Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' grawitacja' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 9 wyników

  1. Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone. Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki. Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem. Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA. « powrót do artykułu
  2. Inżynierowie z California Institute of Technology (Caltech) odkryli, że Leonardo da Vinci rozumiał i badał grawitację. Zajmował się więc tym przedmiotem na setki lat przed Newtonem. W artykule opublikowanym na łamach pisma Leonardo naukowcy przeanalizowali jeden z dzienników da Vinciego i wykazali, że słynny uczony zaprojektował eksperymenty dowodzące, że grawitacja jest formą przyspieszenia o określił stałą grawitacji z 97-procentową dokładnością. Żyjący na przełomie średniowiecza i renesansu uczony wyprzedzał swoją epokę w wielu dziedzinach. Także, jak się okazuje, z dziedzinie badań nad grawitacją. Sto lat później grawitacją zajmował się Galileusz, a prawo powszechnego ciążenia zostało sformułowane przez Newtona w 170 lat po śmierci Leonardo. Tym, co przede wszystkim ograniczało badania słynnego Włocha był brak odpowiednich narzędzi. Nie był np. w stanie dokładnie mierzyć czasu, w jakim ciało spada na ziemię. W 2017 roku profesor Mory Gharib omawiał ze studentami techniki wizualizacji przepływu cieczy wykorzystywane przez da Vinciego. W zdigitalizowanym i właśnie udostępnionym przez British Library Codex Arundel zauważył serię rysunków przedstawiających trójkąty tworzone przez podobne do ziaren piasku obiekty wysypujące się z dzbana. Moją uwagę zwrócił napis „Equatione di Moti” przy jednym z trójkątów równoramiennych. Zacząłem się zastanawiać, co Leonardo miał na myśli, wspomina uczony. Gharib poprosił o pomoc Chrisa Roha z Caltechu i Flavio Nocę z Uniwersytetu Nauk Stosowanych i Sztuki Zachodniej Szwajcarii (HES-SO). Wspólnie zasiedli do analizy diagramów. Okazało się, że da Vinci opisał eksperyment, w którym dzban na wodę jest przesuwany w linii prostej równolegle do gruntu i wylatuje z niego albo woda albo piasek. Z notatek wynika, że włoski uczony zdawał sobie sprawę, iż wylatujący materiał nie spada ze stałą prędkością, ale przyspiesza oraz z tego, że gdy wyleci z dzbana, a zatem ten nie ma nań już wpływu, przestaje przyspieszać w kierunku horyzontalnym, a przyspiesza wyłącznie wertykalnie. Jeśli dzban przesuwa się ze stałą prędkością, linia tworzona przez wypadający materiał jest pozioma i nie tworzy się trójkąt. Gdy zaś przyspiesza ze stałą prędkością, linia opadającego materiału jest prosta, ale odchylona, tworząc trójkąt. W kluczowym diagramie da Vinci zauważa, że jeśli przyspieszenie dzbana jest równe przyspieszeniu opadającego materiału, tworzy się trójkąt równoramienny. To właśnie tam da Vinci napisał „Equatione di Moti” czyli „wyrównywanie ruchów”. Da Vinci próbował opisać to przyspieszenie za pomocą matematyki. Naukowcy użyli modelowania komputerowego do sprawdzenia obliczeń wielkie uczonego i znaleźli błąd. Leonardo zmierzył się z tą kwestią i wyliczył, że droga spadającego obiektu była proporcjonalna do 2 do potęgi t (gdzie t reprezentuje czas), a powinna być proporcjonalna do t2, mówi Roh. To błąd, ale później zauważyliśmy, że swój błędny wzór wykorzystywał w prawidłowy sposób. "Nie wiemy, czy da Vinci prowadził kolejne eksperymenty, by dokładniej zbadać tę kwestię. Ale sam fakt, że zajmował się tym na początku XVI wieku pokazuje, jak bardzo w przyszłość wybiegał jego sposób myślenia, stwierdza Gharib. « powrót do artykułu
