Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'fale grawitacyjne'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 8 results

  1. Ludzie, Ziemia czy gwiazdy pojawili się dlatego, że w pierwszej sekundy istnienia wszechświata wytwarzane było więcej materii niż antymaterii. Ta asymetria była niezwykle mała. Na każde 10 miliardów cząstek antymaterii pojawiało się 10 miliardów + 1 cząstka materii. Ta minimalna nierównowaga doprowadziła do stworzenia materialnego wszechświata, a fenomenu tego współczesna fizyka nie potrafi wyjaśnić. Z teorii wynika bowiem, że powinna powstać dokładnie taka sama liczba cząstek materii i antymaterii. Grupa fizyków-teoretyków stwierdziła właśnie, że nie można wykluczyć, iż w naszych możliwościach leży wykrycie nietopologicznych solitonów Q-balls, a ich wykrycie pozwoliłoby odpowiedzieć na pytanie, dlaczego po Wielkim Wybuchu pojawiło się więcej materii niż antymaterii. Obecnie fizycy uważają, że asymetria materii i antymaterii pojawiła się w pierwszej sekundzie po Wielkim Wybuchu, a w jej czasie rodzący się wszechświat gwałtownie zwiększył swoje wymiary. Jednak przetestowanie teorii o inflacji kosmologicznej jest niezwykle trudne. Żeby ją sprawdzić musielibyśmy wykorzystać olbrzymie akceleratory cząstek i dostarczyć im więcej energii, niż jesteśmy w stanie wyprodukować. Jednak amerykańsko-japoński zespół naukowy, w skład którego wchodzą m.in. specjaliści z japońskiego Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) i Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) uważają, że do przetestowania tej teorii można wykorzystać nietopologiczne solitony Q-ball. Jedna z teorii dotyczących nierównowagi materii i antymaterii mówi bowiem, że pojawiła się ona w wyniku złożonego procesu tzw. bariogenezy Afflecka-Dine'a. To w jej przebiegu miały pojawić się Q-balle. Profesor Graham White, główny autor badań z Kavli IPMU wyjaśnia, czym jest Q-ball. Mówi, że jest bozonem, jak bozon Higgsa. Bozon Higgsa pojawia się, gdy pole Higgsa zostaje wzbudzone. Jednak w polu Higgsa mogą pojawiać się też inne elementy, jak grudki. Jeśli mamy pole bardzo podobne do pola Higgsa, które ma pewien ładunek, nie ładunek elektryczny, ale jakiś ładunek, wówczas taka grudka ma ładunek taki, jak jedna cząstka. Jako, że ładunek nie może po prostu zniknąć, całe pole musi „zdecydować” czy tworzy grudki czy cząstki. Jeśli utworzenie grudek będzie wymagało mniej energii, będą powstawały grudki. Łączące się ze sobą grudki stworzą Q-ball, mówi. Często mówimy, że takie Q-balle istnieją przez jakiś czas. W miarę rozszerzania się wszechświata zanikają one wolniej niż promieniowanie tła, w końcu większość energii wszechświata skupia się w Q-ballach. W międzyczasie pojawiają się niewielkie fluktuacje w gęstości promieniowania, które skupiają się tam, gdzie dominują Q-balle. Gdy zaś Q-ball się rozpada, jest to zjawisko tak gwałtowne, że pojawiają się fale grawitacyjne. Możemy je wykryć w nadchodzących dekadach. Piękno poszukiwań fal grawitacyjnych polega na tym, że wszechświat jest całkowicie dla nich przezroczysty, wędrują więc do jego początku, mówi White. Zdaniem teoretyków, generowane przez znikające Q-balle fale mają odpowiednie charakterystyki, by można je było zarejestrować za pomocą standardowych wykrywaczy fal grawitacyjnych. Szczegóły badań zostały opublikowane w serwisie arXiv. « powrót do artykułu
