Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'antymateria' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 13 wyników

  1. KopalniaWiedzy.pl

    Dlaczego nie powstaliśmy z antymaterii?

    Na początku było po równo - materii i antymaterii. Tak głosi teoria Wielkiego Wybuchu. Tymczasem nasz świat złożony jest wyłącznie z materii. Gdzie się zatem podziała cała antymateria, którą obserwujemy tak rzadko? Ośmioletnie badania nad neutrinami w ośrodku Fermilab sugerują zaburzenie symetrii CP (ładunku i przestrzeni) pomiędzy materią i antymaterią i mogą stanowić wyjaśnienie zagadkowej nierównowagi. Neutrino, jedna z podstawowych cząstek Modelu Standardowego jest wyjątkowo trudnym obiektem badań. Nie posiada ładunku elektrycznego i niemal nie posiada masy. Rzadko styka się z większymi cząsteczkami a trudno obserwować coś, co przelatuje na wylot przez każdą aparaturę badawczą. Dlatego badania nad neutrinami wymagają olbrzymich detektorów i szaleńczej cierpliwości. Coś jednak wiemy: neutrina, jakie znamy, występują w trzech odmianach (zwanych zapachami) - neutrino elektronowe, mionowe i taonowe. Jedną z zagadkowych ich właściwości jest oscylacja - biegnąc przez przestrzeń neutrina nieustannie przechodzą z jednego rodzaju w drugie. Podobnie ma się sprawa, jak się uważa, z antyneutrinami. Przynajmniej uważano do niedawna, bo dziś kwestia nie jest taka pewna. W roku 1990 (w skali czasu potrzebnego na badanie neutrin to bardzo niedawno) badania wykonywane przy pomocy detektora neutrin LSND (Liquid Scintillator Neutrino Detector) w Laboratorium Narodowym w Los Alamos wykazały większą od spodziewanej ilość oscylacji antyneutrin na niewielkich odległościach, co mogło sugerować istnienie czwartego typu (zapachu) neutrina, nazwanego „sterylnym". Więc jest ta symetria, czy jej nie ma? Potwierdzenie takich odkryć nie jest łatwe i nikomu się nie udawało. Dlatego w roku 2002 w ośrodku badawczym Fermilab pod Chicago zbudowano detektor neutrin MiniBooNE. Zbudowany jest on z półkilometrowego podziemnego tunelu, na którego krańcu znajduje się ogromny zbiornik z olejem mineralnym. Zderzenia neutrin - bardzo rzadkie - z cząsteczkami oleju są rejestrowane i można stwierdzić, do jakiego typu należało kolidujące neutrino. Przez pięć lat prowadzono obserwację oscylacji neutrin i wreszcie w roku 2007 uznano, że kontrowersyjne odkrycie z Los Alamos nie zostało potwierdzone. Od tego czasu jednak przerzucono się na gromadzenie danych na temat oscylacji antyneutrin. Po trzech latach rejestracji można było wstępnie przejrzeć wyniki - i tu zaskoczenie: zaobserwowano więcej oscylacji antyneutrin, niż wynikałoby z wyliczeń dla jedynie trzech typów. Otwiera się pole dla istnienia czwartego zapachu antyneutrina i niewykluczone, że również następnych. Rezultat jest pierwszym doświadczalnym obaleniem symetrii CP - teorii, że materia i antymateria zachowują się jednakowo, w sposób „lustrzany" względem siebie. Pociąga to za sobą istną rewolucję: konieczność przebudowania całego Modelu Standardowego i fizyki cząsteczkowej. Fizycy teoretycy już tworzą pierwsze teorie i modele wyjaśniające ten fenomen i uzupełniające naszą wiedzę. Zanim jednak rewolucja w fizyce zostanie hucznie ogłoszona, potrzebne jest jej mocniejsze potwierdzenie. Po trzech latach gromadzenia danych ich pewność wynosi 99,7% - dla zwykłego człowieka dużo, dla naukowca wciąż zbyt mało. Aby wynik uznano za dowiedziony, potrzebna jest pewność przynajmniej 99,99994%. Dlatego rejestracja danych i badanie oscylacji antyneutrin w Fermilabie będzie trwało jeszcze przynajmniej półtora roku.
  2. KopalniaWiedzy.pl