  3. W CERN zakończono najbardziej precyzyjne w historii eksperymenty, których celem było sprawdzenie czy materia i antymateria reagują tak samo na oddziaływanie grawitacji. Trwające 1,5 roku badania z wykorzystaniem protonów i antyprotonów przeprowadzili specjaliści z eksperymentu BASE (Baryon Antibaryon Symmetry Experiment). Naukowcy zmierzyli stosunek ładunku do masy protonu i antyprotonu z dokładnością 16 części na bilion. To najbardziej precyzyjny ze wszystkich testów symetrii materii i antymaterii przeprowadzony na cząstkach złożonych z trzech kwarków, zwanych barionami, i ich antycząstkach, mówi Stefan Ulmer, rzecznik prasowy BASE. Zgodnie z Modelem Standardowym cząstki i antycząstki mogą się od siebie różnić, jednak większość właściwości, szczególnie ich masa, powinno być identycznych. Znalezienie różnicy masy pomiędzy protonami a antyprotonami lub też różnicy w ich stosunku ładunku do masy, oznaczałoby złamanie podstawowej symetrii Modelu Standardowego, symetrii CPT. Byłby to również dowód na znalezienie fizyki wykraczającej poza opisaną Modelem Standardowym. Istnienie takiej różnicy mogłoby doprowadzić do wyjaśnienia, dlaczego wszechświat składa się głównie z materii, mimo że podczas Wielkiego Wybuchu powinny powstać takie same ilości materii i antymaterii. Różnice pomiędzy cząstkami materii i antymaterii zgodne z Modelem Standardowym, są o rzędy wielkości zbyt małe, by wyjaśnić obserwowaną nierównowagę. Naukowcy z BASE wykorzystali podczas swoich pomiarów antyprotony i jony wodoru, które służyły jako ujemnie naładowane przybliżenia protonów. Umieszczono je w tzw. pułapce Penninga. Badania prowadzono pomiędzy grudniem 2017 roku a majem 2019. Później przystąpiono do opracowywania wyników, a po zakończeniu prac w najnowszym numerze Nature poinformowano o rezultatach. Po uwzględnieniu różnic pomiędzy jonami wodoru a protonami okazało się, że stosunek ładunku do masy protonu jest z dokładnością do 16 części na miliard identyczny ze stosunkiem ładunku do masy antyprotonu. To czterokrotnie bardziej dokładne obliczenia niż wszystko, co udało się wcześniej uzyskać, mówi Stefan Ulmer. Aby dokonać tak precyzyjnych pomiarów musieliśmy najpierw znacznie udoskonalić nasze narzędzia. Badania przeprowadziliśmy w czasie, gdy urządzenia wytwarzające antymaterię były nieczynne. Wykorzystaliśmy więc magazyn antyprotonów, w którym mogą być one przechowywane przez lata, dodaje. Prowadzenie eksperymentów w pułapce Penninga w czasie, gdy urządzenia wytwarzające antymaterię nie działają, pozwala na uzyskanie idealnych warunków, gdyż nie występują zakłócające badania pola magnetyczne generowane przez „fabrykę antymaterii”. Naukowcy z BASE nie ograniczyli się tylko do niespotykanie precyzyjnego porównania protonów i antyprotonów. Przeprowadzili też testy słabej zasady równoważności. Wynika ona z teorii względności i głosi, że zachowanie wszystkich obiektów w polu grawitacyjnym jest niezależne od ich właściwości, w tym masy. Oznacza to, że jeśli pominiemy inne siły – jak np. siłę tarcia – reakcja wszystkich obiektów na oddziaływanie grawitacji jest taka sama. Przykładem może być tutaj piórko i młotek, które w próżni powinny opadać z tym samym przyspieszeniem. Orbita Ziemi wokół Słońca ma kształt elipsy, co oznacza, że obiekty uwięzione w pułapce Penninga będą odczuwały niewielkie zmiany oddziaływania grawitacyjnego. Okazało się, że zarówno proton i antyproton identycznie reagują na te zmiany. Uczeni z BASE potwierdzili, że słaba zasada równoważności odnosi się zarówno do materii jak i antymaterii z dokładnością około 3 części na 100. Ulmer podkreśla, że uzyskana w tym eksperymencie precyzja jest podobna do założeń eksperymentu, w ramach których CERN chce badać antywodór podczas spadku swobodnego w polu grawitacyjnym Ziemi. BASE nie prowadziło eksperymentu ze swobodnym spadkiem antymaterii w polu grawitacyjnym Ziemi, ale nasze pomiary wpływu grawitacji na antymaterię barionową są co do założeń bardzo podobne do planowanego eksperymentu. To wskazuje, że w dopuszczonym zakresie niepewności nie znaleźliśmy żadnych anomalii w interakcjach pomiędzy antymaterią a grawitacją. « powrót do artykułu
