej materii otaczającej Drogę Mleczną. Od 2017 roku ADMX jest najbardziej czułym eksperymentem tego typu. Jego twórcy mają nadzieję, że tak, jak udało się zarejestrować obecność neutrino, tak w końcu zarejestrujemy aksjony. Teraz poinformowano o wynikach badań przeprowadzonych w roku 2018. To bardzo cenne dane, gdyż zwiększają naszą pewność, iż aksjony nie występują w określonym zakresie energii, mówi Khatiwada. Analiza ubiegłorocznych danych wykazała, że masa aksjonów nie mieści się w przedziale od 2,66 milionowych do 3,33 milionowych elektronowolta. Dla porównania, masa elektronu to 511 000 elektronowoltów. Obecnie w ramach ADMX badany jest zakres mas powyżej 3,33 milionowych elektronowolta. Eksperyment nie tylko wyklucza kolejne zakresy występowania aksjonów, ale też staje się coraz bardziej czuły, gdyż jego operatorzy coraz lepiej potrafią odfiltrować zakłócenia tła. To dość surrealistyczne zbudować i uruchomić jedyny w swoim rodzaju eksperyment na świecie. Ale olbrzymią radość sprawia nam fakt, że wiele osób, od studentów po profesorów, korzysta z wyników naszych prac, cieszy się Khatiwada. W poprzedniej wersji ADMX, w której wykorzystywaliśmy wzmacniacze bazujące na tranzystorach, potrzebowalibyśmy setek lat by przeskanować częstotliwości, w którym mogą występować aksjony. Dzięki nowym nadprzewodzącym czujnikom możemy to zrobić w ciągu kilku lat, mówi Gianpaolo Carosi, rzecznik prasowy ADMS. Mamy odpowiednią czułość i szansą na odkrycie aksjonów. Nie potrzebujemy żadnej nowej technologii. Już nie potrzebujemy cudu. Potrzebujemy tylko czasu, dodaje profesor Leslie Rosenberg z University of Washington. « powrót do artykułu
  24. Nigdy bym się nie spodziewał, że w jakikolwiek sposób przyczynimy się do badania ciemnej materii. To niesamowite, stwierdził Alan Cummings, który od 1973 roku pracuje przy misji Voyager 1. Dane z Voyagera 1 wykluczyły właśnie jedną z hipotez dotyczących natury ciemnej materii. Hipoteza ta mówi, że ciemna materia może składać się z czarnych dziur. Czarne dziury powstają wskutek zapadnięcia się gwiazd. Jednak, jako że masa ciemnej materii jest 6-krotnie większa od materii widocznej, w dziejach wszechświata nie mogło być aż tyle gwiazd, które by utworzyły czarne dziury tworzące ciemną materię. Dlatego też, jak mówi wspomniana hipoteza, ciemna materia składa się z czarnych dziur, które powstały wskutek zapadania się fluktuacji w pierwotnej materii powstałej wskutek Wielkiego Wybuchu, jeszcze zanim pojawiły się pierwsze gwiazdy. Jak mówi kosmolog Bernard Carr z Queen Mary University of London, który pracuje nad tą hipotezą od 40 lat, obliczenia doprowadziły do wniosku, że takie pierwotne czarne dziury mogą mieć jedną z trzech mas. Albo ich masa wynosi od 1 do 10 mas Słońca, albo jedną miliardową mas Słońca, albo mniej niż jedną biliardową mas Słońca, czyli około 10 miliardów ton. Czarna dziura o najmniejszej ze wspomnianych mas miałaby średnicę jądra atomu. Jednak, jak zauważają autorzy najnowszych badań, Mathieu Boudaud i Marco Cirelli z Sorbony, najmniejsze z tych dziur emitowałyby promieniowanie (promieniowanie Hawkinga), które Voyager 1 powinien zarejestrować. Urządzenia na Ziemi go nie rejestrują, gdyż składa się ono z cząstek o niskiej energii, które