Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' antymateria'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 6 results

  1. Doktor Agnieszka Dziurda z Instytutu Fizyki Jądrowej PAN stoi na czele międzynarodowego zespołu naukowego, który w CERN prowadzi badania nad oscylacjami cząstek pomiędzy światem materii i antymaterii. Co prawda materia i antymateria wydają się swoimi przeciwieństwami, jednak istnieją cząstki, które raz zachowują się jak należące do świata materii, a raz antymaterii. Grupa doktor Dziurdy zmierzyła właśnie ekstremalne tempo oscylacji takich cząstek. Naukowcy wzięli na warsztat mezony Bs0 i za pomocą detektora LHCb z niespotykaną dotychczas dokładnością zbadali ich oscylacje. Nie byli pierwszymi, którzy podjęli się tego zadania. Już w 2006 roku w amerykańskim Fermilab mierzono to zjawisko. Nam udało się teraz poprawić dokładność pierwotnego pomiaru aż o dwa rzędy wielkości, chwali się doktor Dziurda. Materia widzialna jest złożona głównie z kwarków górnych, dolnych, elektronów i neutrin elektronowych. Na przykład jądra atomów zbudowane są z protonów (składających się z 2 kwarków górnych i 1 kwarka dolnego) oraz neutronów (1 kwark górny i 2 kwarki dolne). Model Standardowy klasyfikuje kwark górny, dolny, elektron i neutrino elektronowe jako cząstki jednej generacji. Istnieją jeszcze dwie inne generacje, z cząstkami o podobnych właściwościach, ale coraz bardziej masywnych. Kwarki nie występują swobodnie. Łączą się z innymi kwarkami. A najprostsze takie połączenie tworzy mezon, złożony z par kwark-antykwark. Mezony mogą przenosić ładunek elektryczny, lecz nie muszą. Te pozbawione ładunku elektrycznego, określane jako neutralne, wykazują frapującą cechę: oscylują między postacią materialną a antymaterialną. My skupiliśmy się na analizie częstotliwości oscylacji neutralnych mezonów zawierających kwark piękny b z trzeciej generacji i kwark dziwny s z drugiej, oznaczonych jako Bs0, mówi doktor Dziurda. Mezony są niestabilne i rozpadają się w czasie pikosekund. Jedna pikosekunda to 0,000000000001. Jednak zgodnie z zasadami mechaniki kwantowej, produkty rozpadu neutralnych mezonów są różne, w zależności od tego, czy w momencie rozpadu znajdowały się w świecie materii czy antymaterii. Zatem dopiero po zarejestrowaniu i zidentyfikowaniu produktów rozpadu danego mezonu mogliśmy ustalić, czy rozpadł się on jako reprezentant świata materii, czy antymaterii. Połączenie tej wiedzy z informacją o naturze cząstki w momencie produkcji pozwoliło nam na pomiar częstotliwości oscylacji, stwierdza polska uczona. Zespół Dziurdy przeanalizował mezony Bs0 powstałe w latach 2015–2018 w Wielkim Zderzaczu Hadronów jako wynik zderzeń proton-proton o łącznej energii 13 TeV (teraelektronowoltów). Badania wykazały, że mezony te oscylują pomiędzy materią i antymaterią 3 tryliony razy na sekundę. To aż 300-krotnie szybciej niż oscylacje typowego cezowego zegara atomowego. Badania takie nie tylko potwierdzają przewidywania mechaniki kwantowej, ale pozwalają zawęzić też obszar poszukiwania nieznanych cząstek spoza Modelu Standardowego. « powrót do artykułu