  4. Od dawna wśród astronomów i fizyków trwa spór, czy tajemnicza ciemna materia faktycznie istnieje we Wszechświecie - czy może są to jakieś odstępstwa od tego, jak rozumiemy grawitację. Naukowcy analizujący przegląd nieba KiDS, a wśród nich polski astronom Maciej Bilicki z Centrum Fizyki Teoretycznej PAN w Warszawie, sprawdzali to, wykorzystując obserwacje tysięcy galaktyk. Ciemna materia to składnik Wszechświata, którego nie obserwujemy bezpośrednio. O jej istnieniu wnioskujemy na podstawie oddziaływań grawitacyjnych ze zwykłą (świecącą) materią. Obecność ciemnej materii została zaproponowana dla wytłumaczenia obserwowanej rotacji galaktyk oraz ruchów galaktyk w gromadach – widzialnej materii jest zbyt mało, aby można było wytłumaczyć zachodzące w tych przypadkach efekty. Modele wskazują, że ciemnej materii jest kilkakrotnie więcej, niż materii zwykłej. W nowych badaniach, które przeprowadził zespół naukowców pod kierunkiem Margot Brouwer (Uniwersytet w Groningen i Uniwersytet Amsterdamski), postanowiono sprawdzić zarówno hipotezę ciemnej materii, jak i różne teorie grawitacji. Badacze wykorzystali dane z przeglądu nieba Kilo-Degree Survey (KiDS), wykonanego przy pomocy VLT Survey Telescope (VST), należącego do Europejskiego Obserwatorium Południowego (ESO). Mierzyli tzw. słabe soczewkowanie grawitacyjne, czyli niewielkie ugięcie światła galaktyk spowodowane przez grawitację innych galaktyk położonych bliżej nas. Do analiz wybrano galaktyki z obszaru nieba o powierzchni 1000 stopni kwadratowych (2,5 procent sfery niebieskiej), badając rozkład grawitacji dla około miliona galaktyk. Dane na temat analizowanych galaktyk pochodziły z katalogu opublikowanego niezależnie przez międzynarodową grupę, którą kierował dr hab. Maciej Bilicki. Dla prawie 260 tysięcy galaktyk udało się zmierzyć tzw. relację przyspieszenia radialnego (ang. Radial Acceleration Relation, w skrócie RAR). Opisuje ona związek pomiędzy spodziewaną, a obserwowaną grawitacją (obserwowaną na podstawie widocznej materii), z czego można wysnuć wnioski ile jest nadmiarowej grawitacji. Do tej pory ta nadmiarowa grawitacja była wyznaczana w zewnętrznych regionach galaktyk jedynie poprzez obserwację ruchu gwiazd oraz zimnego gazu. Wykorzystując efekt soczewkowania grawitacyjnego badacze byli teraz w stanie wyznaczyć RAR w rejonach o stukrotnie słabszej sile grawitacji niż dotąd, sięgając w rejony znajdujące się daleko poza centrami galaktyk. Sprawdzili cztery różne modele teoretyczne – dwa zakładające istnienie ciemnej materii i dwa ze zmodyfikowanym prawem grawitacji (tzw. „zmodyfikowana dynamika newtonowska”, w skrócie MOND od angielskiego określenia „Modified Newtonian Dynamics”). Okazało się, że najlepiej do wyników pasuje symulacja o nazwie MICE (jedna z uwzględniających ciemną materię), ale pozostałe warianty również pozostają w grze. W dalszym toku badań podzielono galaktyki z badanej próbki na młode (niebieskie galaktyki spiralne) i stare (czerwone galaktyki eliptyczne). Powstają one w różny sposób, a względna ilość zwykłej i ciemnej materii w różnych typach galaktyk może się zmieniać. Z kolei z alternatywnych teorie grawitacji wynika, że zależność ta powinna być stała. Dało to szansę na dalszą weryfikację