są odbijane przez pole magnetyczne Słońca. Jednak tam, gdzie obecnie znajduje się Voyager 1 powinno być ono widoczne dla instrumentów sondy. Faktem jest, że od roku 2012, kiedy to Voyager 1 opuścił heliosferę, jego urządzenia rejestrują niewielki stały przepływ pozytonów i elektronów. Jeśli jednak nawet pochodzą one z niewielkich czarnych dziur, to dziur takich jest zbyt mało, by stanowiły więcej niż 1% ciemnej materii w Drodze mlecznej, wyliczyli Boudaud i Cirelli. Cummings stwierdza, że spektrum energetyczne tych cząstek wskazuje, że pochodzą one z innego źródła, jak np. wybuchów supernowych. Praca Boudauda i Cirellego wyklucza więc ze wspomnianej hipotezy czarne dziury o najmniejszej masie, przyznaje Carr. Uczony dodaje, że jego faworytami zawsze były czarne dziury o kilku masach Słońca. Voyager 1 nie jest w stanie ich zarejestrować. Są one bowiem na tyle zimne i masywne, że z ich istnieniem nie jest związana emisja elektronów i pozytonów. Mogą one emitować jedynie niezwykle słabe światło. « powrót do artykułu
  25. Międzynarodowa grupa badawcza opublikowała najobszerniejszą i najdokładniejszą mapę rozkładu ciemnej materii we wszechświecie. Mapę stworzono dzięki urządzeniu Hyper Suprime-Cam (HSC) znajdującemu się w japoński teleskopie Subaru na Hawajach. Jej powstanie było możliwe dzięki temu, że siła grawitacji zagina światło przechodzące w pobliżu dużych mas materii. Zjawisko to, zwane słabym soczewkowaniem grawitacyjnym, powoduje, że odległe galaktyki wydają się nieco zdeformowane. To zniekształcenie jest dla astronomów kopalnią informacji na temat rozkładu materii we wszechświecie. Dzięki HSC obliczono deformacje w obrazach około 10 miliona galaktyk. Teleskop Suberu pozwolił zajrzeć głębiej niż podczas wcześniejszych badań tego typu. Na przykład podczas Dark Energy Survey naukowcy mieli okazję oglądać większą część wszechświata i z podobną precyzją, jednak byli w stanie dokonać obliczeń tylko dla najbliższych obszarów wszechświata. HSC ma węższe ale za to głębsze pole widzenia. Naukowcy po utworzeniu mapy za pomocą HSC porównali ją z fluktuacjami przewidywanymi na podstawie obserwacji mikrofalowego promieniowania tła rejestrowanego przez satelitę Planck Europejskiej Agencji Kosmicznej. Pomiary z HSC dawały nieco inne wyniki, lecz były statystycznie spójne z danymi z Plancka. Fakt, że HSC i inne podobne pomiary pokazują, iż materia we wszechświecie jest słabiej zgrupowana, niż wynika to z pomiarów Planck każe zapytać czy ciemna energia zachowuje się tak, jak wynika ze stałej kosmologicznej Einsteina. Nasza mapa daje nam lepszy obraz tego, jak wiele jest ciemnej energii, mówi nam nieco o jej właściwościach i jak przyspiesza ona rozszerzanie się wszechświata. HSC to wspaniałe uzupełnienie innych badań. Połączenie danych z różnych projektów dostarcza nam potężnego narzędzia pozwalającego na zdobycie coraz więcej informacji o ciemnej materii i ciemnej energii, mówi Rachel Mandelbaum z Carnegie Mellon University. Dotychczas zebrano dane z pierwszego roku badań. Cały projekt ma potrwać pięć lat, co pozwoli na zebranie większej ilości danych na temat zachowania ciemnej energii, umożliwi lepsze zrozumienie ewolucji galaktyk i gromad galaktyk. « powrót do artykułu
×
×
  • Create New...