  2. W CERN zakończono najbardziej precyzyjne w historii eksperymenty, których celem było sprawdzenie czy materia i antymateria reagują tak samo na oddziaływanie grawitacji. Trwające 1,5 roku badania z wykorzystaniem protonów i antyprotonów przeprowadzili specjaliści z eksperymentu BASE (Baryon Antibaryon Symmetry Experiment). Naukowcy zmierzyli stosunek ładunku do masy protonu i antyprotonu z dokładnością 16 części na bilion. To najbardziej precyzyjny ze wszystkich testów symetrii materii i antymaterii przeprowadzony na cząstkach złożonych z trzech kwarków, zwanych barionami, i ich antycząstkach, mówi Stefan Ulmer, rzecznik prasowy BASE. Zgodnie z Modelem Standardowym cząstki i antycząstki mogą się od siebie różnić, jednak większość właściwości, szczególnie ich masa, powinno być identycznych. Znalezienie różnicy masy pomiędzy protonami a antyprotonami lub też różnicy w ich stosunku ładunku do masy, oznaczałoby złamanie podstawowej symetrii Modelu Standardowego, symetrii CPT. Byłby to również dowód na znalezienie fizyki wykraczającej poza opisaną Modelem Standardowym. Istnienie takiej różnicy mogłoby doprowadzić do wyjaśnienia, dlaczego wszechświat składa się głównie z materii, mimo że podczas Wielkiego Wybuchu powinny powstać takie same ilości materii i antymaterii. Różnice pomiędzy cząstkami materii i antymaterii zgodne z Modelem Standardowym, są o rzędy wielkości zbyt małe, by wyjaśnić obserwowaną nierównowagę. Naukowcy z BASE wykorzystali podczas swoich pomiarów antyprotony i jony wodoru, które służyły jako ujemnie naładowane przybliżenia protonów. Umieszczono je w tzw. pułapce Penninga. Badania prowadzono pomiędzy grudniem 2017 roku a majem 2019. Później przystąpiono do opracowywania wyników, a po zakończeniu prac w najnowszym numerze Nature poinformowano o rezultatach. Po uwzględnieniu różnic pomiędzy jonami wodoru a protonami okazało się, że stosunek ładunku do masy protonu jest z dokładnością do 16 części na miliard identyczny ze stosunkiem ładunku do masy antyprotonu. To czterokrotnie bardziej dokładne obliczenia niż wszystko, co udało się wcześniej uzyskać, mówi Stefan Ulmer. Aby dokonać tak precyzyjnych pomiarów musieliśmy najpierw znacznie udoskonalić nasze narzędzia. Badania przeprowadziliśmy w czasie, gdy urządzenia wytwarzające antymaterię były nieczynne. Wykorzystaliśmy więc magazyn antyprotonów, w którym mogą być one przechowywane przez lata, dodaje. Prowadzenie eksperymentów w pułapce Penninga w czasie, gdy urządzenia wytwarzające antymaterię nie działają, pozwala na uzyskanie idealnych warunków, gdyż nie występują zakłócające badania pola magnetyczne generowane przez „fabrykę antymaterii”. Naukowcy z BASE nie ograniczyli się tylko do niespotykanie precyzyjnego porównania protonów i antyprotonów. Przeprowadzili też testy słabej zasady równoważności. Wynika ona z teorii względności i głosi, że zachowanie wszystkich obiektów w polu grawitacyjnym jest niezależne od ich właściwości, w tym masy. Oznacza to, że jeśli pominiemy inne siły – jak np. siłę tarcia – reakcja wszystkich obiektów na oddziaływanie grawitacji jest taka sama. Przykładem może być tutaj piórko i młotek, które w próżni powinny opadać z tym samym przyspieszeniem. Orbita Ziemi wokół Słońca ma kształt elipsy, co oznacza, że obiekty uwięzione w pułapce Penninga będą odczuwały niewielkie zmiany oddziaływania grawitacyjnego. Okazało się, że zarówno proton i antyproton identycznie reagują na te zmiany. Uczeni z BASE potwierdzili, że słaba zasada równoważności odnosi się zarówno do materii jak i antymaterii z dokładnością około 3 części na 100. Ulmer podkreśla, że uzyskana w tym eksperymencie precyzja jest podobna do założeń eksperymentu, w ramach których CERN chce badać antywodór podczas spadku swobodnego w polu grawitacyjnym Ziemi. BASE nie prowadziło eksperymentu ze swobodnym spadkiem antymaterii w polu grawitacyjnym Ziemi, ale nasze pomiary wpływu grawitacji na antymaterię barionową są co do założeń bardzo podobne do planowanego eksperymentu. To wskazuje, że w dopuszczonym zakresie niepewności nie znaleźliśmy żadnych anomalii w interakcjach pomiędzy antymaterią a grawitacją. « powrót do artykułu
