Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' masa' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 19 wyników

  1. Po 10 latach analiz i wielokrotnego sprawdzania wyników, badacze z projektu CDF collaboration prowadzonego przez Fermi National Accelarator Laboratory (Fermilab) ogłosili, że dokonali najbardziej precyzyjnych pomiarów masy bozonu W, nośnika jednego z czterech podstawowych oddziaływań fizycznych. Uzyskane wyniki sugerują, że Model Standardowy powinien zostać poprawiony lub poszerzony. Znamy cztery podstawowe oddziaływania fizyczne: grawitacyjne, słabe, elektromagnetyczne i silne. Bozon W jest nośnikiem oddziaływań słabych. Specjaliści z Fermilab, wykorzystując dane z Collider Detector at Fermilab (CDF) okreslili masę bozonu W z dokładnością do 0,01%. Pomiar jest dwukrotnie bardziej dokładny niż dotychczasowe. Po jego wykonaniu  naukowcy wykorzystali nową wartość do przetestowania Modelu Standardowego. Wprowadziliśmy olbrzymią liczbę poprawek i dodatkowych weryfikacji. Wzięliśmy pod uwagę nasze lepsze rozumienie samego wykrywacza cząstek oraz postępy w teoretycznym i eksperymentalnym rozumieniu interakcji bozonu W z innymi cząstkami. Gdy w końcu przeprowadziliśmy wszystkie obliczenia okazało się, że różnią się one od przewidywań Modelu Standardowego, mówi Ashutosh V. Kotwal z Duke University, który stał na czele grupy wykonującej obliczenia. Jest on jednym z 400 naukowców skupionych wokół CDF collaboration. Nowe pomiary w wielu aspektach zgadzają się z wcześniejszymi pomiarami masy bozonu W, ale w niektórych są z nimi rozbieżne. Dlatego też konieczne będą kolejne badania. To bardzo intrygujące wyniki, ale do ich pełnego wyjaśnienie konieczne jest potwierdzenie w ramach innych eksperymentów, mówi zastępca dyrektora Fermilab, Joe Lykken. Bozon W, nośnik oddziaływań słabych, jest m.in odpowiedzialny za procesy powodujące, że Słońce świeci, a cząstki się rozpadają. Fermilab, a którym działał niezwykle zasłużony dla nauki akcelerator Tevatron, dysponuje olbrzymią ilością danych zbieranych w latach 1985–2011. Pomiary CDF były prowadzone przez wiele lat. Wyniki tych pomiarów były ukryte w danych, które trzeba było szczegółowo przeanalizować. Gdy w końcu je uzyskaliśmy, byliśmy zdumieni, mówi fizyk Chris Hays z Uniwersytetu Oksfordzkiego. Masa bozonu W jest około 80-krotnie większa od masy protonu i wynosi około 80 000 MeV/c2. Teraz naukowcy z Fermilab ją uściślili. Dzięki ich pracy wiemy, że wynosi ona 80 433 ± 9 MeV/c2. Wynik ten bazuje na badaniach 4,2 milionów bozonów W uzyskanych w Fermilab. W ciągu ostatnich 40 lat eksperymenty w wielu akceleratorach pozwoliły na badanie bozonu W. To bardzo trudne, złożone pomiary, które cały czas są doprecyzowywane. Nam praca zajęła wiele lat. Dokonaliśmy najbardziej precyzyjnych pomiarów, dzięki czemu mogliśmy stwierdzić, że istnieje rozbieżność pomiędzy wartością zmierzoną, a oczekiwaną, mówi rzecznik CDF collaboration Giogrio Chiarelli z Włoskiego Narodowego Instytutu Fizyki Jądrowej. Najbardziej precyzyjne obliczenia masy bozonu W wykonane na podstawie Modelu Standardowego – w których wykorzystuje się pomiary masy kwarka górnego i bozonu Higgsa – dają wynik 80 357 ± 6 MeV/c2. Różnica pomiędzy teoretycznymi obliczeniami a wykonanymi pomiarami jest więc widoczna. Teraz autorzy kolejnych eksperymentów oraz fizycy teoretyczni powinni spróbować ją wyjaśnić. Jeśli różnica pomiędzy wynikiem eksperymentów a teoretycznymi obliczeniami jest spowodowana istnieniem jakiegoś nowego oddziaływania – a to tylko jedna z możliwości – to przyszłe eksperymenty powinny je wykryć. « powrót do artykułu
  2. Naukowcy z CERN-u dokonali najbardziej precyzyjnych pomiarów masy kwarka górnego. To najcięższa z cząstek elementarnych, a poznanie jej masy jest niezbędne do poznania zasad funkcjonowania wszechświata w najmniejsze skali. Najnowsze wyniki uzyskane przez zespół pracujący przy eksperymencie CMS (Compact Muon Solenoid) w Wielkim Zderzaczu Hadronów pozwoliły na poznanie masy kwarka górnego z dokładnością około 0,27%. Tak olbrzymią precyzję udało się osiągnąć dzięki wykorzystaniu  nowych metod analitycznych oraz poprawienia procedur dotyczących radzenia sobie z niepewnościami pomiaru. Znajomość masy najcięższej z cząstek to kluczowy element, który pozwoli przetestować matematyczną spójność całego modelu cząstek elementarnych. Na przykład, jeśli znalibyśmy dokładną masę bozonu W i bozonu Higgsa, moglibyśmy – korzystając z Modelu Standardowego – poznać dokładną masę kwarka górnego. Podobnie działa to w drugą stronę – poznanie dokładnej masy kwarka górnego i bozonu Higgsa, pozwoli na wyliczenie dokładnej masy bozonu W. Fizyka teoretyczna dokonała na tym polu olbrzymich postępów, jednak wciąż trudno jest dokładnie określić masę kwarka górnego. Tymczasem dla zrozumienia wszechświata, a szczególnie jego stabilności, potrzebujemy jak najbardziej precyzyjnych informacji o masie bozonu Higgsa i kwarka górnego. Z dotychczas dostępnych informacji na temat masy kwarka górnego wiemy, że wszechświat znajduje się bardzo blisko stanu metastabilnego. Jeśli masa kwarka górnego byłaby minimalnie inna, wszechświat w długim terminie byłby mniej stabilny i mógłby zakończyć swój żywot podczas gwałtownego wydarzenia podobnego do Wielkiego Wybuchu. Podczas ostatnich badań naukowcy z CMS wykorzystali dane zebrane przez CMS w 2016 roku podczas zderzeń protonów. Wzięli pod uwagę pięć różnych właściwości zderzeń, podczas których powstawała para kwarków górnych. Właściwości te zależą właśnie od masy kwarka górnego. Dotychczas przy tego typu badaniach pod uwagę brano trzy właściwości. Ponadto naukowcy przeprowadzili ekstremalnie precyzyjną kalibrację danych z CMS, dzięki czemu lepiej zrozumieli wszelkie niepewności pomiaru i ich wzajemne zależności. Po przeprowadzeniu odpowiednich obliczeń stwierdzili, że masa kwarka górnego wynosi 171,77±0,38 GeV. Jest ona zatem zgodna zarówno z wcześniejszymi pomiarami, jak i z założeniami Modelu Standardowego. « powrót do artykułu