poszczególnych modeli. W teoriach zmodyfikowanej grawitacji, takich jak MOND, ta relacja powinna być zawsze taka sama, niezależnie od typu galaktyki, gdyż jedynym znaczącym parametrem (determinującym RAR) jest w tych modelach łączna masa całej zwykłej materii (świecącej) – czyli gwiazd i gazu. Natomiast w standardowym modelu kosmologicznym galaktyki czerwone mają stosunkowo więcej ciemnej materii niż niebieskie, przy tej samej łącznej masie zwykłej materii – czyli stosunek ilości ciemnej materii do materii świecącej jest większy dla galaktyk czerwonych niż dla niebieskich, tłumaczy Bilicki. Nasze badania pokazują, że relacja RAR jest inna dla galaktyk czerwonych niż dla niebieskich. To wyjaśniałoby różnice w mierzonej relacji RAR i wykluczałoby teorie takie jak MOND czy grawitacja entropiczna, dodaje polski astronom. Naukowiec mówi, że potrzebne są jednak dalsze obserwacje, bowiem może zachodzić także sytuacja, że galaktyki czerwone mają w rzeczywistości znacznie więcej zwykłej materii niż nam się wydaje, jeśli są otoczone ogromnymi obłokami rzadkiego, gorącego gazu (w przeciwieństwie do niebieskich, które tego gorącego gazu miałyby znacznie mniej). Taki wariant nie wykluczałby przynajmniej niektórych alternatywnych teorii grawitacji. « powrót do artykułu
  5. Naukowcy pracujący przy eksperymencie ALPHA prowadzonym w CERN-ie są pierwszymi, którym udało się schłodzić antymaterię za pomocą lasera. Osiągnięcie otwiera drogę do lepszego poznania wewnętrznej struktury antywodoru i zbadania, w jaki sposób zachowuje się on pod wpływem grawitacji. Antywodór to najprostsza forma atomowej antymaterii. Teraz, gdy mamy możliwość ich chłodzenia, naukowcy będą mogli przeprowadzić porównania atomów antywodoru z atomami wodoru, dzięki czemu poznamy różnice pomiędzy atomami antymaterii i materii. Znalezienie takich ewentualnych różnic pozwoli na lepsze zrozumienie, dlaczego wszechświat jest stworzony z materii. To zupełnie zmienia reguły gry odnośnie badań spektroskopowych i grawitacyjnych i może rzucić nawet światło na badania nad antymaterią, takie jak tworzenie molekuł antymaterii i rozwój interferometrii antyatomowej, mówi rzecznik prasowy eksperymentu ALPHA, Jeffrey Hangst. Jeszcze przed dekadą laserowe chłodzenie antymaterii należało do dziedziny science-fiction. W eksperymencie ALPHA atomy antywodoru powstają dzięki antyprotonom uzyskiwanym w Antiproton Decelerator. Są one łączone z pozytonami, których źródłem jest sód-22. Zwykle tak uzyskane atomy antywodoru są więzione w pułapce magnetycznej, co zapobiega ich kontaktowi z materią i anihilacji. W pułapce tej najczęściej prowadzone są badania spektroskopowe, podczas których mierzona jest reakcja antyatomów na wpływ fali elektromagnetycznej – światła laserowego lub mikrofal. Jednak precyzja takich pomiarów jest ograniczona przez energię kinetyczną, czyli temperaturę, antyatomów. Tutaj właśnie pojawia się potrzeba schłodzenia. Technika laserowego chłodzenia atomów polega na oświetlaniu ich laserem o energii fotonów nieco mniejszej niż energia przejść między poziomami energetycznymi dla danego pierwiastka. Fotony są absorbowane przez atomy, które wchodzą na wyższy poziom energetyczny. A wchodzą dzięki temu, że deficyt energii fotonu potrzebny do przejścia pomiędzy poziomami uzupełniają z własnej energii kinetycznej. Następnie atomy emitują fotony o energii dokładnie dopasowanej do różnicy energii poziomów atomu i spontanicznie powracają do stanu pierwotnego. Jako, że energia emitowanego fotonu jest nieco wyższa od energii fotonu zaabsorbowanego, wielokrotnie powtarzany cykl absorpcji-emisji prowadzi do schłodzenia atomu. Podczas najnowszych eksperymentów naukowcy