  2. Australijscy naukowcy z ARC Centre of Excellence for Dark Matter Particle Physics i University of Western Australia zbudowali wykrywacz fal grawitacyjnych, który wykorzystuje kwarc do rejestracji fal o wysokiej częstotliwości. Urządzenie pracuje od zaledwie 153 dni, a już zarejestrowało dwa sygnały, które mogą być falami grawitacyjnymi, jakich nigdy wcześniej naukowcy nie obserwowali. Fale takie mogą pochodzić z pierwotnych czarnych dziur lub chmur cząstek ciemnej materii. Istnienie fal grawitacyjnych zostało przewidziane przez Alberta Einsteina. Przewidział on, że obiekty astronomiczne mogą generować fale zagiętej czasoprzestrzeni, które rozchodzą się po wszechświecie. Po raz pierwszy fale grawitacyjne zarejestrowano w 2015 roku, a o odkryciu oficjalnie poinformowano w lutym 2016. Odkrycia dokonano w parze dużych interferometrów LIGO. Fale grawitacyjne powinny ściskać i rozciągać przestrzeń o 1 część na 1021, co oznacza, że cała Ziemia jest ściskana lub rozciągana o 1/100000 nanometra, czyli mniej więcej o grubość jądra atomu. W ramach eksperymentu LIGO zbudowano dwa interferometry ułożone w kształt litery L o długości 4 kilometrów każdy. Na końcach tuneli umieszczono lustra odbijające światło. W stronę luster wystrzeliwany jest promień lasera, który odbija się i powraca do detektorów. Jeśli promienie przebyły drogę o różnej długości, pomiędzy promieniami dojdzie do interferencji. Badając interferencję naukowcy są w stanie zmierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczająca dokładność, by wykryć ewentualne zmiany długości obu ramion interferometrów spowodowane obecnością fal grawitacyjnych. W skład LIGO wchodzą dwa laboratoria - w stanach Luizjana i Waszyngton. Oprócz interferometrów LIGO dysponujemy też europejskim urządzeniem Virgo, który często współpracuje z LIGOw tandemie. Niedawno zaś Japończycy uruchomili obserwatorium KAGRA. Te trzy obserwatoria są w stanie zarejestrować fale grawitacyjne o niskiej częstotliwości, pochodzące ze zderzeń czarnych dziur, gwiazd neutronowych oraz pochłonięcia gwiazdy neutronowej przez czarną dziurę. Pomimo tego, że najwięcej uwagi nauka zwraca na fale grawitacyjne o niskiej częstotliwości, istnieje wiele opracowań teoretycznych dotyczących fal o wysokiej częstotliwości. Zgodnie z tymi opracowaniami, źródłem takich fal mają być pierwotne czarne dziury lub ciemna materia. Dlatego też Australijczycy postanowili zbudować wykrywacz tego typu fal. Został on stworzony z kwarcowego objętościowego rezonatora fali akustycznej (BAW – bulk acoustic wave). Sercem urządzenia jest dysk z kryształu kwarcu, który wibruje pod wpływem przechodzących przez niego fal akustycznych. Fale te indukują ładunki elektryczne w dysku, które możemy wykrywać. BAW podłączony jest do nadprzewodzącego kwantowego urządzenia SQUID, działającego jak niezwykle czuły wzmacniacz sygnału. Całość została zamknięta w wielu osłonach chroniących wykrywacz przed przypadkowymi polami elektromagnetycznymi i schłodzona do niskich temperatur, co ułatwia wykrycie wibracji akustycznych o niskich energiach. Tak przygotowany detektor zarejestrował dwa obiecujące sygnały. Teraz grupa uczonych próbuje określić, co było ich źródłem. Jednym z naukowców pracujących przy projekcie jest profesor Michael Tobar. Uczony mówi, że fale grawitacyjne o wysokiej częstotliwości to tylko jedno z możliwych źródeł sygnału. Innymi mogą być naładowane cząstki, naprężenia mechaniczne, upadek meteorytu czy wewnętrzne procesy zachodzące w materiale, z którego zbudowany jest detektor. Nie można też wykluczyć, że doszło do interakcji kwarcowego dysku z cząstkami ciemnej materii o bardzo dużej masie. Jesteśmy niezwykle podekscytowani faktem, że wykrywacz okazał się tak czuły i rejestruje sygnały. Teraz musimy zrozumieć, co one oznaczają. To jednak pokazuje, że nasze urządzenie może być wykorzystywane w roli detektora fal grawitacyjnych o dużej częstotliwości. To jeden z zaledwie dwóch eksperymentów tego typu na świecie. Planujemy rozbudować go tak, by wykrywał jeszcze wyższe częstotliwości, badał zakresy, po które nikt wcześniej nie sięgał, mówi Tobar. Australijczycy planują zbudowanie bliźniaczego detektora. Jeśli dwa takie wykrywacze zarejestrują fale grawitacyjne, będzie to niezwykle interesujące wydarzenie, dodaje uczony. « powrót do artykułu