    Silnik na antymaterię

    Grupa naukowców współpracuje z NASA w celu stworzenia nowego typu silnika, który wykorzystywałby antymaterię. Jeśli taka konstrukcja powstanie, lot na Marsa będzie wymagał zużycia kilku miligramów paliwa. Wysłanie pierwszego człowieka na Księżyc rozbudziło nadzieję, że już wkrótce ludzie będą podróżowali na inne planety. Obecnie, 40 lat to tamtym wydarzeniu, wysłanie człowieka na Marsa jest wciąż odległą perspektywą. Do przezwyciężenia pozostało wiele problemów finansowych i technicznych. Jednym z nich jest napęd statku kosmicznego. Użycie tradycyjnego chemicznego paliwa do takiej misji jest mało praktyczne, ponieważ pojazd kosmiczny musiałby zabrać ze sobą olbrzymie ilości takiego środka napędowego, a to znacząco zwiększy jego masę i koszty samej ekspedycji. Z tego też powodu rozważane jest wykorzystanie silnika działającego dzięki reakcjom atomowym. Taka możliwość rozważana była już od lat 60. ubiegłego wieku w ramach programu Nuclear Engine for Rocket Vehicle Application (NERVA), jednak w 1972 roku zrezygnowano z tego pomysłu. Ponownie wzięto go pod uwagę w roku 2003, gdy narodził się Projekt Prometeusz. Wydaje się, że napęd atomowy jest najbardziej prawdopodobną opcją, która zostanie wykorzystana podczas marsjańskiej misji. Ma on jednak poważną wadę, którą jest duża radioaktywność. Z tego też powodu doktor Gerald A. Smith, założyciel firmy Positronics Research, kieruje pracami zespołu z NASA Institute for Advanced Concepts (NIAC), którego zadaniem jest stworzenie silnika wykorzystującego antymaterię. Takie silniki są dobrze znane z literatury czy filmów science-fiction. Antymateria jest bowiem najpotężniejszym znanym nam paliwem. Tym co czyni ją tak potężną jest fakt, że w reakcji z materią cała zamienia się na energię. Dla porównania: jedynie około 3% ładunku bomby atomowej jest zamieniane w energię. Doktor Smith informuje, że 10 miligramów pozytronów dostarczy pojazdowi 23 razy więcej energii, niż całe paliwo, zabierane obecnie przez promy kosmiczne. Antymateria ma jednak swoje minusy. Niektóre reakcje z jej wykorzystaniem prowadzą do powstania promieniowania gamma, które jest niebezpieczne dla organizmów żywych. Ponadto może ono doprowadzić, poprzez reakcję z materiałami, z których zbudowany jest silnik, do tego, iż urządzenie to stanie się radioaktywne. Amerykańscy uczeni próbują stworzyć napęd, który byłby pozbawiony takich "skutków ubocznych”. Chcą tego dokonać dzięki obniżeniu energii promieni gamma. Początkowo rozważano wykorzystanie jako paliwa protonów. Obecnie naukowcy mają zamiar użyć pozytronów, ponieważ powstające z nich promienie gamma mają około 400-krotnie mniej energii. Energię z antymaterii można uzyskać podczas jej reakcji z materią. Po spotkaniu pozytronów (czyli antyelektronów) z elektronami, dochodzi do anihilacji obu cząstek i wytwarzane jest ciepło. Pomysł naukowców polega na tym, by ze specjalnego pojemnika dostarczać pozytrony do reaktora, gdzie dochodziłoby do reakcji z materią i uwolnienia ciepła. Byłoby ono odbierane przez krążący w reaktorze ciekły wodór. Ten z kolei przepływałby do dysz, z których byłby wyrzucany na zewnątrz, nadając pojazdowi przyspieszenie. W porównaniu do napędu atomowego, taki silnik byłby znacznie prostszy w konstrukcji i bezpieczniejszy w użyciu. NIAC zaproponował obecnie NASA trzy modele silników: 1. z rdzeniem stałym – energia przekazywana jest do paliwa umieszczonego w matrycy z wolframu, który podgrzewa się anihilując promieniowanie gamma. Jego zaletą jest fakt, iż mamy tu do czynienia z dobrze znaną technologią. Wadą natomiast – ograniczenie efektywności działania, gdyż wolframu nie można oczywiście podgrzać powyżej temperatury jego topnienia. 