z ALPHA przez kilkanaście godzin chłodzili laserem chmurę atomów antywodoru. Po tym czasie stwierdzili, że średnia energia kinetyczna atomów obniżyła się ponad 10-krotnie. Wiele z atomów osiągnęło energię poniżej mikroelektronowolta, co odpowiada temperaturze około 0,012 kelwina. Następnie antywodór poddano badaniom spektroskopowym i stwierdzono, że dzięki schłodzeniu osiągnięto niemal 4-krotnie węższą linię spektralną niż przy badaniach prowadzonych bez chłodzenia laserowego. Przez wiele lat naukowcy mieli problemy z laserowym chłodzeniem wodoru, więc sama myśl o chłodzeniu antywodoru była szaleństwem. Teraz możemy marzyć o jeszcze większych szaleństwach z udziałem antymaterii, mówi Makoto Fujiwara, który zaproponował, by przeprowadzić powyższy eksperyment. « powrót do artykułu
  6. Jak wiemy z teorii kwantowej, cząstki mogą jednocześnie przyjmować dwa różne stany. To superpozycja. Podręczniki mówią, że akt obserwacji czy też pomiaru stanu cząstek, prowadzi do kolapsu funkcji falowej, czyli zniszczenia superpozycji, i cząstka zajmuje tylko jedną lokalizację. Fizycy spierają się, jak do tego dochodzi. Teraz jedno z najpowszechniej przyjętych wyjaśnień, które zakłada rolę grawitacji w kolapsie, otrzymało poważny cios w postaci badań przeprowadzonych w słynnym włoskim Laboratorium Narodowym Gran Sasso. Hipoteza o roli grawitacji bierze swoje początki w pracach dwóch węgierskich fizyków, Károlyházego Frigyesa w latach 60. i Lajosa Diósiego w latach 80. Podstawę ich teorii stanowi stwierdzenie, że pole grawitacyjne obiektu wykracza poza teorię kwantową. Gdy cząstka zostaje wprowadzona w superpozycję, jej pole grawitacyjne próbuje tego samego, lecz nie jest w stanie długo jej utrzymać. Dochodzi do kolapsu, który pociąga za sobą kolaps superpozycji cząstki. Wielkim zwolennikiem grawitacyjnego kolapsu – który rezygnuje z antropocentrycznej koncepcji obserwatora – jest wybitny matematyk Roger Penrose. Od dawna twierdzi on, że spontaniczne załamanie superpozycji, a więc lokalizacja cząstki, ma związek z geometrią czasoprzestrzeni, zatem z grawitacją. Stwierdził on wprost, że do załamania superpozycji dochodzi, gdy mamy do czynienia z sytuacjami, które w dostatecznym stopniu różnią się geometrią czasoprzestrzeni. Dotychczas jednak wydawało się, że nie jest możliwe przeprowadzenie badań dowodzących prawdziwości powyższej teorii. Sam Diosi, który jest jednym ze współautorów eksperymentu w Gran Sasso, mówi, że przez 30 lat był "krytykowany we własnym kraju za spekulacje na temat czegoś, czego nie można przetestować". Najnowsze osiągnięcia nauki umożliwiły jednak to, co do niedawna było niemożliwe. Naukowcy stwierdzili, że cząstka, która podlega kolapsowi, gwałtownie zmieni pozycję, co doprowadzi do ogrzania systemu, którego jest częścią. To tak, jakby dodatkowo ją popchnąć, mówi współautor badań Sandro Donadi. Jeśli taka cząstka ma ładunek, wyemituje ona foton. Jeśli zaś będziemy mieli całą grupę cząstek w superpozycji, dojdzie do zgodnej emisji. Grupa Diosiego, chcąc przetestować taką ideę, stworzyła detektor z dużego kryształu germanu, który miał wykrywać nadmiarową emisję promieniowania gamma oraz rentgenowskiego z jąder germanu. Kryształ został otoczony ołowianą osłoną, a eksperyment przeprowadzono w Gran Sasso, 1,4 kilometra pod powierzchnią ziemi, co miało osłonić całość od innych zakłóceń. W czasie 2 miesięcy badań detektor zarejestrował 576 fotonów. To niewiele więcej niż przewidywane dla tego eksperymentu 506 fotonów. Tymczasem model Penrose'a przewidywał, że pojawi się 70 000 takich fotonów. Powinniśmy zarejestrować kolapsy, ale ich nie odnotowaliśmy, zauważa biorąca udział w badaniach Cătălina