  3. Naukowcy starają się określić własności grawitonu – hipotetycznej cząstki przenoszącej oddziaływanie grawitacyjne. W pracy opublikowanej w czasopiśmie Journal of High Energy Astrophysics prof. Marek Biesiada wraz ze współpracownikami na podstawie analizy 12 gromad galaktyk przedstawili nowe ograniczenie na masę grawitonu. Jest ono o siedem rzędów wielkości silniejsze niż ograniczenia wynikające z obserwacji fal grawitacyjnych. Ogólna Teoria Względności (OTW) zmieniła nasze wyobrażenia o grawitacji. W myśl OTW, materia zakrzywia czasoprzestrzeń, a wszystkie obiekty, jeśli nie podlegają wpływowi innych, niegrawitacyjnych oddziaływań, to poruszają się w tej zakrzywionej czasoprzestrzeni po szczególnych trajektoriach zwanych geodezyjnymi. Dla niezbyt dużych zakrzywień czasoprzestrzeni i niewielkich prędkości, w porównaniu do prędkości światła, teoria Einsteina odtwarza prawo powszechnego ciążenia Newtona, które z powodzeniem stosujemy nadal do opisu ruchu planet, czy gwiazd w galaktykach. Wiemy, że pozostałe trzy oddziaływania fundamentalne – długozasięgowe oddziaływanie elektromagnetyczne, oraz oddziaływania słabe i silne rządzące materią na poziomie subatomowym - mają naturę kwantową. W opisie kwantowym oddziaływanie polega na wymianie przenoszącej je cząstki (bozonu). Dla elektromagnetyzmu jest to foton – cząstka światła, kwant fali elektromagnetycznej. Dla oddziaływań silnych i słabych są to odpowiednio gluony oraz bozony Z i W. Od przeszło stu lat fizycy próbują w ten sam sposób spojrzeć na powszechne ciążenie, poszukując kwantowej teorii grawitacji. Przez analogię do innych oddziaływań, hipotetyczną cząstką przenoszącą grawitację miałby być tzw. grawiton. Ze względu na nieskończony zasięg oddziaływań grawitacyjnych słabnących z kwadratem odległości, grawiton – podobnie jak foton – powinien być bezmasowy. Są to jednak tylko przewidywania teoretyczne, które trzeba zweryfikować eksperymentalnie. Badając własności hipotetycznego grawitonu można postawić pytanie odwrotne: jakie, dające się zaobserwować konsekwencje, powinny się ujawnić w dostępnym nam obrazie Wszechświata i jego dynamiki, gdyby jednak grawiton miał inne cechy niż się spodziewamy – na przykład, gdyby miał bardzo małą, ale jednak niezerową masę? Jeśli dane obserwacyjne – zawsze obarczone niepewnością – pozostają w zgodzie z hipotezą bezmasowego grawitonu, to niepewność związana z tymi danymi pozwala na oszacowanie z góry maksymalnej masy grawitonu, czyli pozwala odpowiedzieć na pytanie jak lekki może być grawiton, by konsekwencje wynikające z jego masy nie kłóciły się jeszcze z danymi obserwacyjnymi. W pracy opublikowanej w czasopiśmie Journal of High Energy Astrophysics prof. Marek Biesiada z NCBJ wspólnie z dr Aleksandrą Piórkowską-Kurpas z Uniwersytetu Śląskiego oraz prof. Shuo Cao z Bejing Normal University uzyskali w ten sposób ograniczenie na masę grawitonu mg < 5·10-29 eV. Z każdą cząstką związana jest charakterystyczna długość tzw. fali Comptona – odwrotnie proporcjonalna do jej masy – wyjaśnia prof. Marek Biesiada. Im większa masa, tym mniejsza długość tej fali. W przypadku cząstek przenoszących oddziaływania, długość fali Comptona określa zasięg oddziaływania. Zerowa masa oznacza nieskończoną długość fali Comptona, czyli zasięg nieskończony. W przypadku elektromagnetyzmu teoria przewiduje, że foton powinien być bezmasowy. Podobnie jest w przypadku grawitacji. Zatem badania masy grawitonu są w istocie testem teorii. Są testem bardzo istotnym, gdyż niektórzy badacze proponowali teorie modyfikujące OTW, które przewidują, że zasięg oddziaływania grawitacyjnego powinien być skończony. W teoriach takich modyfikacji ulega potencjał Newtonowski: na dużych odległościach siła przyciągania grawitacyjnego maleje szybciej niż z kwadratem odległości. Obecnie dysponujemy coraz dokładniejszymi pomiarami mas gromad galaktyk w funkcji odległości od centrum. Jest to możliwe dzięki połączeniu obserwacji w promieniach X oraz kosmologicznego promieniowania mikrofalowego, zarejestrowanego przez satelitę Planck. W naszych badaniach wykorzystaliśmy pomiary mas 12 gromad galaktyk z próbki X-COP, testując możliwe odstępstwa od potencjału Newtonowskiego – dodaje profesor Biesiada. W rezultacie uzyskaliśmy jedno z najsilniejszych ograniczeń górnych na masę grawitonu. Jest ono siedem rzędów wielkości (10 mln razy) silniejsze od ograniczeń dostarczonych z obserwacji fal grawitacyjnych przez detektory LIGO-Virgo. Naukowcy NCBJ uczestniczą we wszystkich, kluczowych dla kosmologii, toczących się obecnie i planowanych projektach. Będą one z pewnością przynosić nowe, coraz dokładniejsze testy fizyki fundamentalnej. « powrót do artykułu
  4. Osiem lat po przeszczepie komórek węchowych do kanału kręgowego pacjentki z całkowitym uszkodzeniem rdzenia lekarze usunęli stamtąd masę. Przeszczep przeprowadzano, licząc na przywrócenie funkcji sensorycznych i ruchowych. Jak tłumaczą autorzy raportu z Journal of Neurosurgery: Spine, komórki węchowe zlokalizowane są w stropie przewodów nosowych, a także w górnej części przegrody nosowej koło blaszki perforowanej i na przyśrodkowej powierzchni górnej małżowiny nosowej. Śluzówka znajduje się w niższej części jamy nosowej. Poza neuronami węchowymi błona węchowa zawiera komórki progenitorowe oraz makroglej OEC (od ang. olfactory ensheathing cells); podczas badań laboratoryjnych oraz in vivo wykazano, że oba rodzaje komórek wspomagają naprawę uszkodzonego rdzenia. Opisywana pacjentka przeżyła w wieku 18 lat wypadek, w wyniku którego doznała urazu - złamania z przemieszczeniem - na poziomie 10. i 11. kręgu piersiowego . Mimo operacyjnej stabilizacji kręgosłupa doszło do paraplegii. Trzy lata później, mając nadzieję na odzyskanie czucia i funkcji motorycznych w nogach, kobieta przeszła poza granicami USA autoprzeszczep błony węchowej (umieszczono ją w miejscu uszkodzenia). Osiem lat po eksperymentalnej terapii chora zgłosiła się do Szpitali i Klinik Uniwersytetu Iowa, uskarżając się na ból w środkowej i dolnej części pleców. Badanie neurologiczne nie wykazało klinicznej poprawy po implantacji, lecz obrazowanie ujawniło masę zlokalizowaną koło rdzenia. To ona powodowała ból. Analiza wyciętej zmiany ujawniła, że w środku znajdowały się drobne niedziałające gałęzie nerwowe. Mając to na uwadze, lekarze stwierdzili, że rozwinęły się one z nerwowych komórek progenitorowych. Okazało się również, że większość masy wypełniały cysty wyścielone śluzówką układu oddechowego, a także gruczołami podśluzówkowymi i komórkami kubkowymi. W masie występowała poza tym duża ilość materiału przypominającego śluz. Jego akumulacja wywołała objawy pacjentki. Amerykanie dywagują, że masa rozwinęła się, bo zamiast wyekstrahować i oczyścić OEC, kobiecie wszczepiono po prostu fragment błony węchowej. Naukowcy podkreślają, że rzadki przypadek komplikacji nie powinien zniechęcać do prowadzenia dalszych badań. « powrót do artykułu
