Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' CERN'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 7 results

  1. Podczas Konferencji nt. Fizyki Wysokich Energii Europejskiego Towarzystwa Fizycznego poinformowano o odkryciu w CERN-ie nowej egzotycznej cząstki oznaczonej Tcc+. To tetrakwark, hadron zawierający dwa kwarki i dwa antykwarki. Jest najdłużej żyjącą ze wszystkich egzotycznych cząstek i pierwszym tetrakwarkiem, składającym się z dwóch ciężkich kwarków i dwóch lekkich antykwarków. Kwarki to podstawowe cegiełki materii. Łączą się m.in. w bariony, takie jak proton i neutron, złożone z trzech kwarków cz w mezony, składające się z kwarka i antykwarka. W ostatnich latach informowaliśmy o odkryciu kolejnych egzotycznych cząstek, złożonych z czterech (tetra-) i pięciu (penta-) kwarków. Dotychczas poznaliśmy kilkanaście tetrakwarków, jednak ten najnowszy jest wyjątkowy. Składa się z dwóch kwarków powabnych oraz antykwarka górnego i dolnego. To pierwszy tetrakwark z dwoma kwarkami powabnymi, które nie zostały zrównoważone antykwarkami powabnymi. Fizycy mówią tutaj o „otwartym powabie”. W tym przypadku mamy więc do czynienia z „podwójnym otwartym powabem”. Cząstki zawierające kwark powabny i antykwark powabny niosą zaś „ukryty powab”. Tcc+ ma więcej wyjątkowych właściwości. Jest pierwszym tetrakwarkiem z dwoma ciężkimi kwarkami i dwoma lekkimi antykwarkami. Zgodnie z obowiązującymi teoriami, takie cząstki rozpadają się do mezonów, tworzonych przez ciężki kwark i lekki antykwark. Niektóre teorie mówią, że masa takiego tetrakwarka powinna być bardzo zbliżona do masy obu mezonów, w które tetrakwark się rozpada. Podobieństwo masy powoduje, że rozpad tego typu tetrakwarków jest dość trudny, skutkując ich dłuższym życiem. I rzeczywiście, badacze z LHCb zauważyli, że Tcc+ jest najdłużej istniejącym egzotycznym hadronem jaki znamy. Odkrycie to otwiera drogę do poszukiwań jeszcze cięższych cząstek tego typu, gdzie w miejscu jednego lub obu kwarków powabnych będzie znajdował się kwark niski. Z obliczeń wynika, że cząstka zawierająca dwa kwarki niskie byłaby szczególnie interesująca, gdyż jej masa powinna być mniejsza niż suma mas jakiejkolwiek pary mezonów B. To by oznaczała, że cząstka taka nie mogłaby się rozpaść za pośrednictwem oddziaływań silnych. Do jej rozpadu mogłoby dojść za pośrednictwem oddziaływań słabych, a to by oznaczało, że jej czas życia byłby o wiele rzędów wielkości dłuższy niż jakiegokolwiek znanego egzotycznego hadronu. Nowy tetrakwark to bardzo dobry obiekt do dalszych badań. Rozpada się w dość łatwe do wykrycia cząstki, emitując przy tym niewielką ilość energii, dzięki czemu możliwe będzie bardzo dokładne badanie Tcc+. Będzie on zatem stanowił dobry obiekt do testowania obowiązujących modeli teoretycznych. « powrót do artykułu
  2. Uczeni pracujący przy eksperymencie ATLAS w CERN donieśli o zaobserwowaniu pierwszego przypadku jednoczesnego powstania trzech masywnych bozonów W (produkcja WWW), które pojawiły się w wyniku zderzeń prowadzonych w Wielkim Zderzaczu Hadronów. Bozony W, jako nośniki oddziaływań elektrosłabych, odgrywają kluczową rolę w testowaniu Modelu Standardowego. Po raz pierwszy zostały odkryte przed 40 laty i od tamtej pory są przedmiotem badań fizyków. Naukowcy z ATLAS przeanalizowali dane zarejestrowane w latach 2015–2018 i oznajmili, że zauważyli produkcję WWW z poziomem ufności rzędu 8,2 sigma. To znacznie powyżej 5 sigma, gdy już można powiedzieć o odkryciu. Osiągnięcie tak dużej pewności nie było łatwe. Naukowcy przeanalizowali około 20 miliardów zderzeń, wśród których zauważyli kilkaset przypadków produkcji