  3. Europejski projekt budowy wielkiego wykrywacza fal grawitacyjnych znalazł się o krok bliżej realizacji. European Strategy Forum on Research Infrastructures (ESFRI), które doradza rządom Unii Europejskiej odnośnie priorytetów badawczych, wpisało Einstein Telescope, bo tak się ma nazywać laboratorium, na mapę drogową projektów naukowych, które są na tyle zaawansowane, że warto, by nadal się rozwijały. Einstein Telescope ma kosztować 1,9 miliarda euro. Twórcy projektu muszą jeszcze przekonać rządy do swojego pomysłu. Wpisanie na listę ESFRI nie jest obietnicą finansowania, ale pokazuje, że istnieje wola kontynuowania projektu, mówi współprzewodniczący komitetu kierującego Einstein Telescope, Harald Lück w Uniwersytetu im. Leibniza w Hanowerze. Działania ESFRI zostały z zadowoleniem przywitane przez naukowców USA, którzy mają nadzieję, że pomoże to w realizacji ich własnych planów budowy pary wykrywaczy większych niż Einstein Telescope. Amerykański projekt nosi nazwę Cosmic Explorer. Myślę, że to dobry czas, by rozpocząć tego typu budowę, mówi David Reitze, dyrektor LIGO (Laser Interferometer Gravitational-Wave Observatory), obserwatorium, w którym wykryto pierwsze fale grawitacyjne. Wykrywacze fal grawitacyjnych rejestrują niewielkie zaburzenia przestrzeni wywoływane przez masywne obiekty, jak np. czarne dziury, które krążą wokół siebie i w końcu się łączą. Wykrywacze takie to olbrzymie urządzenia. Amerykański LIGO składa się z pary interferometrów znajdujących się w stanach Louisiana i Washington. Każdy z nich ma kształt litery L, a każde z ramion ma 4 kilometry długości. Porównując długość ramion z olbrzymią dokładnością, można stwierdzić, czy doszło do jej zmiany w wyniku przejścia fali grawitacyjnej. Z kolei europejski wykrywacz Virgo, który znajduje się we Włoszech, ma ramiona o długości 3 km. Naukowcy chcieliby jednak zbudować większe instrumenty. LIGO i Virgo, do których niedawno dołączył japoński KAGRA, są w stanie wykrywać połączenia czarnych dziur z odległości ponad 10 miliardów lat świetlnych. Gdyby jednak zbudować 10-krotnie bardziej czułe detektory, moglibyśmy rejestrować takie wydarzenia w całym obserwowalnym wszechświecie, na przestrzeni 45 miliardów lat świetlnych. Stąd też niezwykle ambitne plany. Amerykański Cosmic Explorer ma składać się z jednego lub więcej interferometrów w kształcie litery L, której ramiona mają mieć po 40 km długości. Z kolei projekt Einsten Telescope zakłada budowę 6 interferometrów w kształcie litery V, o ramionach długości 10 kilometrów każde. Mają być one ułożone na planie trójkąta równobocznego, z 2 interferometrami w każdym z rogów. Fizycy z USA i Europy chcą, by ich detektory powstały do połowy lat 30. XXI wieku. Umieszczenie Einstein Telescope na liście ESFRI to krok naprzód w realizacji europejskich planów. W ciągu najbliższych 3–4 lat pomysłodawcy Einstein Telescope powinni przedstawić bardziej szczegółowy plan i raport techniczny. Muszą też w tym czasie zdobywać poparcie dla swojego pomysłu zarówno ze strony polityków, jak i środowisk naukowych, angażując do współpracy kolejnych specjalistów. Obecnie projekt Einstein Telescope może liczyć na poparcie z Belgii, Włoch, Holandii, Polski i Hiszpanii. Einstein Telescope, jeśli zostanie zrealizowany, może przybrać kształt podobny do CERN-u. « powrót do artykułu