  5. Uniwersytet w Białymstoku będzie popularyzować opracowany w zeszłym roku kalkulator masy bocianich gniazd. Kalkulator pozwala oszacować masę gniazda z zaledwie 2 pomiarów: wysokości i szerokości. Może on pomóc ocenić zagrożenie, spowodowane już istniejącymi gniazdami, ale też przyczynić się do projektowania bardziej wytrzymałych elementów nośnych dachów, słupów czy platform lęgowych, na których mogą zagnieździć się bociany - podkreśla Adam Zbyryt, doktorant ze Szkoły Doktorskiej Nauk Ścisłych i Przyrodniczych UwB. Kalkulator powstał w ramach projektu pt. „Ochrona bociana białego w dolinach rzecznych wschodniej Polski”. Był on realizowany przez Polskie Towarzystwo Ochrony Ptaków (PTOP) oraz Biebrzański Park Narodowy i Łomżyński Park Krajobrazowy Doliny Narwi. Autorami narzędzia są Adam Zbyryt, dr Łukasz Dylewski z Uniwersytetu Przyrodniczego w Poznaniu oraz dr Grzegorz Neubauer z Uniwersytetu Wrocławskiego. Na projekt „Nie udźwigniesz, taki to ciężar! Popularyzacja kalkulatora masy gniazd bociana białego” Adama Zbyryta Ministerstwo Edukacji i Nauki przyznało dofinansowanie w wysokości 60.500 zł. Gniazda bociana białego należą do jednych z największych i najcięższych struktur budowanych przez zwierzęta na świecie. Nierzadko osiągają szerokość i wysokość dwóch metrów, a ich masa przekracza półtorej tony. Ponieważ coraz więcej bocianów gnieździ się blisko człowieka, a gniazda zakładane są na słupach elektroenergetycznych czy dachach budynków, generuje to konflikty na linii człowiek przyroda. Głównym problemem jest właśnie masa gniazd, która znacząco obciąża różnego rodzaju konstrukcje. Wynika to głównie z tego, że ich wnętrze to zbita przetworzona materia, która stanowi glebę (histosol) – wyjaśnia biolog. Kalkulator jest dostępny w 5 wersjach językowych: po polsku, angielsku, hiszpańsku, francusku i rosyjsku. Wymiary gniazda podaje się w centymetrach, należy też określić wskaźnik ubicia materiału gniazdowego (do wyboru są 2 opcje: normalne i ubite). Jak napisano na stronie z kalkulatorem, wyświetlone zostaną wyniki dla trzech najlepszych równań (modeli) szacujących masę. Szacowana przeciętna masa gniazda o podanych wymiarach wyświetlona jest w kolumnie „Średnia”. Dolne (po lewej stronie) i górne (po prawej stronie) kolumny zawierają predykcyjne przedziały ufności dla oszacowania średniej na trzech predefiniowanych poziomach. Projekt „Nie udźwigniesz, taki to ciężar!” ma pomóc w rozpropagowaniu metody zarówno w Polsce, jak i w krajach, gdzie bocian biały (Ciconia ciconia) licznie gniazduje, a więc np. w Hiszpanii, Portugalii, Białorusi, Bułgarii, Litwie i w Niemczech. Posłużą do tego różne kanały, w tym prasa, radio i telewizja czy media społecznościowe. Chodzi o to, by uniknąć problemów związanych z gniazdami i przyczynić się do ochrony gatunku. « powrót do artykułu
  6. Od czasu odkrycia oscylacji neutrin wiemy, że neutrina mają niezerową masę. Dotychczas nie udało się jej precyzyjnie określić. Tymczasem neutrina to najbardziej rozpowszechnione, a jednocześnie najtrudniejsze do zbadania, ze wszystkich znanych nam cząstek. Teraz międzynarodowy zespół naukowcy pracujący przy eksperymencie KATRIN przełamał ważną barierę. Po raz pierwszy wykazano, że masa neutrino jest mniejsza od 1 elektronowolta (eV). KATRIN (Karlsruhe Tritium Neutrino Experiment) znajduje się w Karlsruhe Institute for Technology w Niemczech. Uruchomiony w 2018 roku projekt to owoc współpracy Czech, Niemiec, Rosji, USA i Wielkiej Brytanii. Pracuje przy nim około 130 naukowców. Na łamach Nature ogłoszono właśnie, że podczas drugiej kampanii badawczej masę neutrina określono na 0,7 eV, a poziom ufności pomiaru wynosi 90%. W połączeniu z danymi z pierwszej kampanii badawczej KATRIN pracujący przy eksperymencie naukowcy ogłosili, że górny limit masy neutrina wynosi 0,8 eV. Tym samym wiemy, że neutrino jest o co najmniej 500 000 razy lżejsze od elektronu. Głównym elementem eksperymentu KATRIN jest największy na świecie spektrometr. Urządzenie ma 23 metry długości i 10 metrów szerokości. Wewnątrz panuje próżnia. Najpierw przeprowadzany jest rozpad beta trytu, w wyniku którego powstaje elektron i antyneutrino. Następnie elektron, bez zmiany jego energii, jest kierowany do spektrometru. Pomiary energii samego neutrina nie są możliwe, ale możemy precyzyjnie mierzyć energię elektronu. Jako, że możemy zmierzyć łączną energię elektronu i antyneutrina oraz energię samego elektronu, jesteśmy w stanie poznać energię czyli masę, antyneutrina. Gdy przed 5 laty opisywaliśmy zakończenie prac nad KATRIN i niezwykłą podróż komory próżniowej do miejsca montażu, cytowaliśmy ekspertów, którzy twierdzili, że KATRIN może być ostatnią nadzieją współczesnej fizyki,by bez nowej rewolucyjnej technologii zmierzyć masę neutrina. To koniec drogi, mówił wówczas Peter Doe, fizyk w University of Washington. Obecnie fizyk Björn Lehnert z Lawrence Berkeley National Laboratory, który pracuje przy KATRIN, mówi, że przez najbliższe 3 lata naukowcy będą  prowadzili kolejne eksperymenty, by zebrać więcej danych, jednak ze względu na sposób pracy KATRIN nie spodziewa się zmniejszenia poziomu niepewności. Czynnikiem ograniczającym KATRIN jest chemia, ponieważ używamy molekuł trytu (T2). Molekuły to złożone obiekty, mają więcej stopni swobody niż atomy, więc każdy ich rozpad jest nieco inny i inny jest ostateczny rozkład elektronów. W pewnym momencie nie będziemy już mogli udoskonalać pomiaru masy neutrina, gdyż sam początkowy rozpad jest obarczony pewnym marginesem niepewności. Jedynym sposobem na udoskonalenie pomiarów stanie się wówczas wykorzystanie trytu atomowego. Będzie z niego korzystał planowany dopiero eksperyment Project 8. Jest on bardzo obiecujący, ale miną lata zanim zostanie uruchomiony. « powrót do artykułu