WWW. Bozon W może rozpadać się na wiele różnych sposobów. Specjaliści skupili się na czterech modelach rozpadu WWW, które dawały największe szanse na odkrycie poszukiwanego zjawiska, gdyż powodują najmniej szumów tła. W trzech z tych modeli dwa bozony W rozpadają się w elektrony lub miony o tym samym ładunku oraz neutrina a trzeci bozon W rozpada się do pary kwarków. W czwartym z modeli wszystkie bozony W rozpadają się w leptony (elektrony lub miony) i neutrino. Dzięki odkryciu specjaliści będą mogli poszukać teraz interakcji, które wykraczają poza obecne możliwości LHC. Szczególnie interesująca jest możliwość wykorzystania procesu produkcji WWW do badania zjawiska polegającego na wzajemnym rozpraszaniu się dwóch bozonów W. Więcej na temat najnowszego odkrycia w artykule Observation of WWW production in pp collisions at s√=13 TeV with the ATLAS detector [PDF]. « powrót do artykułu
  3. Naukowcy pracujący przy eksperymencie ALPHA prowadzonym w CERN-ie są pierwszymi, którym udało się schłodzić antymaterię za pomocą lasera. Osiągnięcie otwiera drogę do lepszego poznania wewnętrznej struktury antywodoru i zbadania, w jaki sposób zachowuje się on pod wpływem grawitacji. Antywodór to najprostsza forma atomowej antymaterii. Teraz, gdy mamy możliwość ich chłodzenia, naukowcy będą mogli przeprowadzić porównania atomów antywodoru z atomami wodoru, dzięki czemu poznamy różnice pomiędzy atomami antymaterii i materii. Znalezienie takich ewentualnych różnic pozwoli na lepsze zrozumienie, dlaczego wszechświat jest stworzony z materii. To zupełnie zmienia reguły gry odnośnie badań spektroskopowych i grawitacyjnych i może rzucić nawet światło na badania nad antymaterią, takie jak tworzenie molekuł antymaterii i rozwój interferometrii antyatomowej, mówi rzecznik prasowy eksperymentu ALPHA, Jeffrey Hangst. Jeszcze przed dekadą laserowe chłodzenie antymaterii należało do dziedziny science-fiction. W eksperymencie ALPHA atomy antywodoru powstają dzięki antyprotonom uzyskiwanym w Antiproton Decelerator. Są one łączone z pozytonami, których źródłem jest sód-22. Zwykle tak uzyskane atomy antywodoru są więzione w pułapce magnetycznej, co zapobiega ich kontaktowi z materią i anihilacji. W pułapce tej najczęściej prowadzone są badania spektroskopowe, podczas których mierzona jest reakcja antyatomów na wpływ fali elektromagnetycznej – światła laserowego lub mikrofal. Jednak precyzja takich pomiarów jest ograniczona przez energię kinetyczną, czyli temperaturę, antyatomów. Tutaj właśnie pojawia się potrzeba schłodzenia. Technika laserowego chłodzenia atomów polega na oświetlaniu ich laserem o energii fotonów nieco mniejszej niż energia przejść między poziomami energetycznymi dla danego pierwiastka. Fotony są absorbowane przez atomy, które wchodzą na wyższy poziom energetyczny. A wchodzą dzięki temu, że deficyt energii fotonu potrzebny do przejścia pomiędzy poziomami uzupełniają z własnej energii kinetycznej. Następnie atomy emitują fotony o energii dokładnie dopasowanej do różnicy energii poziomów atomu i spontanicznie powracają do stanu pierwotnego. Jako, że energia emitowanego fotonu jest nieco wyższa od energii fotonu zaabsorbowanego, wielokrotnie powtarzany cykl absorpcji-emisji prowadzi do schłodzenia atomu. Podczas najnowszych eksperymentów naukowcy z ALPHA przez kilkanaście godzin chłodzili laserem chmurę atomów antywodoru. Po tym czasie stwierdzili, że średnia energia kinetyczna atomów obniżyła się ponad 10-krotnie. Wiele z atomów osiągnęło energię poniżej mikroelektronowolta, co odpowiada temperaturze około 0,012 kelwina. Następnie antywodór poddano badaniom spektroskopowym i stwierdzono, że dzięki schłodzeniu osiągnięto niemal 4-krotnie węższą linię spektralną niż przy badaniach prowadzonych bez chłodzenia laserowego. Przez wiele lat naukowcy mieli problemy z laserowym chłodzeniem wodoru, więc sama myśl o chłodzeniu antywodoru była szaleństwem. Teraz możemy marzyć o jeszcze większych szaleństwach z udziałem antymaterii, mówi Makoto Fujiwara, który zaproponował, by przeprowadzić powyższy eksperyment. « powrót do artykułu