Curceanu z Narodowego Instytutu Fizyki Jądrowej w Rzymie. To zaś wskazuje, że nie dochodzi do spontanicznego kolapsu pod wpływem samej tylko grawitacji. Jednak, jak zauważa Ivette Fuentes z University of Southampton, żeby potwierdzić uzyskane wyniki należy sztucznie stworzyć superpozycje, a nie polegać na naturalnie zachodzących procesach. Jej zespół pracuje obecnie nad stworzeniem superpozycji 100 milionów atomów sodu. Sam Penrose pochwalił eksperyment, jednak dodał, że nie jest on wystarczający do przetestowania prawdziwości jego modelu. Uczony zauważa, że nie jest zwolennikiem teorii o gwałtownej zmianie pozycji cząstki, gdyż może to powodować, że wszechświat zyskuje lub traci energię, co narusza podstawy fizyki. Penrose dodaje, że w czasie przerwy spowodowanej pandemią udoskonalał swój model. W jego wyniku nie powstaje ciepło czy promieniowanie, dodaje. Fizyk teoretyczny Maaneli Derakhshani z Rutgers University mówi, że nawet jeśli sama grawitacja powoduje kolaps, to cały proces jest bardziej złożony niż pierwotny model Penrose'a. Praca Underground test of gravity-related wave function collapse opublikowana została na łamach Nature Physics. « powrót do artykułu
  7. Resweratrol, polifenol występujący głównie w skórkach winogron, ale także w orzeszkach ziemnych czy owocach morwy i czarnej porzeczce, pomaga zachować masę i siłę mięśni szczurów wystawionych na oddziaływanie warunków grawitacyjnych przypominających Marsa. Mikrograwitacja osłabia mięśnie i kości. Po zaledwie 3 miesiącach w kosmosie ludzkie mięśnie płaszczkowate zmniejszają się o 1/3. Towarzyszy temu utrata włókien wolnokurczliwych, których potrzebujemy dla wytrzymałości - wyjaśnia dr Marie Mortreux z Harvardzkiej Szkoły Medycznej. By umożliwić astronautom bezpieczne odbywanie długich misji na Marsie, trzeba więc opracować strategie ograniczania negatywnego wpływu na mięśnie. Kluczowe będą strategie dietetyczne, zwłaszcza że astronauci podróżujący na Marsa nie będą mieli dostępu do maszyn do ćwiczeń takich jak na Międzynarodowej Stacji Kosmicznej. Świetnym kandydatem wydaje się resweratrol, który poddawano wielu badaniom pod kątem właściwości przeciwzapalnych, antyoksydacyjnych czy przeciwcukrzycowych. Ponieważ u szczurów wykazano, że w warunkach całkowitego odciążenia będącego analogiem mikrograwitacji podczas lotu kosmicznego resweratrol pomaga zachować masę kostną i mięśniową, podejrzewaliśmy, że umiarkowana codzienna dawka polifenolu sprawdzi się również przy zapobieganiu spadkowi kondycji mięśni w warunkach grawitacyjnych Marsa. Oddając warunki grawitacyjne Marsa, naukowcy zastosowali podejście opracowane przez dr Mary Bouxsein dla myszy. Szczury w uprzęży podwieszano na łańcuszku z sufitu klatki. Podczas eksperymentu 24 samce szczurów przez 14 dni wystawiano na oddziaływanie grawitacji ziemskiej lub stanowiącej odpowiednik grawitacji z Marsa (40% grawitacji ziemskiej). W każdej grupie połowa gryzoni dostawała wodę z resweratrolem w dawce 150 mg/kg masy ciała dziennie. Reszta piła zwykłą wodę. Poza tym wszystkie zwierzęta jadły tę samą karmę. Co tydzień mierzono obwód łydki oraz siłę chwytu przedniej i tylnej łapy. Po upływie 2 tygodni przeprowadzono badanie histologiczne mięśni łydki. Tak jak oczekiwano, symulacja warunków z Marsa doprowadziła do osłabienia siły uchwytu, zmniejszenia obwodu łydki, masy mięśniowej i zawartości włókien wolnokurczliwych. Okazało się jednak, że suplementacja polifenolem sprawiła, że siła chwytu łap była niemal taka sama, jak u niesuplementowanych zwierząt z warunków ziemskich. Co ważne, resweratrol w pełni ochronił masę mięśniową (mięsień płaszczkowaty i brzuchaty) szczurów z symulowanych