  7. Naukowcy z National Superconducting Cyclotron Laboratory (NSCL) oraz Facility for Rare Isotope Beams (FRIB) na Michigan State University rozwiązali zagadkę brakującej masy cyrkonu-80. Zagadkę, na której trop sami zresztą wpadli. Przeprowadzone bowiem w NSCL eksperymenty wykazały, że jądro cyrkonu-80 – w którym znajduje się 40 protonów i 40 neutronów – jest znacznie lżejsze niż powinno być. Teraz teoretycy z FRIB przeprowadzili obliczenia, które dały odpowiedź na pytanie, co dzieje się z brakującą masą. Związek pomiędzy teoretykami a eksperymentatorami jest jak skoordynowany taniec, mówi główny autor artykułu opublikowanego na łamach Nature Physics, Alec Hamaker. Czasem prowadzą teoretycy i wykazują coś jeszcze przed eksperymentalnym odkryciem, a czasem eksperymentatorzy odkrywają coś, czego teoretycy się nie spodziewali, dodaje Ryan Ringle. Najnowsze osiągnięcie to dopiero przedsmak tego, czego mogą spodziewać się naukowcy z całego świata. Już NSCL, wiodące w USA miejsce badań nad rzadkimi izotopami, daje uczonym olbrzymie możliwości. Natomiast FRIB, którego uruchomienie przewidziano na przyszły rok, będzie miejscem absolutnie wyjątkowym. Naukowcy z całego świata będą mogli tworzyć tam izotopy niemożliwe do uzyskania nigdzie indziej. Takie miejsca jak FRIB nie tylko zwiększają naszą wiedzę o wszechświecie, ale pozwalają np. na udoskonalanie metod leczenia nowotworów. Ringle stwierdza, że dzięki FRIB możliwe będzie prowadzenie niedostępnych dotychczas badań, a ośrodek przez wiele dekad będzie dostarczał nowych odkryć. Wróćmy jednak do naszego 80Zr. Powstał on w NSCL, a dzięki możliwościom tego ośrodka naukowcy byli w stanie zmierzyć jego masę z niedostępną wcześniej dokładnością. Już wcześniej mierzono masę tego pierwiastka, ale nigdy tak dokładnie. A te precyzyjne pomiary ujawniły wiele interesujących rzeczy. Kiedy bowiem możemy tak dokładnie określić masę, to tak naprawdę mierzymy masę, która zaginęła. Masa jądra atomowego nie jest bowiem równa sumie mas protonów i neutronów. Część zaginionej masy manifestuje się w postaci energii utrzymującej jądro razem, wyjaśnia Ringle. Wszyscy pamiętamy słynne równanie Einsteina, E=mc2. Oznacza ono ni mniej ni więcej, że masa i energia są swoimi ekwiwalentami, są równoważne. Jednak widać to dopiero w ekstremalnych warunkach, np. panujących w jądrze atomu. Kiedy bowiem w jądrze mamy do czynienia z większą energią wiązań pomiędzy protonami a neutronami, gdy są one ze sobą ściślej powiązane, wówczas mamy do czynienia z większą ilością zaginionej masy. I tak właśnie jest w przypadku jądra cyrkonu-80. Nowe eksperymenty wykazały bowiem, że siły pomiędzy neutronami a protonami są większe, niż się spodziewano. A skoro tak, to teoretycy musieli znaleźć wyjaśnienie, dlaczego tak się dzieje. Przyjrzeli się więc dotychczasowym teoriom na temat 80Zr. Mówią one m.in. o tym, że jądro to może być jądrem podwójnie magicznym. Czym są jądra magiczne i podwójnie magiczne wyjaśnialiśmy w tekście CERN bada magię liczby 32. Fizycy teoretyczni będą mieli problem. Wcześniejsze eksperymenty sugerowały, że jądro cyrkonu-80 bardziej przypomina swoim kształtem piłkę do rugby, niż sferę. Ten kształt mógł, zdaniem teoretyków, przyczyniać się do podwójnej magiczności tego jądra. Teoretycy od ponad 30 lat sugerowali, że jądro cyrkonu-80 to zdeformowane jądro podwójnie magiczne. Eksperymentatorzy potrzebowali trochę czasu, by to udowodnić. A teraz, gdy dostarczyli dowodów na wsparcie teorii, teoretycy mogą wykonać kolejny krok, mówi Hamaker. Uczeni z niecierpliwością czekają na uruchomienie FRIB i mają nadzieję, że dzięki temu ośrodkowi zdobędą więcej informacji o tak niezwykłych jądrach jak to cyrkonu-80. « powrót do artykułu
  8. Los Marsa został przypieczętowany na samym początku. Najprawdopodobniej istnieje pewna granica wielkości, powyżej której skaliste planety są w stanie utrzymać procesy tektoniczne oraz wystarczająco dużo wody, by mogło zaistnieć życie. Mars znajduje się poniżej tej granicy, mówi profesor Kun Wang z Washington University in St. Louis, główny autor najnowszych badań. Mogą one wyjaśniać, dlaczego Marsie nie rozwinęło się życie na podobieństwo tego na Ziemi. Badania marsjańskich meteorytów, zdjęcia przysłane przez sondy Viking czy prace łazików Curiosity i Perseverance pokazują, że w przeszłości na Marsie znajdowała się woda. Do dzisiaj pozostały kanały i doliny przez nią wyrzeźbione. Obecnie na powierzchni Czerwonej Planety wody nie ma, dysponujemy za to licznymi hipotezami, których autorzy próbowali wyjaśnić, co się z nią stało. Jedna z nich mówi np., że z czasem pole magnetyczne Marsa osłabło, planeta utraciła atmosferę, a w konsekwencji i wodę z powierzchni. Autorzy badań, których wyniki ukazały się właśnie na łamach Proceedings of the National Academy of Sciences (PNAS), wskazują na bardziej podstawową przyczynę braku wody i życia na Marsie. Wang i jego zespół wykorzystują stabilne izotopy potasu do oceny obecności, rozkładu i ilości ulotnych związków czy pierwiastków w różnych ciałach niebieskich. Potas to umiarkowanie ulotny pierwiastek, ale zdecydowano się go użyć, jako punktu odniesienia do badania tych bardziej ulotnych, w tym molekuł wody. Wykorzystanie potasu to dość nowa technika, która wzięła się z prób określania związków ulotnych na Marsie metodą badania stosunku potasu do toru. Naukowcy z St. Louis wzięli pod lupę 20 marsjańskich meteorytów, które wybrano tak, by ich skład związków krzemu był reprezentatywny dla powierzchni Czerwonej Planety. Na podstawie badań doszli do wniosku, że Mars utracił w czasie formowania się więcej potasu i innych elementów ulotnych niż Ziemia. Ale straty te były mniejsze niż w przypadku Księżyca i asteroidy 4-Vesta, ciał niebieskich mniejszych i bardziej suchych od Marsa i Ziemi. Jednocześnie uczeni zauważyli ścisły związek pomiędzy rozmiarami ciała niebieskiego, a zawartością izotopów potasu. Odkrycie związku pomiędzy zawartością izotopów potasu, a grawitacją planety niesie ze sobą znaczące implikacje odnośnie tego, w jaki sposób planety zyskały i straciły ulotne elementy, stwierdza współautorka badań, profesor Katharina Lodders. Meteoryty marsjańskie są jedynymi próbkami, na podstawie których możemy badań skład chemiczny Marsa. Liczą sobie one od kilkuset milionów do 4 miliardów lat i jest w nich zapisana historia Czerwonej Planety. Mierząc poziom izotopów umiarkowanie ulotnych pierwiastków, jak potas, możemy wnioskować o utracie elementów ulotnych przez planetę i robić porównania z innymi ciałami niebieskimi, mówi Wang. Naukowiec dodał, że nie wierzy w hipotezy mówiące, iż w przeszłości Mars był bardziej wilgotny niż Ziemia. Najnowsze odkrycie ma znacznie dla poszukiwań życia pozaziemskiego. Nasze badania pokazują, że istnieje bardzo ograniczony zakres rozmiarów planet, który pozwala na posiadania wystarczającej – ale nie za dużej – ilości wody, pozwalającej na istnienie zdanej do zamieszkania powierzchni lądowej, wyjaśnia Klaus Mezger z Uniwerystetu w Bernie. Wang zaznacza, że poszukując egzoplanet mogących zawierać życie, należy zwracać też uwagę na wielkość i masę planet. Rozmiar egzoplanety jest akurat tą cechą, którą najłatwiej jest ocenić. Opierając się na masie i rozmiarze możemy zaś wyłaniać kandydatów do posiadania życia, gdyż rozmiar to podstawowy czynnik decydujący o istnieniu elementów ulotnych. « powrót do artykułu