  4. Obowiązujący od ponad 70 lat powłokowy model jądra atomowego trzyma się dobrze. Jednak badania przeprowadzone właśnie w ramach eksperymentu ISOLDE w CERN są kolejnymi dającymi sprzeczne informacje odnośnie liczb magicznych. Z modelu powłokowego możemy wywnioskować, że te jądra, których powłoki są wypełnione, mają większą energię wiązania niż inne, są zatem stabilniejsza niż inne jądra. Liczby protonów i neutronów, dla których powłoki są wypełnione, nazywane są liczbami magicznymi. Obecnie uznane liczby magiczne zarówno dla protonów jak i neutronów to 2, 8, 20, 28, 50, 82 i 126. Jeśli mamy do czynienia z jądrem, dla którego i protony i neutrony występują w liczbie magicznej, mówimy o jądrze podwójnie magicznym. Jądrem podwójnie magicznym jest np. jądro tlenu, zawierające 8 protonów i 8 neutronów. Od mniej więcej dwóch dekad kolejne eksperymenty wskazują, że liczbą magiczną, przynajmniej dla neutronów, może być 32. W 2013 roku naukowcy z CERN badając izotopy wapnia bogate w neutrony zauważyli nagły spadek energii separacji neutronów poza liczbą N=32. Literami N i Z oznacza się, odpowiednio, liczbę neutronów i protonów w jądrze. Spadek taki wskazuje zaś, że 32 może być liczbą magiczna. Jeszcze wcześniej ci sami naukowcy podczas badania spektrum wzbudzenia wapnia-52 zaobserwowali wyższe niż spodziewane wzbudzenie przy wartościach Z=20 i N=32. Jako, że wiemy, iż 20 jest liczbą magiczną, sugerowałoby to istnienie w tym przypadku jądra podwójnie magicznego. Jakby tego było badania prowadzone w japońskim RIKEN wskazują na zmiany pobudzenia nie tylko jądra wapnia-52 (N=32), ale też wapnia-54 (N=34). Z drugiej jednak strony badania promieni kwadratowych jąder potasu-51 i wapnia-52, dla których N=32 nie wykazało żadnych oznak, że mamy do czynienia z jądrami magicznymi. Naukowcy z ISOLDE badali teraz bardzo egzotyczne jądro potasu-52 (N=33). Poszukiwali w nim nagłego relatywnego wzrostu promienia kwadratowego, co jest silnym wskazaniem, że N=32 jest liczbą magiczną. Jednak niczego takiego nie zauważyli. Nowe badania wprowadzają tylko więcej zamieszania. Nie odrzucamy wyników wcześniejszych badań, gdyż były one wykonane prawidłowo, na sprzęcie najwyższej klasy. Kwestionujemy tylko płynące z nich wnioski, że 32 jest liczbą magiczną dla neutronów, mówi Thomas Cocolios, fizyk atomowy z Uniwersytetu Katolickiego w Leuven (KU Leuven). Teraz uczeni planują przeprowadzenie podobnych pomiarów dla wapnia-53 i wapnia-54, by zweryfikować twierdzenia, iż N=34 jest liczbą magiczną. Wiele wskazuje na to, że teoretycy będą musieli przemyśleć problem dotyczący N=32. Badanie energii wskazuje, że jest to liczba magiczna, jednak badanie wielkości jądra temu przeczy. Obserwujemy tutaj sprzeczność pomiędzy badaniami, które dają wiarygodne wyniki. Muszą się tym zająć teoretycy, mówi Gerda Neyens, fizyk teoretyczna z KU Leuven, która kieruje eksperymentem ISOLDE. Uczona dodaje, że zrozumienie tego fenomenu nie będzie łatwe, gdyż interakcje pomiędzy protonami a neutronami nie zachodzą bezpośrednio, a na poziomie kwarków. To utrudnia nam zrozumienie jąder atomowych, szczególnie tych egzotycznych. Im więcej badamy egzotycznych jąder, tym bardziej zdajemy sobie sprawę, że nasze modele teoretyczne mają coraz większe kłopoty ze spójnym opisaniem zjawisk w nich zachodzących, dodaje Cocolios. « powrót do artykułu