  4. Błędy, nawarstwiające się podczas analiz fal grawitacyjnych z różnych źródeł, mogą prowadzić do wyciągnięcia fałszywych wniosków, że ogólna teoria względności nie opisuje dobrze rzeczywistości, a prawdziwe są alternatywne teorie dotyczące grawitacji. Takie ostrzeżenie wystosowali brytyjscy naukowcy, którzy przeanalizowali sposób gromadzenia się tego typu błędów podczas analiz. Zarejestrowanie fal grawitacyjnych przez detektor LIGO było jednym z najważniejszych dowodów na prawdziwość ogólnej teorii względności. Jednak fizycy mają nadzieję, że w sygnałach fal grawitacyjnych znajdą też dowody na istnienie błędów w teorii względności. Jako, że teoria Einsteina jest niekompatybilna z mechaniką kwantową, naukowcy podejrzewają, iż nie opisuje ona całościowo interakcji grawitacyjnych. Dlatego też dokonują szczegółowych porównań właściwości fal grawitacyjnych z ogólną teorią względności, a każdą niezgodność interpretują jako możliwe luki w teorii. Christopher Moore i jego zespól z University of Birmingham podkreślają, że dotychczas wszystkie obserwacje fal grawitacyjnych były zgodne z założeniami Einsteina. Jednak w miarę, jak czułość amerykańskiego LIGO i europejskiego Virgo będzie rosła, a kolejne detektory również włączą się w badanie fal grawitacyjnych, będą dokonywane coraz bardziej szczegółowe analizy. Nie można więc wykluczyć, że autorzy tych analiz zauważą coś, co będą interpretowali jako potwierdzenie alternatywnych teorii. Moore i jego zespół przyjrzeli się możliwym błędom, które mogą wystąpić podczas analiz różnych wydarzeń generujących powstanie fal grawitacyjnych. Ku swojemu zdumieniu zauważyli, że gdy tworzone są katalogi sygnałów fal grawitacyjnych, drobne błędy nawarstwiają się szybciej, niż przypuszczano. Naukowcy wyjaśniają, że modelowanie fal grawitacyjnych to bardzo złożony proces. Wprowadza się więc pewne uproszczenia, by przeprowadzanie obliczeń było możliwe. Uproszczenia te polegają m.in. na ignorowaniu pewnych zjawisk fizycznych, np. pochodzących ze spinu czarnych dziur czy ekscentryczności ich orbit. A nawet wówczas, po rezygnacji z części danych, komputery mają problem z dokonaniem dokładnych obliczeń. Brytyjscy naukowcy stwierdzili, że tempo akumulacji błędów zależy od tego, w jaki sposób łączone są różne wydarzenia generujące fale grawitacyjne. Innymi słowy, wiele zależy od tego, jak do obliczeń dodawane są kolejne parametry. Z jednej strony mamy bowiem stałe parametry, jak np. masę hipotetycznego grawitonu, z drugiej zaś parametry zmienne, jak te dotyczące „włosów” czarnych dziur. Ponadto akumulacja błędów zależy też od tego, jak błędy w modelowaniu rozłożone są w całym katalogu, w którym gromadzone są poszczególne wpisy i w jakim stopniu prowadzą one do odchyleń, czy zawsze przesuwają odchylenia w obliczeniach w tym samym kierunku, czy też je uśredniają. Moore i koledzy zauważyli, że nawet gdy wykorzystywany model dobrze nadaje się do analizy konkretnego wydarzenia związanego z generowaniem fal grawitacyjnych, to przy wykorzystaniu go do analizy całego katalogu wydarzeń mogą pojawić się błędy, fałszywie wskazujące na prawdziwość teorii alternatywnych wobec ogólnej teorii względności. Inni specjaliści chwalą Brytyjczyków. Nicolás Yunes z University of Illinois Urbana-Chapaign mówi, że o problemie błędów wskazujących na nową fizykę wiadomo nie od dzisiaj, jednak praca ekspertów z Wielkiej Brytanii to doskonały punkt wyjścia do dalszych badań nad tym problemem i metodami jego przezwyciężenia. Katerina Chatzioannou z California Institute of Technology przyznaje, że obecnie wykorzystywane modele są wystarczająco dobre, by analizować dostępne dane z fal grawitacyjnych, jednak nie wiadomo, czy sprawdzą się one w przyszłości. W miarę, jak coraz więcej dowiadujemy się o falach grawitacyjnych i ich właściwościach, powinniśmy być w stanie korygować błędy, o których jest mowa w badaniach, dodaje Emanuele Berti z Uniwersytetu Johnsa Hopkinsa. « powrót do artykułu