  3. Ludzie, Ziemia czy gwiazdy pojawili się dlatego, że w pierwszej sekundy istnienia wszechświata wytwarzane było więcej materii niż antymaterii. Ta asymetria była niezwykle mała. Na każde 10 miliardów cząstek antymaterii pojawiało się 10 miliardów + 1 cząstka materii. Ta minimalna nierównowaga doprowadziła do stworzenia materialnego wszechświata, a fenomenu tego współczesna fizyka nie potrafi wyjaśnić. Z teorii wynika bowiem, że powinna powstać dokładnie taka sama liczba cząstek materii i antymaterii. Grupa fizyków-teoretyków stwierdziła właśnie, że nie można wykluczyć, iż w naszych możliwościach leży wykrycie nietopologicznych solitonów Q-balls, a ich wykrycie pozwoliłoby odpowiedzieć na pytanie, dlaczego po Wielkim Wybuchu pojawiło się więcej materii niż antymaterii. Obecnie fizycy uważają, że asymetria materii i antymaterii pojawiła się w pierwszej sekundzie po Wielkim Wybuchu, a w jej czasie rodzący się wszechświat gwałtownie zwiększył swoje wymiary. Jednak przetestowanie teorii o inflacji kosmologicznej jest niezwykle trudne. Żeby ją sprawdzić musielibyśmy wykorzystać olbrzymie akceleratory cząstek i dostarczyć im więcej energii, niż jesteśmy w stanie wyprodukować. Jednak amerykańsko-japoński zespół naukowy, w skład którego wchodzą m.in. specjaliści z japońskiego Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) i Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) uważają, że do przetestowania tej teorii można wykorzystać nietopologiczne solitony Q-ball. Jedna z teorii dotyczących nierównowagi materii i antymaterii mówi bowiem, że pojawiła się ona w wyniku złożonego procesu tzw. bariogenezy Afflecka-Dine'a. To w jej przebiegu miały pojawić się Q-balle. Profesor Graham White, główny autor badań z Kavli IPMU wyjaśnia, czym jest Q-ball. Mówi, że jest bozonem, jak bozon Higgsa. Bozon Higgsa pojawia się, gdy pole Higgsa zostaje wzbudzone. Jednak w polu Higgsa mogą pojawiać się też inne elementy, jak grudki. Jeśli mamy pole bardzo podobne do pola Higgsa, które ma pewien ładunek, nie ładunek elektryczny, ale jakiś ładunek, wówczas taka grudka ma ładunek taki, jak jedna cząstka. Jako, że ładunek nie może po prostu zniknąć, całe pole musi „zdecydować” czy tworzy grudki czy cząstki. Jeśli utworzenie grudek będzie wymagało mniej energii, będą powstawały grudki. Łączące się ze sobą grudki stworzą Q-ball, mówi. Często mówimy, że takie Q-balle istnieją przez jakiś czas. W miarę rozszerzania się wszechświata zanikają one wolniej niż promieniowanie tła, w końcu większość energii wszechświata skupia się w Q-ballach. W międzyczasie pojawiają się niewielkie fluktuacje w gęstości promieniowania, które skupiają się tam, gdzie dominują Q-balle. Gdy zaś Q-ball się rozpada, jest to zjawisko tak gwałtowne, że pojawiają się fale grawitacyjne. Możemy je wykryć w nadchodzących dekadach. Piękno poszukiwań fal grawitacyjnych polega na tym, że wszechświat jest całkowicie dla nich przezroczysty, wędrują więc do jego początku, mówi White. Zdaniem teoretyków, generowane przez znikające Q-balle fale mają odpowiednie charakterystyki, by można je było zarejestrować za pomocą standardowych wykrywaczy fal grawitacyjnych. Szczegóły badań zostały opublikowane w serwisie arXiv. « powrót do artykułu