  5. Zderzenia pomiędzy wysoko energetycznymi protonami po raz pierwszy pozwoliły na przyjrzenie się niezwykłym hiperonom. Zaliczane są one do cząstek dziwnych. To bariony zawierające co najmniej jeden kwark dziwny. Hiperony prawdopodobnie występują w jądrach gwiazd neutronowych, zatem ich badanie może sporo zdradzić na temat samych gwiazd oraz środowisk o tak ekstremalnie upakowanej materii. Hiperony są hadronami, czyli cząstek złożonych z co najmniej dwóch kwarków. Interakcje pomiędzy hadronami mają miejsce za pośrednictwem oddziaływań silnych. Niezbyt wiele wiemy o oddziaływaniach pomiędzy hadronami, a większość tej wiedzy pochodzi z badan, w których używane są protony i neutrony. Natura oddziaływań silnych powoduje, że bardzo trudno jest czynić w ich przypadku przewidywania teoretyczne. Trudno jest więc teoretycznie badać, jak hadrony oddziałują między sobą. Zrozumienie tych oddziaływań jest często nazywane „ostatnią granicą” Modelu Standardowego. Protony, neutrony i hiperony składają się z trzech kwarków. O ile jednak protony i neutrony zbudowane są wyłącznie z kwarków górnych i dolnych, to hiperony zawierają co najmniej jeden kwark dziwny. Badanie hiperonów daje nam zatem nowe informacje na temat oddziaływań silnych. Podczas badań naukowcy z CERN, pracujący przy eksperymencie ALICE, przyglądali się wynikom zderzeń wysoko energetycznych protonów, w wyniku których w otoczeniu miejsca kolizji pojawiają się „źródła” cząstek. Dochodzi do interakcji kwarków i gluonów, tworzących nowe cząstki. Powstają też pary hiperonów i protonów. Naukowcy, mierząc korelacje momentów pędu w takich parach zbierają informacje na temat sposobu ich interakcji. Interakcje takie można w ograniczonym stopniu przewidywać na podstawie modelowania zachowania kwarków i gluonów. Najnowsze badania wykazały, że przewidywania niemal idealnie zgadzają się z pomiarami. Ze szczegółami badań można zapoznać się na łamach Nature. « powrót do artykułu
  6. Naukowcy z CERN-u wykorzystali zaawansowane techniki spektroskopii laserowej do zbadania, po raz pierwszy w historii, struktury subtelnej antywodoru. Okazało się, że przesunięcie Lamba – niewielkie rozbieżności między obserwowanymi poziomami energetycznymi, a przewidywaniami równania Diraca – jest tutaj takie samo jak w przypadku wodoru. Fakt że w kosmosie wydaje się istnieć bardzo niewiele antymaterii od dawna niepokoi fizyków. Tworzenie i badania atomów antymaterii to jeden ze sposobów na poznanie przyczyn tej asymetrii. Szczególnym zainteresowaniem cieszy się tutaj badanie anomalii w spektrach antyatomów i porównywanie ich ze spektrami atomów, za pomocą którego możemy odkryć i wyjaśnić naruszenie symetrii CPT. ALPHA tworzy atomy antywodoru łącząc antyprotony dostarczane przez Antiproton Decelerator z antyalektronami. Następnie całość umieszcza w pułapce magnetycznej w próżni, dzięki czemu antywodór nie wchodzi w reakcję z materią i nie ulega anihilacji. Na atomy antywodoru kierowane jest następnie światło lasera, za pomocą którego dokonywane są pomiary. Na łamach Nature opisano najnowszy eksperyment, podczas którego uczeni z ALPHA badali strukturę subtelną antywodoru znajdującego się w pierwszym stanie wzbudzonym. Pomiary wykonano za pomocą setek antyatomów, które wytwarzano w grupach po około 20 średnio co 4 minuty. Antyatomy były przez dwa dni przechowywane w pułapce magnetycznej. Następnie za pomocą krótkich impulsów światła ultrafioletowego poziom wzbudzenia był