2. z rdzeniem gazowym – energia przekazywana jest bezpośrednio do gazowego lub płynnego paliwa, które podgrzewa się anihilując promienie gamma. Zaleta takiego rozwiązania to brak limitu spowodowanego temperaturą topnienia. Wadą zaś możliwość zamienienia się takiego paliwa w plazmę. 3. z ablacją ciała stałego – energia jest przekazywana do materiału, którym pokryty jest "tłok” silnika i zużywa go stopniowo do napędzania pojazdu. Wśród zalet tej propozycji uczeni wymieniają prostotę konstrukcji i brak ograniczeń technologicznych. Wśród wad – fakt, iż połowa promieni gamma nie trafia w „tłok”, więc maksymalna efektywność całego systemu wynosi 50 procent. Pewnym ograniczeniem jest również tempo produkcji pozytronów. Obecnie jest ono zbyt wolne. Doktor Smith mówi, że gdyby udało je się przyspieszyć stukrotnie, to potrzebne do marsjańskiej misji 10 miligramów paliwa powstałoby w ciągu trzech lat. Koszt jego produkcji to 250 milionów dolarów. Do tego należy doliczyć 1,5 miliarda USD na odpowiedni akcelerator, w którym powstawałoby paliwo. Zdaniem Smitha potrzebna ilość paliwa pozytronowego mogłaby powstać w ciągu 5-10 lat. Uczeni zdążyliby więc z nim na czas, ponieważ USA planują rozpoczęcie misji na Marsa około roku 2030.
  3. Naukowcy pracujący w CERN-ie przy eksperymencie ALPHA dokonali kolejnego istotnego kroku na drodze ku zrozumieniu antymaterii i budowy wszechświata. Eksperymentalnie wykazali, że są w stanie zbadać strukturę wewnętrzną atomu antywodoru. Wiemy, że jest możliwe zaprojektowanie eksperymentu, który pozwoli nam na wykonanie szczegółowych pomiarów antyatomów - mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA. Nasz wszechświat wydaje się niemal w całości zbudowany z materii. Antymateria gdzieś zniknęła. Tymczasem podczas Wielkiego Wybuchu powinno być jej tyle samo co materii. Zetknięcie materii i antymaterii prowadzi do ich anihilacji. Przewaga materii we wszechświecie sugeruje, że natura preferuje ją nad antymaterię. Jeśli uda się szczegółowo zbadać atomy antymaterii będziemy bliżsi odpowiedzi na pytanie o tę preferencję. W czerwcu ubiegłego roku informowaliśmy, że ekspertom z CERN-u udało się uwięzić i przechować atomy antywodoru przez 1000 sekund. Wówczas Joel Fajans, jeden z naukowców pracujących przy ALPHA mówił, że tysiąc sekund to aż nadto czasu, by wykonać pomiary schwytanego antyatomu. To wystarczająco długo, by np. zbadać jego interakcję z promieniem lasera czy mikrofalami. W skład atomu wodoru wchodzi elektron. Oświetlając atom laserem można doprowadzić do pobudzenia elektronu, który przeskoczy na wyższą orbitę, a następnie powróci na oryginalną orbitę, emitując przy tym światło. Możliwe jest bardzo precyzyjne zmierzenie spektrum tego światła, które w świecie materii jest unikatowe dla wodoru. Teoretycznie niemal identyczne spektrum powinniśmy uzyskać z pobudzenia atomu antywodoru. I właśnie dokonanie takiego pomiaru jest ostatecznym celem eksperymentu ALPHA. Wodór to najbardziej rozpowszechniony pierwiastek we wszechświecie. Jego strukturę rozumiemy bardzo dobrze. Teraz możemy zacząć odkrywać prawdę o antywodorze. Czy są one różne? Czas pokaże - mówi Hangst. Naukowcy dokonali właśnie pierwszych pomiarów antywodoru. Atomy najpierw zostały złapane w magnetyczną pułapkę. Następnie oświetlono je mikrofalami o precyzyjnie dobranej częstotliwości. To spowodowało zmianę orientacji magnetycznej antyatomów i uwolnienie się ich z pułapki. Wówczas antyatomy napotkały na atomy i doszło do ich anihilacji, co pozwoliło czujnikom na zarejestrowanie charakterystycznego wzorca tego zdarzenia. To z kolei dowiodło, że możliwe jest przeprowadzenie eksperymentu, w którym właściwości wewnętrzne atomu antywodoru zostaną zbadane za pomocą mikrofal.
  4. KopalniaWiedzy.pl

