Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'fale grawitacyjne'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Z badań przeprowadzonych przez szwajcarsko-duński zespół naukowy wynika, że pojazdy wysłane w przyszłej dekadzie w kierunku Urana i Neptuna mogą zostać wykorzystane do badania fal grawitacyjnych. Zdaniem naukowców, analiza sygnałów radiowych wysyłanych na Ziemię przez pojazdy znajdujące się w zewnętrznych obszarach Układu Słonecznego, pozwoli na analizowanie zaburzeń czasoprzestrzeni wywoływanych przez fale grawitacyjne. Autorzy najnowszych badań twierdzą, że fale grawitacyjne wywołają w falach radiowych efekt Dopplera. Gdy fala grawitacyjna przechodzi przez sygnał radiowy, może go nieco zakłócić powodując przesunięcie częstotliwości. Możemy wykryć te niewielkie zakłócenia i z nich wnioskować o przechodzącej fali grawitacyjnej, mówi główny autor badań Deniz Soyuer z Uniwersytetu w Zurichu. Pomysł Soyeura i jego zespołu nie jest oryginalny. Już wcześniej próbowano w ten sposób wykrywać w ten sposób fale grawitacyjne. Próbowała tego m.in. NASA, używając w tym celu sondy Horizon, znajdującej się obecnie w Pasie Kuipera. Dlaczego więc tym razem miałoby się udać? Naukowcy mówią, że chodzi o czas i cel misji. Proponowane misje na Urana i Neptuna mogą zostać wystrzelone około roku 2030. Minie wiele lat, zanim dotrą do celu. W tym czasie będzie wiele okazji, by wykorzystać je do badania fal grawitacyjnych. W ciągu roku będzie jedno, trwające 6 do 8 tygodni, idealne okienko czasowe, kiedy pozycja Ziemi, Słońca i pojazdu będzie odpowiednia do tego typu obserwacji. Zatem w ciągu 10-letniej podróży będziemy mieli 10 takich okienek badawczych, wyjaśnia Soyuer. Olbrzymią zaletą propozycji jest fakt, że sondy nie musiałyby zabierać ze sobą żadnego specjalnego sprzętu. Już teraz wszystkie misje są wyposażane w instrumenty badające efekt Dopplera, gdyż to właśnie dzięki nim możemy określać pozycję pojazdu w przestrzeni kosmicznej oraz dokonywać pomiarów oddziaływania grawitacyjnego planet. Podstawy proponowanych przez nas badań są bardzo proste, jednak same badania będą trudne, gdyż zmiany częstotliwości powodowane przez fale grawitacyjne są niezwykle małe dodaje Soyuer. Dodatkowym problemem będzie odfiltrowanie szumów z sygnału. A jednym z największych źródeł takiego szumu jest szum mechaniczny generowane przez anteny odbiorcze na Ziemi. Naukowcy wierzą jednak, że w najbliższym czasie dokonamy na tyle dużego postępu technicznego, że odfiltrowanie szumu i rejestrowanie niewielkich zmian częstotliwości sygnału radiowego będzie możliwe, co pozwoli nam wykorzystać pojazdy lecące w kierunku Neptuna i Urana do badania fal grawitacyjnych generowanych np. przez czarne dziury o masie gwiazdowej krążące wokół supermasywnych czarnych dziur. Jeśli takie badania udałoby się przeprowadzić, byłyby one świetnym uzupełnieniem naszej wiedzy. Obecnie wykrywamy fale grawitacyjne dzięki detektorom LIGO/Virgo. Kolejnym ważnym krokiem w kierunku badań fal grawitacyjnych ma być misja LISA (Laser Interferometer Space Antenna), czyli planowane przez ESA na rok 2034 umieszczenie w przestrzeni kosmicznej trzech pojazdów wykrywających fale grawitacyjne. « powrót do artykułu