warunków z Marsa, a zwłaszcza ograniczył utratę włókien wolnokurczliwych. Ochrona nie była jednak całkowita; doszło bowiem do pewnego spadku obwodu łydki (spadła średnia powierzchnia przekroju włókien obu wymienionych mięśni). Resweratrol nie wpłynął ani na spożycie pokarmów, ani na całkowitą wagę ciała. Mortreux podkreśla, że wcześniejsze badania nad resweratrolem mogą pomóc w wyjaśnieniu uzyskanych wyników. Ważnym czynnikiem jest tu zapewne insulinowrażliwość. U zwierząt odciążonych bądź z cukrzycą resweratrol sprzyja wzrostowi mięśni, zwiększając insulinowrażliwość i wychwyt glukozy we włóknach mięśniowych. Ma to spore znaczenie dla astronautów, u których podczas lotów dochodzi do spadku insulinowrażliwości. Amerykanka dodaje, że nie bez znaczenia są też właściwości przeciwutleniające resweratrolu. Konieczne są dalsze badania, które pomogą ocenić wchodzące w grę mechanizmy, a także wpływ różnych dawek resweratrolu (do 700 mg/kg masy ciała dziennie) na samce i samice. Dodatkowo trzeba będzie ocenić, czy resweratrol nie wchodzi w niekorzystne interakcje z lekami podawanymi astronautom w czasie misji. « powrót do artykułu
  8. W artykule, opublikowanym właśnie na łamach Physical Review Letters, grupa fizyków wysunęła hipotezę, że fale dźwiękowe... posiadają masę. To zaś by oznaczało, że mogą odczuwać bezpośredni wpływ grawitacji. Uczeni sugerują, że fonony w polu grawitacyjnym mogą posiadać masę. Można by się spodziewać, że zagadnienia z zakresu fizyki klasycznej, takie jak to, są od dawna rozstrzygnięte, mówi główny autor artykułu, Angelo Esposito z Columbia University. Wpadliśmy na to przypadkiem, dodaje. W ubiegłym roku Alberto Nicolis z Columbia University i Riccardo Penco z Carnegie Mellon University zasugerowali, że fonony mogą mieć masę w materii nadciekłej. Esposito i jego zespół twierdzą, że efekt ten można obserwować też w innych ośrodkach, w tym w zwykłych płynach, ciałach stałych oraz w powietrzu. Mimo, że masa niesiona przez fonon jest niewielka i wynosi około 10-24 grama, może być mierzalna. Jednak, jeśli próbujemy ją zmierzyć, okaże się że jest ona ujemna, zatem fonon będzie „spadał do góry”, czyli oddalał się od źródła grawitacji. Gdyby ich masa była dodatnia, opadałyby w dół. Jako, że jest ujemna, opadają w górę, mówi Riccardo Penco. Przestrzeń na jakiej „opadają” jest równie niewielka, co ich masa i zależy od medium, przez który fonon się przemieszcza. W wodzie, gdzie dźwięk przenosi się z prędkością 1,5 kilometra na sekundę, ujemna masa fononu powoduje, że odchylenie wynosi 1 stopień na sekundę. Taki odchylenie bardzo trudno zmierzyć. Nie jest to jednak niemożliwe. Zdaniem Esposito można by tego dokonać w ośrodku, w którym dźwięk przemieszcza się bardzo wolno. Wykonanie pomiaru powinno być możliwe np. w nadciekłym helu, gdzie prędkość dźwięku może spaść do kilkuset metrów na sekundę. Alternatywnym sposobem dla poszukiwania miniaturowych skutków przechodzenia fononu przez egzotyczne ośrodki może być szczegółowe badania bardzo intensywnych fal dźwiękowych. Z wyliczeń zespołu Esposito wynika, że trzęsienie ziemi o sile 9 stopni powinno uwolnić tyle energii, że zmiana przyspieszenia dźwięku w polu grawitacyjnym powinna być mierzalna za pomocą zegarów atomowych. Co prawda obecnie dostępna technologia nie jest wystarczająco czuła, by wykryć pole grawitacyjne fal sejsmicznych, ale w przyszłości powinno być to możliwe. Zanim nie przeczytałem tego artykułu, sądziłem, że fale dźwiękowe nie przenoszą masy, mówi Ira Rothstein z Carnegie Mellon University. To ważne badania, gdyż okazuje się, że w fizyce klasycznej, o której sądzimy, że ją rozumiemy, można znaleźć coś nowego. Wystarczy dokładnie się przyjrzeć, by znaleźć niezbadane obszary. Esposito nie wie, dlaczego dotychczas nikt nie wpadł na ten pomysł, co jego zespół. Może dlatego, że zajmujemy się fizyką wysokich energii, więc grawitacja to nasz chleb powszedni. To nie żadne teoretyczne czary-mary. Można było wpaść na to już przed wielu laty. « powrót do artykułu