  4. W Instytucie Fizyki Uniwersytetu Jagiellońskiego powstał pierwszy na świecie tomograf, który pozwala na uzyskanie trójfotonowego obrazu PET. Urządzenie J-PET autorstwa profesora Pawła Moskala i jego zespołu znacząco różni się od tradycyjnych tomografów PET, generujących obraz w oparciu o dwa fotony. Nowatorska technika obrazowania nie tylko pozwoli na lepsze diagnozowanie nowotworów, ale umożliwi też badanie symetrii pomiędzy materią a antymaterią. Tomograf powstał w ramach projektu Jagielloński PET (J-PET). Wykorzystuje on znaną technikę obrazowania metodą pozytonowej tomografii emisyjnej. Podczas tej techniki wyznaczany jest przestrzenny rozkład atomów pozytonium, czyli stanów związanych elektronu i pozytonu, które powstają w ciele pacjenta w czasie badania PET. Zespół profesora Moskala z UJ oraz ich współpracownicy z Uniwersytetu Marii Curie-Skłodowskiej w Lublinie,  Narodowego Centrum Badań Jądrowych, Uniwersytetu w wiedniu i włoskiego Narodowego Instytutu Fizyki Jądrowej, jako pierwszy pokazał, w jaki sposób zrekonstruować rozpad pozytonium na trzy fotony. Możliwość rekonstrukcji takiego właśnie rozpadu pozytonium pozwala na opracowanie niekonwencjonalnych sposobów obrazowania PET. Umożliwia również prowadzenie badań podstawowych. Profesor Moskal i jego grupa opublikowali na łamach Nature Communications artykuł, w którym opisali test symetrii względem połączenia odwrócenia ładunku (C), odbicia przestrzennego (P) i odwrócenia w czasie (T) w układach leptonowych. To tzw. test symetrii CPT. Dzięki wykorzystaniu J-PET osiągnęli niespotykaną dotychczas precyzję (10-4) takich badań przeprowadzonych za pomocą pozytonium. Projekt Jagielloński PET ma na celu stworzenie urządzenia, które pozwoli na jednoczesne obrazowanie całego ciała. Naukowcy chcą, by służyło ono zarówno do lokalizowania nowotworów, jak i określania stopnia ich złośliwości, badania rozprowadzania leków i ich metabolizmu. W skład zespołu pracującego nad nowatorskim rozwiązaniem wchodzą lekarze, biolodzy, chemicy, fizycy, elektronicy i informatycy. Urządzenie budowane jest w oparciu o technologię stworzoną na Uniwersytecie Jagiellońskim. Jednocześnie na uczelni powstaje Centrum Teranostyki. To termin stworzony z połączenia słów terapia i diagnostyka. Centrum będzie zajmowało się opracowywaniem rozwiązań technologicznych pozwalających na jednoczesne wykrywanie i leczenie chorób. « powrót do artykułu
  5. Pierwsze badania spektroskopowe monofluorku radu wskazują, że molekuła ta może zostać wykorzystana do bardzo precyzyjnych testów Modelu Standardowego. Autorzy badań – fizycy z CERN-u oraz laboratorium ISOLDE – twierdzą, że mogą one doprowadzić do ustalenia nowego górnego limitu elektrycznego momentu dipolowego elektronu, a to zaś może pozwolić w wyjaśnieniu, dlaczego we wszechświecie jest więcej materii niż antymaterii. Spektroskopia atomowa i molekularna umożliwia przeprowadzenie niezwykle precyzyjnych pomiarów niektórych podstawowych właściwości elektronów i jąder atomowych. Takie pomiary pozwalają na stwierdzenie, czy dana cząstka pasuje do Modelu standardowego. Monofluorek radu to niezwykle interesująca molekuła, gdyż w niektórych jej wersjach izotopowych jądro radu jest bardzo niesymetryczne. Rozkład masy w nim ma kształt gruszki. Ta właściwość oraz sama wysoka masa radu oznaczają, że świetnie się nadaje do badania właściwości elektronów, w tym ich elektrycznego momentu dipolowego. Wiemy, że elektron posiada magnetyczny moment dipolowy, będący wynikiem posiadania spinu. W najprostszej wersji Modelu Standardowego parzystość T, czyli parzystość operacji odwrócenia czasu, zakazuje elektronom jednoczesnego posiadania elektrycznego momentu dipolowego. Jednak bardziej złożone wersje Modelu Standardowego dopuszczają, że elektrony posiadają elektryczny moment dipolowy, jednak jego wartość jest niezwykle mała. Jeśli udałoby się wykazać, że wartość ta jest znacząco większa od zakładanej, wskazywałoby to na istnienie fizyki poza Modelem Standardowym oraz oznaczałoby poważne złamanie symetrii we wczesnym wszechświecie, dzięki temu zaś moglibyśmy