  9. Naukowcy z izraelskiego Instytutu Weizmanna oraz Kalifornijskiego Instytutu Technologicznego (Caltech) obliczyli masę wszystkich wirusów SARS-CoV-2, które zainfekowały ludzi na całym świecie. Na łamach Proceedings of the National Academy of Sciences (PNAS) badacze wyjaśniają, w jaki sposób dokonali obliczeń i jak ich praca może przyczynić się do lepszego zrozumienia procesów zachodzących w zainfekowanym organizmie. Uczeni rozpoczęli od tego, że pojedynczy wirus SARS-CoV-2 waży około 1 femtograma. Następnie wykorzystali dane z badań nad rezusami, by dowiedzieć się, ile wirusów znajduje się w różnych częściach zainfekowanego organizmu. Dane to przemnożono tak, by uzyskać informacje odnoszące się do ludzi, którzy mają większe organy. Z tak przeprowadzonych obliczeń wynika, że przeciętny zainfekowany człowiek ma w organizmie od 1 do 10 mikrogramów wirusa. Jako, że w każdym momencie pandemii zainfekowanych było od 1 do 10 milionów osób, naukowcy stwierdzili, że łączna masa wirusa SARS-CoV-2 w organizmach ludzi to od 100 gramów do 10 kilogramów. Autorzy badań uważają, że obliczenia tego typu dają lepszy pogląd na to, co dzieje się w zainfekowanym organizmie. Porównanie liczby wirusów biorących udział w pojedynczej infekcji może bowiem rzucić światło na to, jak wirus ewoluuje w jednym organizmie. Wychodząc z takiego założenia i z tego, co wiemy o podobnych wirusach, uczeni stwierdzili, że podczas pojedynczej infekcji SARS-CoV-2 doświadczy średnio 0,1 mutacji genomu. Biorąc pod uwagę fakt, że pomiędzy infekcjami mija 4–5 dni, w ciągu miesiąca wirus może średnio zgromadzić 3 mutacje. Obliczenia zgadzają się z tym, co zauważono podczas dotychczasowych badań nad SARS-CoV-2. « powrót do artykułu
  10. Rejon Energetyczny w Łomży (PGE Białystok) prowadzi prace związane ze zmniejszeniem wysokości i masy bocianich gniazd ze słupów energetycznych. Jak podkreślono na profilu Łomżyńskiego Parku Krajobrazowego Doliny Narwi na Facebooku, są one wykonywane z zachowaniem wszystkich zasad bezpieczeństwa, bardzo profesjonalnie i sprawnie. Prace te wpisują się w czynną ochronę bociana białego, która polega m.in. na zabezpieczaniu miejsc lęgowych. Należy pamiętać, że zbyt duże gniazda mogą stanowić zagrożenie dla konstrukcji, na których są posadowione, czyli dla kominów, dachów czy właśnie słupów energetycznych. Stwarza to niebezpieczeństwo nie tylko dla mienia ludzkiego, ale i dla bocianich piskląt. Ornitolodzy z Polskiego Towarzystwa Ochrony Ptaków zbadali [kiedyś], ile ważą gniazda bocianie [w ramach projektu ochrony bocianów białych przebadali i zważyli blisko 90 takich gniazd]. Średnia ich waga wyniosła 349 kg (najlżejsze ważyło 70 kg, a najcięższe – 1250 kg). Ciekawostką jest, że na podstawie prostego parametru, jakim jest wysokość gniazda, można precyzyjnie oszacować wagę gniazda bocianiego [Adam Zbyryt z PTOP podkreśla, że wysokość i waga są ze sobą silnie skorelowane]. Należy przyjąć, że gniazdo o wysokości 0,5 m waży ok. 300 kg, a gniazdo o wysokości 1 metra około 700 kg. Bocianie gniazda są bardzo ciężkie, bo nie są skonstruowane z samych gałęzi, lecz także z obornika, który stanowi budulec na klepisko. Średnio każdego roku ptaki przynoszą do gniazda ponad 60 kg (64 kg) materiału budowlanego. To tak, jakby 70-kilogramowy człowiek, w stosunku do swojej masy, miał przetransportować do domu 1,5 t. Warto przypomnieć, że niedawno ukazał się artykuł zespołu z Polskiego Towarzystwa Ochrony Ptaków, Uniwersytetu w Cambridge i Uniwersytetu Przyrodniczego w Poznaniu, w którym opisano zabieg zachęcający bociany do zasiedlenia gniazda. Polega on na obieleniu przed przylotem ptaków boków gniazda wapnem sadowniczym. Miłośników tych ptaków ucieszy z pewnością wiadomość, że Łomżyński Park Krajobrazowy Doliny Narwi uruchomił właśnie kolejny sezon przekazu online z bocianiego gniazda. Pierwsze bociany pojawiły się już w północno-wschodniej Polsce, więc nie pozostaje nam nic innego jak czekać na naszą medialną parkę z Rakowa. Pierwszy przylatuje samiec i to jego teraz wyczekujemy. Położenie kamerki umożliwia szersze obserwacje ornitologiczne, gdyż rozlewiska w dolinie tętnią obecnie gwarem gęsi, kaczek, łabędzi i innego ptactwa wodno-błotnego. A oto film przedstawiający prace związane ze zmniejszeniem wysokości bocianich gniazd:   « powrót do artykułu
  11. Grawitacja to jedna z tych sił, których oddziaływanie odczuwamy bez przerwy. Należy jednocześnie do najsłabiej rozumianych zjawisk fizycznych. To najsłabsze z oddziaływań podstawowych jest jedną z przyczyn, dla których nie potrafimy zunifikować ogólnej teorii względności z mechaniką kwantową. Jej szczegółowe poznanie jest jednym z najważniejszych wyzwań stojących przed współczesną fizyką. Dlatego tez niezwykle ważna jest możliwość testowania grawitacji we wszystkich możliwych skalach. Dotychczas tego typu eksperymenty prowadzono w skalach makroskopowych, wykorzystując obiekty o masach liczonych w kilogramach. Naukowcy z Instytut Optyki i Informacji Kwantowej Austriackiej Akademii Nauk oraz Wydziału Fizyki Uniwersytetu Wiedeńskiego poinformowali właśnie na łamach Nature o wykryciu oddziaływania grawitacyjnego pomiędzy dwiema złotymi sferami o średnicy 2 milimetrów każda. Masa każdej ze sfer była mniejsza niż 100 miligramów. Autorzy eksperymentu wykorzystali dość standardowe urządzenie. Powtórzyli bowiem eksperyment Cavendisha. Użyli wagi skrętnej zbudowanej ze szklanego pręcika długości 4 cm i średnicy 0,5 mm. Na obu jego końcach umieszczono wspomniane złote sfery. Pręcik był zawieszony na środku na cienkim włóknie szklanym umożliwiającym mu swobodny obrót. Przy mocowaniu umieszczono lustro, które odbijało światło lasera. Centrum masy stanowiła złota sfera o średnicy 2 milimetrów i wadze 90 mikrogramów. Do sfery tej zbliżano sfery przymocowane do pręcika, licząc na to, że sfera będzie je przyciągała, co spowoduje obrót lustra. To z kolei zmieni miejsce, w którym po odbiciu trafi światło lasera. Taka architektura pozwoliła na prowadzenie niezwykle precyzyjnych pomiarów. Problem stanowią jednak zewnętrzne zakłócenia, które trzeba jakoś zniwelować. A nie jest to łatwe. Dość wspomnieć, że ludzie i tramwaje przemieszczający się w pobliżu laboratorium byli źródłem poważnych zakłóceń sejsmicznych. Żeby je zminimalizować  eksperymenty były prowadzone nocą w czasie świąt Bożego Narodzenia. Urządzenie badawcze umieszczono na gumowej podstawie w komorze próżniowej, którą najpierw wypełniono zjonizowanym azotem, by wyeliminować wszelkie