  2. Przed 900 milionami lat doszło do zderzenia dwóch obiektów. Jednym z nich była czarna dziura, drugim zaś – niemal na pewno – gwiazda neutronowa. Przed tygodniem fale grawitacyjne wywołane tym wydarzeniem dotarły do Ziemi i zostały zarejestrowane przez amerykański wykrywacz LIGO oraz włoski Virgo. Jesteśmy przekonani, że właśnie wykryliśmy ślad czarnej dziury pożerającej gwiazdę neutronową, mówi Susan Scott, fizyk teoretyk z Australijskiego Universytetu Narodowego w Canberrze i główna badaczka w ARC Centre of Excellence for Gravitational Wave Discovery. Jeśli odkrycie się potwierdzi, to będziemy mieli sygnały wszystkich trzech kataklizmów kosmicznych, na których zarejestrowanie liczyli twórcy LIGO: zderzenie dwóch czarnych dziur, zderzenie dwóch gwiazd neutronowych oraz wchłonięcie gwiazdy neutronowej przez czarną dziurę. Już w kwietniu naukowcy sądzili, że zarejestrowali zderzenie czarnej dziury z gwiazdą neutronową. Odkrycia jednak nie ogłoszono, gdyż istniało zbyt duże prawdopodobieństwo, że zarejestrowany sygnał to zakłócenie pochodzenia ziemskiego. Teraz naukowcy są pewni, że sygnał pochodzi spoza Ziemi. Jego właściwości są wysoce zgodne z sygnałem łączenia się układu podwójnego, a ze wstępnej oceny mas obu obiektów wynika, że mamy do czynienia z czarną dziurą i gwiazdą neutronową, stwierdza Scott. Kompaktowe układy podwójne składają się najczęściej z par gwiazd neutronowych lub czarnych dziur. Twórcy LIGO przewidywali, że będą one źródłami najsilniejszych sygnałów wykrywanych przez detektor. Gdy np. dwie czarne dziury krążą wokół siebie i są znacznie oddalone, dochodzi do emisji słabych fal grawitacyjnych. Fale te zabierają energię z systemu, przez co krążące czarne dziury wchodzą na ciaśniejszą orbitę. Krążą coraz szybciej, a emitowane fale grawitacyjne mają coraz większą energię. W końcu, gdy zbliżą się na odpowiednią odległość, dochodzi do połączenia i utworzenia jednej czarnej dziury. To właśnie wtedy powstają najsilniejsze fale grawitacyjne. Krótko po połączeniu istnieje czarna dziura o mocno zaburzonym kształcie, co przejawia się emisją charakterystycznych fal grawitacyjnych. Obserwując napływające do nas fale grawitacyjne jesteśmy w stanie określić fazy łączenia się obiektów czy ich charakterystyki. Obecnie badacze na całym świecie sprawdzają obliczenia, by potwierdzić identyfikację obu obiektów. Naukowcy uważają, że większy z nich to czarna dziura, a mniejszy to gwiazda neutronowa. Istnieje jednak minimalne prawdopodobieństwo, że może to być bardzo lekka czarna dziura. Jeśli tak, byłaby to najlżejsza z dotychczas zaobserwowanych. Musimy bliżej przyjrzeć się sygnałom, by sprawdzić, czy możemy potwierdzić, że odpowiadają one zachowaniu się gwiazdy neutronowej opadającej na czarną dziurę, dodaje Scott. Jeśli się okaże, że LIGO zarejestrowało wszystkie trzy sygnały, których znalezienie było przyczyną wybudowania urządzenia, będzie to dopiero koniec początkowej fazy badań, mówi uczona. « powrót do artykułu
  3. Analiza danych z detektorów Advanced LIGO ujawniła cztery nowe źródła fal grawitacyjnych. Sygnał GW170729 jest związany z najbardziej masywnym i odległym źródłem jakie do tej pory zaobserwowano. Kolejny, GW170818, odkryty został dzięki globalnej sieci trzech detektorów LIGO-Virgo. Odpowiada on układowi podwójnemu znajdującemu się około 2,5 miliarda lat świetlnych od Ziemi. Podczas pierwszej kampanii obserwacyjnej (O1) trwającej od 12 września 2015 roku do 19 stycznia 2016 roku, przeprowadzonej przez wciąż udoskonalane detektory Advanced LIGO, wykryto fale grawitacyjne z trzech zjawisk łączenia się układów podwójnych czarnych dziur. Druga kampania obserwacyjna (O2) trwała od 30 listopada 2016 roku do 25 sierpnia 2017 roku, przy czym od 1 sierpnia 2017 roku dołączył do niej europejski interferometr Advanced Virgo. Na odbytym w sobotę 1 grudnia 2018 r. seminarium w College Park (Maryland, USA) przedstawione zostały cztery nowe przypadki detekcji fal grawitacyjnych: GW170729, GW170809, GW170818 i GW170823 (oznaczenia pochodzą od daty dokonania detekcji). Nowy sygnał GW170729, jeden z