zmieniany ze stanu podstawowego do 2P1/2 lub 2P3/2. Gdy antyatomy wracały do stanu 1S niektóre z nich uciekały z pułapki i ulegały anihilacji z atomami z jej ścianek. W ten sposób naukowcy byli w stanie określić różnice pomiędzy oboma stanami 2P, a stanem 1S. Pomiarów z dokładnością 16 części na miliard. Okazało się, że rozszczepienie struktury subtelnej atomów wodoru i antywodoru jest takie samo. Niepewność obliczeń nie przekracza tutaj 2%. Również badania przesunięcia Lamba wykazały wysoką zgodność pomiędzy atomami wodoru i antywodoru. Tutaj różnice nie przekraczają 11%. Randolf Pohl z Uniwersytetu w Moguncji mówi, że zespół ALPHA osiągnął spektakularny sukces w dziedzinie spektroskopii laserowej antywodoru. Szczególnie ważnym osiągnięciem jest zmniejszenie niepewności pomiaru przesunięcia Lamba do mniej niż 1/10000. Dalsze uściślenie pomiarów powinno pozwolić na zbadanie czy rzeczywiście dochodzi do naruszenia symetrii CPT. Stwierdzenie, że pomiędzy tymi dwiema formami materii nie ma żadnej różnicy, może wstrząsnąć podstawami fizyki opartej na Modelu Standardowym. Nasze nowe pomiary dotyczą pewnych aspektów związanych z interakcją antymaterii, takich jak przesunięcie Lamba, które od dawna chcemy badać, mówi Jeffrey Hangst, rzecznik prasowy grupy ALPHA. W następnym etapie naszych badań chcemy wykorzystać najnowocześniejszą technikę do schłodzenia dużych ilości antywodoru. Tego typu techniki umożliwią niezwykle precyzyjne porównanie materii i antymaterii, dodaje. « powrót do artykułu
  7. CERN opublikował wstępny raport projektowy (Conceptual Design Report), w którym zarysowano plany nowego akceleratora zderzeniowego. Future Circular Collider (FCC) miałby być niemal 4-krotnie dłuższy niż Wielki Zderzacz Hadronów (LHC) i sześciokrotnie bardziej potężny. Urządzenie, w zależności od jego konfiguracji, miałoby kosztować od 9 do 21 miliardów euro. Publikacja raportu odbyła się w ramach programu European Strategy Update for Particle Pysics. Przez dwa kolejne lata specjaliści będą zastanawiali się nad priorytetami w fizyce cząstek, a podjęte decyzje wpłyną na to, co w tej dziedzinie będzie się działo w Europie w drugiej połowie bieżącego stulecia. To olbrzymi krok, tak jakbyśmy planowali załogową misję nie na Marsa, a na Uran, mówi Gian Francesco Giudice, który stoi na czele wydziału fizyki teoretycznej CERN i jest przedstawicielem tej organizacji w Physics Preparatory Group. Od czasu odkrycia bozonu Higgsa w 2012 roku LHC nie odkrył żadnej nowej cząstki. To pokazuje, że potrzebne jest urządzenie, które będzie pracowało z większymi energiami. Halina Abramowicz, fizyk z Tel Aviv University, która kieruje europejskim procesem opracowywania strategii rozwoju fizyki cząstek, nazwała propozycję CERN „bardzo ekscytującą”. Dodała, że projekt FCC będzie szczegółowo rozważany razem z innymi propozycjami. Następnie Rada CERN podejmie ostateczną decyzję, czy należy sfinansować FCC. Jednak nie wszyscy uważają, że nowy zderzacz jest potrzebny. Nie ma żadnych podstaw, by sądzić, że przy energiach, jakie mógłby osiągnąć ten zderzacz, można będzie dokonać jakichś znaczących odkryć. Wszyscy to wiedzą, ale nich nie chce o tym mówić, stwierdza Sabine Hossenfelder, fizyk teoretyk z Frankfurckiego Instytutu Zaawansowanych Badań. Jej zdaniem pieniądze, które miałyby zostać wydane w FCC można z większym pożytkiem wydać na inne urządzenia, na przykład na umieszczenie na niewidocznej stronie Księżyca dużego radioteleskopu czy też zbudowanie na orbicie wykrywacza fal grawitacyjnych. Takie inwestycje z większym prawdopodobieństwem przyniosą znaczące odkrycia naukowe. Jednak Michael