ładunki elektryczne. Na wszelki wypadek pomiędzy sferami umieszczono klatkę Faradaya, by wykluczyć ryzyko, że będą one przyciągały się za pomocą oddziaływań elektrostatycznych. Mimo tego, że wszelkie zakłócenia starano się utrzymać na możliwie najniższym poziomie, naukowcy wiedzieli, że oddziaływanie pomiędzy tak lekkimi sferami również będzie niewielkie. Dlatego też, zamiast próbować zmierzyć, na ile się one przyciągają, naukowcy poruszali sferami według regularnego wzorca, jednak częstotliwość ruchów dobrano tak, by była całkowicie różna od naturalnego rezonansu. To spowodowało pojawienie się zmiennego w czasie pola grawitacyjnego i oscylacje wagi, wyjaśnia Jeremias Pfaff. Podczas eksperymentu sfery były zbliżane do siebie na odległość od 2,5 do 5,8 milimetra. Naukowcy stwierdzili, że ich system jest w stanie zarejestrować przyspieszenie rzędu 2x10-11 m/s2. Siłę oddziaływania pomiędzy sferami wyliczono zaś na 9x10-14 niutona. Zmierzenie tak miniaturowych sił to imponujące osiągnięcie technologiczne. Jednak autorzy eksperymentu twierdzą, że w kolejnych etapach swoich badań będą w stanie mierzyć oddziaływania pomiędzy obiektami o masach tysiące razy mniejszych. To zaś oznacza, że mogą dojść do poziomu, przy którym zaczną dziać się zadziwiające rzeczy. Jak już wspomnieliśmy, teoria dotycząca grawitacji jest niekompatybilna z mechaniką kwantową. Jeśli Austriakom rzeczywiście uda się rozpocząć pomiary mas tysiące razy mniejszych niż wspomniane 90 miligramów, mogą zacząć mierzyć oddziaływania obiektów znajdujących się w kwantowej superpozycji. Mierzyliby zatem oddziaływanie pomiędzy obiektami, których położenia nie można określić, a jednocześnie ich oddziaływanie grawitacyjne zależałoby od położenia. Inne potencjalne zastosowanie dla takich eksperymentów to przetestowanie niektórych wersji teorii strun, zmodyfikowanej dynamiki newtonowskiej i innych. Naukowcy z Wiednia muszą jednak najpierw wykazać, że rzeczywiście są w stanie badać obiekty we wspomnianej skali. « powrót do artykułu
  12. W marcowym numerze Physical Letters B ukażą się wyniki nowych badań nad ciemną materią. Ich autorzy znacząco zawęzili limity masy, jaką może mieć cząsteczka ciemnej materii. Dzięki tym badaniom łatwiej będzie ją znaleźć. Wyniki uzyskane przez naukowców z University of Sussex wskazują, że ciemna materia nie może być ani ultralekka, ani superciężka, jak mówią niektóre teorie. Chyba, że podlega ona nieznanym nam jeszcze oddziaływaniom. Brytyjscy naukowcy wyszli z założenia, że jedyną siłą działającą na ciemną materię jest grawitacja. Na tej podstawie obliczyli, że masa ciemnej materii musi zawierać się w przedziale od 10-3 eV do 107 eV. To znacznie węższy zakres niż postulowany dotychczas. Tym, co czyni badania profesora Xaviera Calmeta i doktoranta Folkerta Kuipersa jeszcze bardziej interesującymi, jest stwierdzenie, że jeśli masa ciemnej materii wykracza poza określony przez nich zakres, to działa na nią jeszcze jakaś siła oprócz grawitacji. Po raz pierwszy wykorzystaliśmy to, co wiadomo o grawitacji kwantowej do obliczeń zakresu masy ciemnej materii. Byliśmy zaskoczeni, gdy zdaliśmy sobie sprawę, że dotychczas nikt tego nie zrobił. Równie zaskoczeni byli recenzenci naszej pracy, mówi Xavier Calmet. Wykazaliśmy, że ciemna materia nie może być ani ultralekka, ani superciężka – jak teoretyzują niektórzy – póki nie działa na nią nieznana nam siła. Nasze badania pomogą na dwa sposoby. Po pierwsze pozwolą skupić się na węższym zakresie mas w poszukiwaniu ciemnej materii, po drugie mogą potencjalnie pomóc w odkryciu nieznanej siły we wszechświecie. « powrót do artykułu
  13. Niemieccy naukowcy poinformowali o dokonaniu najbardziej precyzyjnych pomiarów masy jądra deuteru – deuteronu. Pomiary przeprowadzono porównując masę deuteronu do masy jądra węgla 12. To bardzo ważne niezależne sprawdzenie wcześniejszych pomiarów, które dały niejednoznaczne wyniki. Poznanie dokładnej prostego jądra atomowego, jak wodór, deuter, tryt, jonów H2+ i HD+ jest niezwykle ważne z punktu widzenia badań podstawowych. Pozwala to np. przetestować podstawowe teorie fizyczny, jak elektrodynamikę kwantową. Z kolei masa deuteronu może zostać użyta do precyzyjnego określenia masy neutronu, co z kolei ma fundamentalne znaczenie dla metrologii, fizyki atomowej, molekularnej i badań nad neutrinami. Precyzyjnych pomiarów tego typu często dokonuje się za pomocą pułapek Penninga, które wykorzystują silne pola magnetyczne i elektryczne do uwięzienia cząstek. Cząstka taka po uwięzieniu oscyluej w określonej częstotliwości, która zależy od jej masy. Cięższe cząstki oscylują wolniej niż lżejsze. Jeśli więc do tej samej pułapki złapiemy dwa jony o różnych masach, to dzięki pomiarom ich oscylacji możemy poznać stosunek ich mas z bardzo wysoką precyzją (dochodzącą jednej do 8,5 x 10-12). Uczeni z Instytutu Fizyki Jądrowej im. Maxa Plancka, Uniwersytetu Johannesa Gutenberga, GSI Helmholtz Centre for Heavy Ion Research oraz Helmholtz Institute w Moguncji wykorzystali specjalny kriogeniczny spektrometr mas wyspecjalizowany w pomiarach mas lekkich jonów. Urządzenie o nazwie LIONTRAP składa się z serii pułapek Penninga. Jest wśród nich wysoce precyzyjna pułapka korzystająca z siedmiu elektrod oraz dwie przylegające pułapki-magazyny. Całość poddana jest działaniu homogenicznego pola magnetycznego o natężeniu 3,8 tesli, znajduje się w niemal idealnej próżni (o ciśnieniu mniejszym niż 10-17 mbar) i w temperaturze około 4 kelwinów. Deuteron najpierw trafił do pułapki-magazynu, a następnie został umieszczony w wysoce precyzyjnej pułapce. Tam zmierzono jego oscylacje i porównano je z oscylacjami jonu węgla-12. Na tej podstawie stwierdzono, że masa deuteronu wynosi 2.013553212535(17) jednostek atomowych. Liczba w nawiasie oznacza niepewność pomiaru ostatnich cyfr. Masa jonu HD+ określona tą samą metodą została oszacowana na 3.021378241561(61) jednostek atomowych. « powrót do artykułu