zrozumieć, dlaczego materii jest więcej niż antymaterii. Podczas najnowszych badań wykazano, że molekuły monofluorku radu można za pomocą lasera schłodzić do temperatur nieco tylko wyższych od zera absolutnego. A skoro tak, to można też dokonać niezwykle precyzyjnych pomiarów ich właściwości. Dlatego też ISOLDE, CERN i MIT już nawiązały współpracę, której celem jest precyzyjne określenie elektrycznego momentu dipolowego elektronów. Chcemy jeszcze bardziej zmniejszyć różnicę pomiędzy najbardziej precyzyjnymi pomiarami, a teoretycznie przewidywaną wartością momentu dipolowego. Wartość przewidywana przez Model Standardowy jest niezwykle mała i poza obecnym zasięgiem pomiarów. Doprecyzowując ją możemy przetestować teorie przewidujące znacznie wyższą wartość, mówi Gerda Neyens, z Uniwersytetu Katolickiego w Leuven, która stoi na czele laboratorium ISOLDE. « powrót do artykułu
  6. W LHCb zaobserwowano, po raz pierwszy w historii, naruszenie symetrii CP podczas rozpadu mezonu D0. To historyczne wydarzenie, które z pewnością trafi do podręczników fizyki. To krok milowy fizyki cząstek. Od czasu odkrycia przed ponad 40 laty mezonu D fizycy podejrzewali, że naruszenie symetrii CP zachodzi również w tym systemie. Jednak dopiero teraz, po analizie wszystkich danych, jakie udało się zebrać w LHCb możemy potwierdzić, że zaobserwowaliśmy to zjawisko, mówi Eckhard Elsen, dyrektor ds. badań i obliczeń w CERN. Symetria ładunkowo-przestrzenna CP to termin, który oznacza, że każda cząstka elementarna ma swój odpowiednik, czyli antycząstkę. Są one pod wieloma względami identyczne, różnią się za to ładunkami elektrycznymi oraz liczbami kwantowymi. Wiadomo jednak, gdy w grę wchodzą oddziaływania słabe, symetria w niektórych cząstkach nie jest zachowana. Dochodzi do naruszeń symetrii CP. Zjawisko to po raz pierwszy zaobserwowano w latach 60. ubiegłego roku w Brookhaven Laboratory podczas rozpadu neutralnych kaonów. W 1980 roku autorzy odkrycia, James Watson Cronin i Val Logsdon Fitch, otrzymali za nie Nagrodę Nobla z fizyki. Później w 2001 roku badania nad naruszeniem symetrii CP w mezonie B przeprowadził zespół z USA i Japonii. Ponownie skończyło się to Nagrodą Nobla, którą w 2008 roku otrzymali Makoto Kobayashi, Toshihide Masakawa i Yoichiro Nambu. Naruszenie symetrii CP to jeden z podstawowych procesów zachodzących we wszechświecie. To dzięki niemu rozpoczął się proces, który po Wielkim Wybuchu doprowadził do pojawienia się przewagi materii nad antymaterią. Jednak rozmiary obecnie obserwowanych naruszeń w Modelu Standardowym są zbyt małe, by wyjaśnić istniejącą nierównowagę pomiędzy materią a antymaterią. To zaś sugeruje, że istnieją dodatkowe, nieznane jeszcze, źródła naruszeń CP. Mezon D0 składa się z kwarka powabnego i antykwarka górnego. Dotychczas naruszenia symetrii CP były obserwowane wyłącznie w cząstkach zawierających kwark dziwny lub kwark niski. Dotychczasowe obserwacje potwierdzały wzorzec naruszeń symetrii CP opisany w Modelu Standardowym za pomocą macierzy Cabibbo-Kobayashiego-Masakawy (macierz CKM). Opisuje ona, jakie przemiany zachodzą w kwarkach wskutek oddziaływań słabych. Jednym z największych zadań współczesnej fizyki cząstek jest uzupełnianie macierzy. Odkrycie, że naruszenie symetrii CP zachodzi też w mezonach D0 to pierwszy dowód na przemiany w kwarku powabnym. Najnowszego odkrycia dokonano analizując pełny zestaw danych uzyskanych w LHCb w latach 2011–2018 pochodzących z rozpadów mezonu D0 i jego antycząstki, antymezonu D0. Znaczenie statystyczne odkrycia wynosi 5,3, czyli przekracza próg sigma 5, wyznaczający pewność dokonanego odkrycia. « powrót do artykułu
×
×
  • Create New...