  5. Z badań przeprowadzonych przez szwajcarsko-duński zespół naukowy wynika, że pojazdy wysłane w przyszłej dekadzie w kierunku Urana i Neptuna mogą zostać wykorzystane do badania fal grawitacyjnych. Zdaniem naukowców, analiza sygnałów radiowych wysyłanych na Ziemię przez pojazdy znajdujące się w zewnętrznych obszarach Układu Słonecznego, pozwoli na analizowanie zaburzeń czasoprzestrzeni wywoływanych przez fale grawitacyjne. Autorzy najnowszych badań twierdzą, że fale grawitacyjne wywołają w falach radiowych efekt Dopplera. Gdy fala grawitacyjna przechodzi przez sygnał radiowy, może go nieco zakłócić powodując przesunięcie częstotliwości. Możemy wykryć te niewielkie zakłócenia i z nich wnioskować o przechodzącej fali grawitacyjnej, mówi główny autor badań Deniz Soyuer z Uniwersytetu w Zurichu. Pomysł Soyeura i jego zespołu nie jest oryginalny. Już wcześniej próbowano w ten sposób wykrywać w ten sposób fale grawitacyjne. Próbowała tego m.in. NASA, używając w tym celu sondy Horizon, znajdującej się obecnie w Pasie Kuipera. Dlaczego więc tym razem miałoby się udać? Naukowcy mówią, że chodzi o czas i cel misji. Proponowane misje na Urana i Neptuna mogą zostać wystrzelone około roku 2030. Minie wiele lat, zanim dotrą do celu. W tym czasie będzie wiele okazji, by wykorzystać je do badania fal grawitacyjnych. W ciągu roku będzie jedno, trwające 6 do 8 tygodni, idealne okienko czasowe, kiedy pozycja Ziemi, Słońca i pojazdu będzie odpowiednia do tego typu obserwacji. Zatem w ciągu 10-letniej podróży będziemy mieli 10 takich okienek badawczych, wyjaśnia Soyuer. Olbrzymią zaletą propozycji jest fakt, że sondy nie musiałyby zabierać ze sobą żadnego specjalnego sprzętu. Już teraz wszystkie misje są wyposażane w instrumenty badające efekt Dopplera, gdyż to właśnie dzięki nim możemy określać pozycję pojazdu w przestrzeni kosmicznej oraz dokonywać pomiarów oddziaływania grawitacyjnego planet. Podstawy proponowanych przez nas badań są bardzo proste, jednak same badania będą trudne, gdyż zmiany częstotliwości powodowane przez fale grawitacyjne są niezwykle małe dodaje Soyuer. Dodatkowym problemem będzie odfiltrowanie szumów z sygnału. A jednym z największych źródeł takiego szumu jest szum mechaniczny generowane przez anteny odbiorcze na Ziemi. Naukowcy wierzą jednak, że w najbliższym czasie dokonamy na tyle dużego postępu technicznego, że odfiltrowanie szumu i rejestrowanie niewielkich zmian częstotliwości sygnału radiowego będzie możliwe, co pozwoli nam wykorzystać pojazdy lecące w kierunku Neptuna i Urana do badania fal grawitacyjnych generowanych np. przez czarne dziury o masie gwiazdowej krążące wokół supermasywnych czarnych dziur. Jeśli takie badania udałoby się przeprowadzić, byłyby one świetnym uzupełnieniem naszej wiedzy. Obecnie wykrywamy fale grawitacyjne dzięki detektorom LIGO/Virgo. Kolejnym ważnym krokiem w kierunku badań fal grawitacyjnych ma być misja LISA (Laser Interferometer Space Antenna), czyli planowane przez ESA na rok 2034 umieszczenie w przestrzeni kosmicznej trzech pojazdów wykrywających fale grawitacyjne. « powrót do artykułu