    Antyprotony otaczają Ziemię

    Satelita odkrył antyprotony uwięzione przez pole magnetyczne Ziemi. To kolejne, po pozytronach, cząsteczki antymaterii otaczające naszą planetę. Naładowane cząsteczki bez przerwy penetrują atmosferę, zderzając się z obecnymi tam cząsteczkami. W wyniku kolizji powstają nowe cząsteczki, z których wiele uwięzionych jest w pasach Van Allena. Pasy te to dwa półkoliste obszary naładowanych cząsteczek, otaczające Ziemię. Składają się one głównie z elektronów i protonów. Już wcześniej odkryto tam też pozytrony, czyli odpowiedniki elektronów z antymaterii. Teraz narzędzie PAMELA, znajdujące się na pokładzie rosyjskiego satelity, trafiło na ślad antyprotonów, które są niemal 2000 razy cięższa od pozytronów. O odkryciu poinformował Piergiorgio Picozza z Uniwersytetu Roma Tor Vergata. Pomiędzy lipcem 2006 a grudniem 2008 PAMELA odkryła 28 antyprotonów uwięzionych w polu magnetycznym Ziemi nad biegunem południowym. Jako, że PAMELA bada jedynie niewielki fragment pola, można przypuszczać, że antyprotonów są miliardy. To interesujące, że pole magnetyczne Ziemi działa podobnie do pułapek magnetycznych, które wykorzystujemy w laboratorium - mówi Rolf Landua z CERN-u. Alessandro Bruno z Uniwersytetu w Bari uważa, że antymateria uwięziona przez pole magnetyczne Ziemi może pewnego dnia posłużyć jako paliwo dla pojazdów kosmicznych. Podczas interakcji pomiędzy materią a antymaterią dochodzi do produkcji energii, a proces ten jest bardziej efektywny niż fuzja zachodząca we wnętrzu Słońca. To najbardziej obfite źródło antyprotonów w pobliżu Ziemi. Kto wie, może pewnego dnia pojazd kosmiczny wystrzelony z Ziemi zostanie zatankowany w tym obszarze protonami i uda się w dalszą podróż - mówi Bruno.
  5. Dragan Slavkov Hajdukovic, fizyk z Czarnogóry, który obecnie pracuje w CERN, nakreślił w swoim studium opublikowanym w Astrophysics and Space Science mechanizm zmieniający materię w antymaterię, skutkujący naprzemiennymi cyklami kurczenia się wszechświata i jego powstawania wskutek wybuchu. Koncepcja ta nie jest nowa. Sam Hajdukovic wspomina, że w 1922 roku kosmolog Alexander Friedmann zauważył, że ogólna teoria względności jest zgodna z koncepcją cyklicznego wszechświata. Od tamtego czasu pojawiło się kilka tego typu koncepcji. To, co proponuje Hajdukovic nie jest kolejnym pomysłem cyklicznego wszechświata napędzanego materią. Opisał on mechanizm, który pozwala na przemianę wszechświata zdominowanego przez materię w taki zdominowany przez antymaterię. Hajdukovic wychodzi od par cząsteczka-antycząsteczka pojawiających się w kwantowej próżni. Teoria nieoznaczoności zezwala na ich pojawianie się i zanikanie w takiej próżni. Do wyjaśnienia, w jaki sposób wirtualne pary stają się realnymi uczony posłużył się mechanizmem Schwingera, zgodnie z którym pole elektryczne silniejsze od pewnej granicznej wartości może z kwantowej próżni utworzyć parę elektron-pozytron. Zdaniem Hajdukovica, w grawitacyjnej wersji mechanizmu rolę „wyzwalacza" może odegrać grawitacja, która może spowodować powstanie zarówno neutralnej jak i naładowanej pary cząsteczka-antycząsteczka. Uczony przyjmuje też założenie, że materia i antymateria się odpychają. Siła odpychania może mieć źródło w grawitacji lub poza nią. W tym miejscu Hajdukovic przyjmuje istnienie siły działającej pomiędzy materią i antymaterią, która ma znaczenie tylko na krótkim dystansie, np. wewnątrz horyzontu zdarzeń czarnej dziury. Tak czy inaczej odległość, na której ona działa, jest mniejsza niż promień Schwarzschilda. Gdy wszechświat przestanie się rozszerzać, a zacznie kurczyć, w pewnym momencie utworzy supermasywną czarną dziurę, wewnątrz której będzie istniało niezwykle silne pole grawitacyjne. Zadziała mechanizm Schwingera, w wyniku którego powstaną pary materia-antymateria. Natychmiast po tym bardzo gwałtownie zadziałają siły odpychające je od siebie, co spowoduje zamianę niemal całej materii w antymaterię (lub odwrotnie) w bardzo krótkim czasie. Przebieg procesu będzie zależał od wielkości czarnej dziury, ale będziemy mieli do czynienia z krótkotrwałym, gwałtownym