  14. Planetą wywierającą największy wpływ na Układ Słoneczny jest Jowisz. Ma on masę 300-krotnie większą od masy Ziemi i 2-krotnie większą od masy Saturna. Każdy jego ruch jest odczuwany przez inne planety. Jowisz jest odpowiedzialny za niewielkie rozmiary Marsa, obecność pasa asteroidów, to dzięki niemu na Ziemię spadły komety, które przyniosły tutaj wodę. Astronomowie z University of Hawai'i odkryli właśnie planetę, która ma 3-krotnie większą masę od Jowisza i jest „władcą” innego, już i tak dziwnego, systemu planetarnego. Masywną planetę, Kepler-88d, odkryto w układzie Kepler-88, który już wcześniej był słynny w środowisku astronomów. Dotychczas wiadomo było, że układ ten zawiera dwie planety, Kepler-88b i Kepler-88c. Dochodzi między nimi do niezwykłego rezonansu orbitalnego. Planeta oznaczona literą „b” ma masę mniejszą od masy Neptuna i okrąża gwiazdę w ciągu 11 dni. To Niemal dokładnie połowa wynoszącego 22 dni okresu orbitalnego planety oznaczonej literą „c”, która ma masę Jowisza. Niemal, gdyż wchodzi tutaj w grę wspomniany już rezonans. Co 2 okrążenia planeta Kepler-88b niezwykle silnie odczuwa oddziaływanie planety Kepler-88c, która jest 20-rotnie bardziej masywna. W wyniku tego oddziaływania Kepler-88b może okrążyć swoją gwiazdę nawet o pół dnia szybciej lub wolniej. Takie zmiany czasu wykonania pełnej orbity znane są również z innych układów planetarnych, a Kepler-88b wyraźnie się tutaj wyróżnia. W jego przypadku to jedne z najbardziej dramatycznych zmian. Teraz jednak astronomowie będą mogli spojrzeć zupełnie inaczej na dynamikę układu Kepler-88, gdyż odkryli w nim nowego władcę – planetę Kepler-88d. Ma ona trzykrotnie większą masę od Jowisza i prawdopodobnie wywiera większy wpływ na cały układ, niż jego dotychczasowy władca, Kepler-88c, którego masa jest równa masie Jowisza, mówi doktor Lauren Weiss, główna autorka badań. Artykuł informujący o odkryciu nowej planety został właśnie opublikowany na łamach The Astronomical Journal. « powrót do artykułu
  15. Jesteśmy coraz bliżej odkrycia masy neutrino. Przez długi czas sądzono, że neutrino ma zerową masę spoczynkową, jednak obecnie wiadomo, że jednak posiada masę. Najnowsze badania wykazały, że masa ta jest nie większa niż 1/500 000 masy elektronu. Udało się bowiem wyznaczyć górną granicę masy neutrino. Wynosi ona 1,1 elektronowolta. To dwukrotnie mniej niż dotychczasowa górna granica masy. We wszechświecie są miliardy razy więcej neutrino niż atomów. Zatem nawet jeśli masa każdego z nich jest niewielka, to w sumie mogą stanowić znaczną część masy wszechświata, mówi Christian Weinheimer z Uniwersytetu w Munster. Międzynarodowy zespół naukowców analizował rozpad trytu. W jego trakcie dochodzi do jednoczesnej emisji elektronu i neutrino. Mierząc energię emitowanych elektronów naukowcy byli w stanie bardziej precyzyjnie niż dotychczas określić masę neutrino. Jesteśmy dumni i szczęśliwi, stwierdza Weinheimer. Brał on udział w pracach międzynarodowej grupy naukowców, którzy stali za eksperymentem Karlsruhe Tritium Neutrino. Na potrzeby badań powstał specjalny spektrometr o wysokości 24 metrów. To bardzo, bardzo ekscytujące. To najbardziej precyzyjny pomiar ze wszystkich, cieszy się Melissa Uchida z University of Cambridge. Jej zdaniem istnieje szansa, że w ciągu kilku najbliższych lat poznamy masę neutrino. W końcu będziemy w stanie ułożyć puzzle dotyczące powstania wszechświata, dodaje uczona. « powrót do artykułu
  16. Gwiazdy neutronowe to najbardziej gęste – nie licząc czarnych dziur – obiekty we wszechświecie. Centymetr sześcienny ich materii waży miliony ton. Naukowcy wciąż je badają próbując znaleźć odpowiedzi na wiele pytań. Chcieliby np. dowiedzieć się, jak wyglądają neutrony ściśnięte tak potężnymi siłami czy gdzie leży granica pojawienia się czarnej dziury. Naukowcy używający Green Bank Telescope donieśli właśnie o odkryciu najbardziej masywnej gwiazdy neutronowej. Pulsar J0740+6620 ma masę 2,17 większą od masy Słońca, a całość jest upakowana w kuli o średnicy zaledwie 30 kilometrów. To bardzo ważne odkrycie, gdyż z danych dostarczonych przez detektor LIGO, który zarejestrował fale grawitacyjne pochodzące ze zderzenia dwóch gwiazd neutronowych wynika, iż 2,17 masy Słońca to bardzo blisko granicy powstania czarnej dziury. Gwiazdy neutronowe są tajemnicze i fascynujące. Te obiekty wielkości miasta przypominają ogromne jądro atomowe. Są tak masywne, że mają dziwaczne właściwości. Gdy dowiemy się, jaka może być ich maksymalna masa, poznamy wiele niedostępnych obecnie faktów z astrofizyki, mówi doktorant Thankful Cromartie. Pulsar J0740+6620 tworzy układ podwójny z białym karłem. To właśnie dzięki temu udało się precyzyjnie określić jego masę. Pulsary emitują bowiem z obu biegunów fale radiowe. Emisja ma miejsce w bardzo regularnych odstępach. Jako, że wspomniany pulsar ma towarzysza, to gdy z ziemskiego punktu widzenia znajduje się za nim, obecność białego karła zagina przestrzeń, co powoduje pojawienie się zjawiska znanego jako opóźnienie Shapiro. Z powodu obecności obiektu zniekształcającego przestrzeń, sygnał radiowy musi przebyć nieco dłuższą drogę, by dotrzeć do Ziemi. W omawianym przypadku opóźnienie wynosi około 10 milisekund. To wystarczy, by na tej podstawie wyliczyć masę białego karła. Gdy już ją znamy, z łatwością da się wyliczyć masę towarzyszącego mu pulsara. Położenie tego układu podwójnego względem Ziemi stworzyło nam wyjątkową okazję. Istnieje granica, poza którą gęstość we wnętrzu gwiazd neutronowych jest tak wielka, iż grawitacja przezwycięża materię i gwiazda dalej się zapada. Każda kolejna „rekordowo masywna” gwiazda neutronowa, którą odkrywamy, przybliża nas do odkrycia tej granicy i pozwala lepiej zrozumieć zjawiska fizyczne zachodzące przy tak olbrzymich gęstościach, mówi astronom Scott Ransom. Badania były prowadzone w ramach programu NANOGrav Physics Frontiers Center. « powrót do artykułu
  17. Resweratrol, polifenol występujący głównie w skórkach winogron, ale także w orzeszkach ziemnych czy owocach morwy i czarnej porzeczce, pomaga zachować masę i siłę mięśni szczurów wystawionych na oddziaływanie warunków grawitacyjnych przypominających Marsa. Mikrograwitacja osłabia mięśnie i kości. Po zaledwie 3 miesiącach w kosmosie ludzkie mięśnie płaszczkowate zmniejszają się o 1/3. Towarzyszy temu utrata włókien wolnokurczliwych, których potrzebujemy dla wytrzymałości - wyjaśnia dr Marie Mortreux z Harvardzkiej Szkoły Medycznej. By umożliwić astronautom bezpieczne odbywanie długich misji na Marsie, trzeba więc opracować strategie ograniczania negatywnego wpływu na mięśnie. Kluczowe będą strategie dietetyczne, zwłaszcza że astronauci podróżujący na Marsa nie będą mieli dostępu do maszyn do ćwiczeń takich jak na Międzynarodowej Stacji Kosmicznej. Świetnym kandydatem wydaje się resweratrol, który poddawano wielu badaniom pod kątem właściwości przeciwzapalnych, antyoksydacyjnych czy przeciwcukrzycowych. Ponieważ u szczurów wykazano, że w warunkach całkowitego odciążenia będącego analogiem mikrograwitacji podczas lotu kosmicznego resweratrol pomaga zachować masę