  6. Przed 900 milionami lat doszło do zderzenia dwóch obiektów. Jednym z nich była czarna dziura, drugim zaś – niemal na pewno – gwiazda neutronowa. Przed tygodniem fale grawitacyjne wywołane tym wydarzeniem dotarły do Ziemi i zostały zarejestrowane przez amerykański wykrywacz LIGO oraz włoski Virgo. Jesteśmy przekonani, że właśnie wykryliśmy ślad czarnej dziury pożerającej gwiazdę neutronową, mówi Susan Scott, fizyk teoretyk z Australijskiego Universytetu Narodowego w Canberrze i główna badaczka w ARC Centre of Excellence for Gravitational Wave Discovery. Jeśli odkrycie się potwierdzi, to będziemy mieli sygnały wszystkich trzech kataklizmów kosmicznych, na których zarejestrowanie liczyli twórcy LIGO: zderzenie dwóch czarnych dziur, zderzenie dwóch gwiazd neutronowych oraz wchłonięcie gwiazdy neutronowej przez czarną dziurę. Już w kwietniu naukowcy sądzili, że zarejestrowali zderzenie czarnej dziury z gwiazdą neutronową. Odkrycia jednak nie ogłoszono, gdyż istniało zbyt duże prawdopodobieństwo, że zarejestrowany sygnał to zakłócenie pochodzenia ziemskiego. Teraz naukowcy są pewni, że sygnał pochodzi spoza Ziemi. Jego właściwości są wysoce zgodne z sygnałem łączenia się układu podwójnego, a ze wstępnej oceny mas obu obiektów wynika, że mamy do czynienia z czarną dziurą i gwiazdą neutronową, stwierdza Scott. Kompaktowe układy podwójne składają się najczęściej z par gwiazd neutronowych lub czarnych dziur. Twórcy LIGO przewidywali, że będą one źródłami najsilniejszych sygnałów wykrywanych przez detektor. Gdy np. dwie czarne dziury krążą wokół siebie i są znacznie oddalone, dochodzi do emisji słabych fal grawitacyjnych. Fale te zabierają energię z systemu, przez co krążące czarne dziury wchodzą na ciaśniejszą orbitę. Krążą coraz szybciej, a emitowane fale grawitacyjne mają coraz większą energię. W końcu, gdy zbliżą się na odpowiednią odległość, dochodzi do połączenia i utworzenia jednej czarnej dziury. To właśnie wtedy powstają najsilniejsze fale grawitacyjne. Krótko po połączeniu istnieje czarna dziura o mocno zaburzonym kształcie, co przejawia się emisją charakterystycznych fal grawitacyjnych. Obserwując napływające do nas fale grawitacyjne jesteśmy w stanie określić fazy łączenia się obiektów czy ich charakterystyki. Obecnie badacze na całym świecie sprawdzają obliczenia, by potwierdzić identyfikację obu obiektów. Naukowcy uważają, że większy z nich to czarna dziura, a mniejszy to gwiazda neutronowa. Istnieje jednak minimalne prawdopodobieństwo, że może to być bardzo lekka czarna dziura. Jeśli tak, byłaby to najlżejsza z dotychczas zaobserwowanych. Musimy bliżej przyjrzeć się sygnałom, by sprawdzić, czy możemy potwierdzić, że odpowiadają one zachowaniu się gwiazdy neutronowej opadającej na czarną dziurę, dodaje Scott. Jeśli się okaże, że LIGO zarejestrowało wszystkie trzy sygnały, których znalezienie było przyczyną wybudowania urządzenia, będzie to dopiero koniec początkowej fazy badań, mówi uczona. « powrót do artykułu
  7. Analiza danych z detektorów Advanced LIGO ujawniła cztery nowe źródła fal grawitacyjnych. Sygnał GW170729 jest związany z najbardziej masywnym i odległym źródłem jakie do tej pory zaobserwowano. Kolejny, GW170818, odkryty został dzięki globalnej sieci trzech detektorów LIGO-Virgo. Odpowiada on układowi podwójnemu znajdującemu się około 2,5 miliarda lat świetlnych od Ziemi. Podczas pierwszej kampanii obserwacyjnej (O1) trwającej od 12 września 2015 roku do 19 stycznia 2016 roku, przeprowadzonej przez wciąż udoskonalane detektory Advanced LIGO, wykryto fale grawitacyjne z trzech zjawisk łączenia się układów podwójnych czarnych dziur. Druga kampania obserwacyjna (O2) trwała od 30 listopada 2016 roku do 25 sierpnia 2017 roku, przy czym od 1 sierpnia 2017 roku dołączył do niej europejski interferometr Advanced Virgo. Na odbytym w sobotę 1 grudnia 2018 r. seminarium w College Park (Maryland, USA) przedstawione zostały cztery nowe przypadki detekcji fal grawitacyjnych: GW170729, GW170809, GW170818 i GW170823 (oznaczenia pochodzą od daty dokonania detekcji). Nowy