  9. Naukowcy z Instytut Radioastronomii im. Maxa Plancka w Bonn zaproponowali nowy eksperyment, dzięki któremu mamy dowiedzieć się więcej na temat interakcji pomiędzy ciemną materią, a materią. Ich propozycja została opublikowana na łamach Physical Review Letters. Przed około 400 laty Galileusz stwierdził, że w polu grawitacyjnym ziemi wszystkie ciała doświadczają takiego samego spadku swobodnego. Niedawno przeprowadzony eksperyment z użyciem satelity potwierdził uniwersalność swobodnego spadku w polu grawitacyjnym Ziemi z dokładnością 1:100 bilionów. Takie eksperymenty pozwalają jednak przetestować tylko uniwersalność zasady swobodnego spadku w odniesieniu do materii. Tymczasem zwykła materia stanowi niewielką część materii wszechświat. Jako, że nie znamy natury ciemnej materii, nie wiemy w jaki sposób może ona oddziaływać z materią, jakie siły wchodzą tutaj w rachubę. Czy interakcja pomiędzy materią a ciemną materią odbywa się za pomocą czterech znanych rodzajów oddziaływań podstawowych (grawitacyjne, elektromagnetyczne, silne, słabe) czy też mamy tu do czynienia z hipotetycznym dodatkowym oddziaływaniem, nazwanym „piątą siłą”. Naukowcy z Bonn proponują zweryfikowanie istnienia „piątej siły” za pomocą gwiazdy neutronowej. Są dwa powody, dla których pulsar w układzie podwójnym pozwala na przeprowadzenie nowatorskich badań oddziaływania pomiędzy materią a ciemną materią. Po pierwsze, gwiazda neutronowa składa się z materii, której nie możemy odtworzyć w laboratorium. Jest ona wielokrotnie bardziej gęsta niż jądro atomowe, złożona niemal w całości z neutronów. Ponadto niezwykle silne pola grawitacyjne wewnątrz gwiazdy neutronowej, miliard razy silniejsze niż pole grawitacyjne Słońca, może znakomicie wzmacniać interakcje z ciemną materią, mówi Lijing Shao z Instytutu im. Maxa Plancka. Orbity pulsarów w układach podwójnych można precyzyjnie mierzyć. W niektórych przypadkach znamy orbitę takiej gwiazdy z dokładnością większą niż 30 metrów. Zespół naukowy z Bonn postanowił przetestować swój pomysł wykorzystując w tym celu pulsar PSR J1713+0740 oddalony od Ziemi o około 3800 lat świetlnych. To jeden z najbardziej stabilnych znanych nam pulsarów. Pojedynczy obrót wokół własnej osi zajmuje mu 4,6 milisekundy, a sam pulsar krąży wokół białego karła po niemal kołowej orbicie o okresie 68 dni. To dobry obiekt do badań, gdyż im większa orbita, tym bardziej ciemna materia powinna ją zakłócać. Jeśli swobody spadek w polu grawitacyjnym ciemnej materii jest inny niż w polu grawitacyjnym białego karła (materia), to z czasem powinno dochodzić do deformacji orbity pulsara. Przez ponad 20 lat precyzyjnych pomiarów prowadzonych za pomocą teleskopu Effelsber i innych radioteleskopów, wykazano, że nie dochodzi do zmian orbity. A to z dużym prawdopodobieństwem oznacza, że pulsar jest w ten sam sposób przyciągany do ciemnej materii co do materii, stwierdził Norbert Wex. Naukowcy uważają, że jeszcze lepsze badania można przeprowadzić w miejscach gdzie, jak się przypuszcza, występuje dużo ciemnej materii. "Idealnym miejscem jest centrum galaktyki, które obserwujemy w ramach projektu Black Hole Cam. Gdy uruchomiony zostanie teleskop Square Kilometre Array będziemy mogli przeprowadzić niezwykle precyzyjne testy", mówi Michael Kramer. « powrót do artykułu
×
×
  • Dodaj nową pozycję...