kostną i mięśniową, podejrzewaliśmy, że umiarkowana codzienna dawka polifenolu sprawdzi się również przy zapobieganiu spadkowi kondycji mięśni w warunkach grawitacyjnych Marsa. Oddając warunki grawitacyjne Marsa, naukowcy zastosowali podejście opracowane przez dr Mary Bouxsein dla myszy. Szczury w uprzęży podwieszano na łańcuszku z sufitu klatki. Podczas eksperymentu 24 samce szczurów przez 14 dni wystawiano na oddziaływanie grawitacji ziemskiej lub stanowiącej odpowiednik grawitacji z Marsa (40% grawitacji ziemskiej). W każdej grupie połowa gryzoni dostawała wodę z resweratrolem w dawce 150 mg/kg masy ciała dziennie. Reszta piła zwykłą wodę. Poza tym wszystkie zwierzęta jadły tę samą karmę. Co tydzień mierzono obwód łydki oraz siłę chwytu przedniej i tylnej łapy. Po upływie 2 tygodni przeprowadzono badanie histologiczne mięśni łydki. Tak jak oczekiwano, symulacja warunków z Marsa doprowadziła do osłabienia siły uchwytu, zmniejszenia obwodu łydki, masy mięśniowej i zawartości włókien wolnokurczliwych. Okazało się jednak, że suplementacja polifenolem sprawiła, że siła chwytu łap była niemal taka sama, jak u niesuplementowanych zwierząt z warunków ziemskich. Co ważne, resweratrol w pełni ochronił masę mięśniową (mięsień płaszczkowaty i brzuchaty) szczurów z symulowanych warunków z Marsa, a zwłaszcza ograniczył utratę włókien wolnokurczliwych. Ochrona nie była jednak całkowita; doszło bowiem do pewnego spadku obwodu łydki (spadła średnia powierzchnia przekroju włókien obu wymienionych mięśni). Resweratrol nie wpłynął ani na spożycie pokarmów, ani na całkowitą wagę ciała. Mortreux podkreśla, że wcześniejsze badania nad resweratrolem mogą pomóc w wyjaśnieniu uzyskanych wyników. Ważnym czynnikiem jest tu zapewne insulinowrażliwość. U zwierząt odciążonych bądź z cukrzycą resweratrol sprzyja wzrostowi mięśni, zwiększając insulinowrażliwość i wychwyt glukozy we włóknach mięśniowych. Ma to spore znaczenie dla astronautów, u których podczas lotów dochodzi do spadku insulinowrażliwości. Amerykanka dodaje, że nie bez znaczenia są też właściwości przeciwutleniające resweratrolu. Konieczne są dalsze badania, które pomogą ocenić wchodzące w grę mechanizmy, a także wpływ różnych dawek resweratrolu (do 700 mg/kg masy ciała dziennie) na samce i samice. Dodatkowo trzeba będzie ocenić, czy resweratrol nie wchodzi w niekorzystne interakcje z lekami podawanymi astronautom w czasie misji. « powrót do artykułu
  18. W artykule, opublikowanym właśnie na łamach Physical Review Letters, grupa fizyków wysunęła hipotezę, że fale dźwiękowe... posiadają masę. To zaś by oznaczało, że mogą odczuwać bezpośredni wpływ grawitacji. Uczeni sugerują, że fonony w polu grawitacyjnym mogą posiadać masę. Można by się spodziewać, że zagadnienia z zakresu fizyki klasycznej, takie jak to, są od dawna rozstrzygnięte, mówi główny autor artykułu, Angelo Esposito z Columbia University. Wpadliśmy na to przypadkiem, dodaje. W ubiegłym roku Alberto Nicolis z Columbia University i Riccardo Penco z Carnegie Mellon University zasugerowali, że fonony mogą mieć masę w materii nadciekłej. Esposito i jego zespół twierdzą, że efekt ten można obserwować też w innych ośrodkach, w tym w zwykłych płynach, ciałach stałych oraz w powietrzu. Mimo, że masa niesiona przez fonon jest niewielka i wynosi około 10-24 grama, może być mierzalna. Jednak, jeśli próbujemy ją zmierzyć, okaże się że jest ona ujemna, zatem fonon będzie „spadał do góry”, czyli oddalał się od źródła grawitacji. Gdyby ich masa była dodatnia, opadałyby w dół. Jako, że jest ujemna, opadają w górę, mówi Riccardo Penco. Przestrzeń na jakiej „opadają” jest równie niewielka, co ich masa i zależy od medium, przez który fonon się przemieszcza. W wodzie, gdzie dźwięk przenosi się z prędkością 1,5 kilometra na sekundę, ujemna masa fononu powoduje, że odchylenie wynosi 1 stopień na sekundę. Taki odchylenie bardzo trudno zmierzyć. Nie jest to jednak niemożliwe. Zdaniem Esposito można by tego dokonać w ośrodku, w którym dźwięk przemieszcza się bardzo wolno. Wykonanie pomiaru powinno być możliwe np. w nadciekłym helu, gdzie prędkość dźwięku może spaść do kilkuset metrów na sekundę. Alternatywnym sposobem dla poszukiwania miniaturowych skutków przechodzenia fononu przez egzotyczne ośrodki może być szczegółowe badania bardzo intensywnych fal dźwiękowych. Z wyliczeń zespołu Esposito wynika, że trzęsienie ziemi o sile 9 stopni powinno uwolnić tyle energii, że zmiana przyspieszenia dźwięku w polu grawitacyjnym powinna być mierzalna za pomocą zegarów atomowych. Co prawda obecnie dostępna technologia nie jest wystarczająco czuła, by wykryć pole grawitacyjne fal sejsmicznych, ale w przyszłości powinno być to możliwe. Zanim nie przeczytałem tego artykułu, sądziłem, że fale dźwiękowe nie przenoszą masy, mówi Ira Rothstein z Carnegie Mellon University. To ważne badania, gdyż okazuje się, że w fizyce klasycznej, o której sądzimy, że ją rozumiemy, można znaleźć coś nowego. Wystarczy dokładnie się przyjrzeć, by znaleźć niezbadane obszary. Esposito nie wie, dlaczego dotychczas nikt nie wpadł na ten pomysł, co jego zespół. Może dlatego, że zajmujemy się fizyką wysokich energii, więc grawitacja to nasz chleb powszedni. To nie żadne teoretyczne czary-mary. Można było wpaść na to już przed wielu laty. « powrót do artykułu
  19. Grupa naukowców z University of Illinois informuje na łamach Smart Materials and Structures o stworzeniu sztucznego mięśnia, zdolnego do podniesienia ciężaru o masie do 12 600 razy większej niż jego własna masa. To jednak nie wszystko. Zbudowany z gumy siloksanowej wzmocnionej włóknem węglowym mięsień jest w stanie wytrzymać naprężenia mechaniczne do 60 MPa i wykonać pracę właściwą do 758 J/kg. To 18-krotnie więcej niż jakikolwiek znany mięsień naturalny. Twórcy sztucznego mięśnia udowodnili, że włókno o średnicy 0,4 mm jest w stanie podnieść na wysokość 3,5 centymetra ciężar o wadze 1,9 kg. By to osiągnąć wystarczy włókno potraktować napięciem wynoszącym zaledwie 0,172 V/cm. Możliwości zastosowanie takiego lekkiego i taniego mięśnia są naprawdę bardzo szerokie i rozciągają się od robotyki poprzez protetykę i ortetykę po urządzenia wspomagające pracę człowieka, mówi Catrina Lamuta, jedna z autorek mięśnia. Model matematyczny, który wykorzystaliśmy w naszej pracy, to przydatne narzędzie do projektowania sztucznych mięśni. Pozwala on w pełni zrozumieć znaczenie wszystkich parametrów, które odgrywają rolę w mechanizmie ruchu, dodaje. « powrót do artykułu
×
×
  • Dodaj nową pozycję...