sygnał GW170729, jeden z czterech nowo odkrytych, został zarejestrowany jako trzecie zdarzenie wykryte w kampanii O2, 29 lipca 2017 roku. Jest on związany z najbardziej masywnym i odległym źródłem fal grawitacyjnych, jakie do tej pory zaobserwowano. W zjawisku, które nastąpiło prawie 9 miliardów lat temu, energia niemal pięciu mas Słońca została przekształcona w promieniowanie grawitacyjne. Kolejnym nowym interesującym sygnałem jest GW170818, znaleziony dzięki globalnej sieci trzech detektorów LIGO-Virgo. Obserwacje prowadzone przy użyciu trzech detektorów położonych w różnych miejscach na Ziemi pozwalają na zlokalizowanie na niebie źródła sygnału. W szczególności, GW170818 odpowiadające układowi podwójnemu znajdującemu się około 2,5 miliarda lat świetlnych od Ziemi, zostało ustalone z dokładnością 39 stopni kwadratowych. Na liście wyników obserwacji kampanii O2 znajduje się także historycznie pierwsza obserwacja zderzenia się dwóch gwiazd neutronowych oraz siedem zjawisk łączenia się układów podwójnych czarnych dziur. Praca przedstawiające nowe sygnały jest dostępna na https://dcc.ligo.org/LIGO-P1800307/public. Obserwatoria udostępniły też katalog wszystkich wykrytych dotychczas sygnałów fal grawitacyjnych. Można go znaleźć pod adresem: https://www.gw-openscience.org/catalog/. LiGO i VIRGO są międzynarodowymi projektami badawczymi. LIGO jest finansowany przez NSF i obsługiwany przez Caltech i MIT, które zaprojektowały i zbudowały detektory. Lista dodatkowych członków projektu, obejmująca wiele prestiżowych instytututów I uniwersytetów jest dostępna na stronie http://ligo.org/partners.php. Konsorcjum Virgo składa się z ponad 300 fizyków i inżynierów należących do 28 różnych europejskich grup badawczych (listę członków współpracy Virgo można znaleźć na stronie http://public.virgo-gw.eu/the-virgo-collaboration/). W pracach projektów LIGO i Virgo bierze udział polski zespól Polgraw-Virgo kierowany przez prof. Andrzeja Królaka. W zespole znajduje się czterech pracowników NCBJ: prof. Andrzej Królak, dr Orest Dorosh, mgr Paritosh Verma i dr Adam Zadrożny. « powrót do artykułu
  8. Dwaj profesorowie z Izraela, Ehud Nakar i Tsvi Piran, opisują z najnowszym numerze Nature wyniki swoich symulacji dotyczących kolizji gwiazd neutronowych. Zdaniem uczonych, zderzenie takich gwiazd powoduje pojawienie się cząsteczek poruszających się z prędkością od 0,1 do 0,5 prędkości światła. Ponadto, co bardziej interesujące, podczas kolizji powinny powstać mierzalne fale grawitacyjne. Istnienie fal grawitacyjnych przewidział Einstein w swojej ogólnej teorii względności. Fale takie mają być wynikiem zaginania czasoprzestrzeni. Jednak dotychczas nie udało się potwierdzić ich istnienia. Problem w tym, że, podobnie jak fale na wodzie, zanikają one w miarę oddalania się od miejsca narodzin. Zanim więc dotrą do Ziemi mogą być na tyle słabe, że nasze instrumenty ich nie rejestrują. Ponadto mogą one istnieć przez krótki czas. Nakar i Piran dowodzą jednak, że fale grawitacyjne mogą wędrować w przestrzeni kosmicznej całymi miesiącami. Obecnie w USA i Holandii powstają, niezależnie, dwa teleskopy, których celem będzie poszukiwanie fal grawitacyjnych. Izraelscy uczeni mówią jednak, że już dysponują dowodem na potwierdzenie swojej teorii. Twierdzą, że odkryte przez Jeffreya Bowera nieregularne radioźródło RT 19870422 ma wszystkie właściwości źródła fal grawitacyjnych, na jakie wskazuje przeprowadzona symulacja. Niestety, znajduje się ono zbyt daleko, by zarejestrować same fale. Dlatego też, zdaniem Izraelczyków, poszukując w przyszłości fal grawitacyjnych, będziemy musieli szukać nieodległych systemów gwiazd neutronowych.
×
×
  • Create New...