czterech nowo odkrytych, został zarejestrowany jako trzecie zdarzenie wykryte w kampanii O2, 29 lipca 2017 roku. Jest on związany z najbardziej masywnym i odległym źródłem fal grawitacyjnych, jakie do tej pory zaobserwowano. W zjawisku, które nastąpiło prawie 9 miliardów lat temu, energia niemal pięciu mas Słońca została przekształcona w promieniowanie grawitacyjne. Kolejnym nowym interesującym sygnałem jest GW170818, znaleziony dzięki globalnej sieci trzech detektorów LIGO-Virgo. Obserwacje prowadzone przy użyciu trzech detektorów położonych w różnych miejscach na Ziemi pozwalają na zlokalizowanie na niebie źródła sygnału. W szczególności, GW170818 odpowiadające układowi podwójnemu znajdującemu się około 2,5 miliarda lat świetlnych od Ziemi, zostało ustalone z dokładnością 39 stopni kwadratowych. Na liście wyników obserwacji kampanii O2 znajduje się także historycznie pierwsza obserwacja zderzenia się dwóch gwiazd neutronowych oraz siedem zjawisk łączenia się układów podwójnych czarnych dziur. Praca przedstawiające nowe sygnały jest dostępna na https://dcc.ligo.org/LIGO-P1800307/public. Obserwatoria udostępniły też katalog wszystkich wykrytych dotychczas sygnałów fal grawitacyjnych. Można go znaleźć pod adresem: https://www.gw-openscience.org/catalog/. LiGO i VIRGO są międzynarodowymi projektami badawczymi. LIGO jest finansowany przez NSF i obsługiwany przez Caltech i MIT, które zaprojektowały i zbudowały detektory. Lista dodatkowych członków projektu, obejmująca wiele prestiżowych instytututów I uniwersytetów jest dostępna na stronie http://ligo.org/partners.php. Konsorcjum Virgo składa się z ponad 300 fizyków i inżynierów należących do 28 różnych europejskich grup badawczych (listę członków współpracy Virgo można znaleźć na stronie http://public.virgo-gw.eu/the-virgo-collaboration/). W pracach projektów LIGO i Virgo bierze udział polski zespól Polgraw-Virgo kierowany przez prof. Andrzeja Królaka. W zespole znajduje się czterech pracowników NCBJ: prof. Andrzej Królak, dr Orest Dorosh, mgr Paritosh Verma i dr Adam Zadrożny. « powrót do artykułu
  4. Dwaj profesorowie z Izraela, Ehud Nakar i Tsvi Piran, opisują z najnowszym numerze Nature wyniki swoich symulacji dotyczących kolizji gwiazd neutronowych. Zdaniem uczonych, zderzenie takich gwiazd powoduje pojawienie się cząsteczek poruszających się z prędkością od 0,1 do 0,5 prędkości światła. Ponadto, co bardziej interesujące, podczas kolizji powinny powstać mierzalne fale grawitacyjne. Istnienie fal grawitacyjnych przewidział Einstein w swojej ogólnej teorii względności. Fale takie mają być wynikiem zaginania czasoprzestrzeni. Jednak dotychczas nie udało się potwierdzić ich istnienia. Problem w tym, że, podobnie jak fale na wodzie, zanikają one w miarę oddalania się od miejsca narodzin. Zanim więc dotrą do Ziemi mogą być na tyle słabe, że nasze instrumenty ich nie rejestrują. Ponadto mogą one istnieć przez krótki czas. Nakar i Piran dowodzą jednak, że fale grawitacyjne mogą wędrować w przestrzeni kosmicznej całymi miesiącami. Obecnie w USA i Holandii powstają, niezależnie, dwa teleskopy, których celem będzie poszukiwanie fal grawitacyjnych. Izraelscy uczeni mówią jednak, że już dysponują dowodem na potwierdzenie swojej teorii. Twierdzą, że odkryte przez Jeffreya Bowera nieregularne radioźródło RT 19870422 ma wszystkie właściwości źródła fal grawitacyjnych, na jakie wskazuje przeprowadzona symulacja. Niestety, znajduje się ono zbyt daleko, by zarejestrować same fale. Dlatego też, zdaniem Izraelczyków, poszukując w przyszłości fal grawitacyjnych, będziemy musieli szukać nieodległych systemów gwiazd neutronowych.
×
×
  • Create New...