Benedikt, fizyk, który stał na czele grupy opracowującej raport nt. FCC mówi, że warto wybudować nowy zderzacz niezależnie od spodziewanych korzyści naukowych, gdyż tego typu wielkie projekty łączą instytucje naukowe ponad granicami. Hossenfelder zauważa, że podobnie łączą je inne duże projekty naukowe. Prace nad FCC rozpoczęły się w 2014 roku i zaangażowało się w nie ponad 1300 osób i instytucji. Rozważanych jest kilka konfiguracji, a większość z nich zakłada, że FCC powstanie obok LCH, a jego tunele będą miało 100 kilometrów długości. Sama budowa tunelu i powiązanej z nim infrastruktury naziemnej pochłoną około 5 miliardów euro. Kolejne 4 miliardy będzie kosztował akcelerator, w którym będą zderzanie elektrony z pozytonami. urządzenie miałoby pracować z energię do 365 gigaelektronowoltów. To mniejsza energia niż w LHC, jednak zderzenia lżejszych cząstek, jak elektron z pozytonem, dają znacznie bardziej szczegółowe dane niż zderzanie protonów, jakie zachodzi w LHC, zatem w FCC można by bardziej szczegółowo zbadać np. bozon Higgsa. FCC miałby zostać uruchomiony około roku 2040. Warto tutaj na chwilę się zatrzymać i przypomnieć opisywany przez nas projekt International Linear Collider. Przed ponad pięciu laty świat obiegła wiadomość o złożeniu szczegółowego raportu technicznego 31-kilometrowego liniowego zderzacza elektronów i pozytonów. Raport taki oznaczał, że można rozpocząć budowę ILC. Urządzenie to, dzięki swojej odmiennej od LHC architekturze, ma pracować – podobnie jak FCC – z elektronami i pozytonami i ma dostarczać bardziej szczegółowych danych niż LHC. W projekcie ILC biorą udział rządy wielu krajów, a najbardziej zainteresowana jego budową była Japonia, skłonna wyłożyć nawet 50% jego kosztów. Jednak budowa ILC dotychczas nie ruszyła. Brak kolejnych odkryć w LHC spowodował, że szanse na budowę ILC znacznie zmalały. Rząd Japonii ma 7 marca zdecydować, czy chce u siebie ILC. Inny scenariusz budowy FCC zakłada wydatkowanie 15 miliardów euro i wybudowanie w 100-kilometrowym tunelu zderzacza hadronów (kolizje proton–proton) pracującego z energią dochodzącą do 100 TeV, czyli wielokrotnie wyższą niż 16 TeV uzyskiwane w LHC. Jednak bardziej prawdopodobnym scenariuszem jest zbudowanie najpierw zderzacza elektronów i pozytonów, a pod koniec lat 50. bieżżcego wieku rozbudowanie go do zderzacza hadronów. Scenariusz taki jest bardziej prawdopodobny z tego względu, że skonstruowanie 100-teraelektronowoltowego zderzacza hadronów wymaga znacznie więcej badań. Gdybyśmy dysponowali 100-kilometrowym tunelem, to już moglibyśmy rozpocząć budowę zderzacza elektronów i pozytonów, gdyż dysponujemy odpowiednią technologią. Stworzenie magnesów dla 100-teraelektronowego zderzacza wymaga jeszcze wielu prac badawczo-rozwojowych, mówi Guidice. Trzeba w tym miejscu wspomnieć, że podobny projekt prowadzą też Chiny. Państwo Środka również chce zbudować wielki zderzacz. O ile jednak w FCC miałyby zostać wykorzystane magnesy ze stopu Nb3Tn, to Chińczycy pracują nad bardziej zaawansowanymi, ale mniej sprawdzonymi, nadprzewodnikami bazującymi na żelazie. Ich zaletą jest fakt, że mogą pracować w wyższych temperaturach. Jeśli pracowałyby przy 20 kelwinach, to można osiągnąć olbrzymie oszczędności, mówi Wang Yifang, dyrektor chińskiego Instytutu Fizyki Wysokich Energii. Także i Chińczycy uważają, że najpierw powinien powstać zderzacz elektronów i pozytonów, a następnie należy go rozbudować do zderzacza hadronów. Jako, że oba urządzenia miałyby bardzo podobne możliwości, powstaje pytanie, czy na świecie są potrzebne dwa takie same wielkie zderzacze. « powrót do artykułu
×
×
  • Create New...