zjawiskiem. Podobny do Wielkiego Wybuchu. Z obliczeń Hajdukovicia wynika, że w ciągu sekundy może dojść do przemiany 10^128 kilogramów antymaterii w materię lub odwrotnie. To wielokrotnie więcej niż obecna masa wszechświata, która jest szacowana na 10^53 kilograma. Jeśli uczony ma rację, to cała materia wszechświata może zostać zmieniona w antymaterię w ułamku czasu Plancka. Jeśli teoria Hajdukovicia jest prawdziwa, oznacza ona, że wszechświat nie może zamienić się w osobliwość, gdyż jego minimalna wielkość musi wynosić około 40 rzędów wielkości więcej niż długość Plancka. Skoro zaś wszechświat nie był osobliwością, to nie zaszła również kosmologiczna inflacja. Teoria Czarnogórca wyjaśnia również problem nierównowagi pomiędzy materią a antymaterią we współczesnym wszechświecie. Poprzedni wszechświat był zbudowany z antymaterii, która po skurczeniu się i przejściu opisanych powyżej etapów zmieniła się w materię. Następny również będzie składał się z antymaterii. Najwyraźniej nasze najlepsze teorie fizyczne są niewystarczające, by wyjaśnić obserwowane zjawiska z astrofizyki i kosmologii. Standardowy model kosmologiczny zakłada istnienie tajemniczych ciemnych energii i ciemnych materii stanowiących 95% zawartości wszechświata oraz istnienie dwóch mechanizmów o nieznanej naturze, związanych z rozszerzaniem się wszechświata i asymterii materia-antymateria w pierwotnym wszechświecie. Standardowy model kosmologiczny jest oparty w większej mierze na hipotezach niż na fizyce. Taka sytuacja mnie nie satysfakcjonuje. Mój model to próba zrozumienia zjawisk astrofizycznych i kosmologicznych na gruncie fizyki, bez włączania w to nieznanych form materii i energii, nieznanych mechanizmów stojących za rozszerzaniem wszechświata czy asymetrii materia-antymateria - mówi Hajdukovic. Uczony nie pierwszy raz twierdzi, że wszechświat można zrozumieć na gruncie znanej nam fizyki. Na przykład w niedawno opublikowanym dokumencie Czy ciemna materia to iluzja wywołana grawitacyjną polaryzacją próżni kwantowej przedstawia równania, które pozwalają wyjaśnić obserwowane zjawiska bez odwoływania się do ciemnej materii. Jeśli pytacie mnie, jaki jest klucz do zrozumienia wszechświata, to odpowiem, że to kwantowa próżnia z - na chwilę obecną hipotetycznym - odpychaniem się materii i anymaterii. Jeden prosty klucz, zamiast czterech tajemniczych kluczy kosmologii standardowej. Moja odpowiedź może być błędna, ale jeśli jest prawidłowa, oznacza ona olbrzymie zmiany w fizyce teoretycznej, astrofizyce i kosmologii - dodaje uczony. Jego zdaniem już teraz możliwe jest zmierzenie jednego z głównych składników jego teorii. Możemy wykryć odpychanie grawitacyjne pomiędzy materią i antymaterią. Można do tego wykorzystać AEGIS z CERN-u, którego zadaniem jest badania przyspieszenia antywodoru w polu grawitacyjnym ziemi. Inny eksperyment można przeprowadzić dzięki Ice Cube, który mógłby obserwować antyneutrina z supermasywnych czarnych dziur znajdujących się w centrum Drogi Mlecznej i galaktyki Andromedy.
  6. KopalniaWiedzy.pl

    Elektron - sfera niemal idealna

    Uczeni z Imperial College London dokonali najdokładniejszych pomiarów elektronu w historii i dowiedzieli się, że jest on niemal idealną sferą. Eksperyment, który trwał ponad dekadę wykazał, że odchylenie od idealnej sfery wynosi w przypadku elektronu 0.000000000000000000000000001 cm. To oznacza, że jeśli powiększylibyśmy elektron do rozmiarów Układu Słonecznego, to odchylenie od ideału nie przekroczy grubości ludzkiego włosa. Fizycy z ICL badali elektrony fluorku iterbu. Za pomocą niezwykle precyzyjnego lasera mierzyli ich ruch. Gdyby elektrony nie były idealnymi sferami, zauważonoby chybotanie elektronu w czasie ruchu, a niczego takiego nie odnotowano. Teraz Brytyjczycy chcą dokonać jeszcze bardziej precyzyjnych pomiarów. Ich badania są bardzo istotne, gdyż pozwalają na poszerzenie naszej wiedzy o antymaterii. Ta bowiem powinna zachowywać się identycznie, jak zwykła materia. Odpowiednikiem elektronu w antymaterii jest pozytron. Badając elektron dowiadujemy się jak wygląda i jak zachowuje się pozytron, a zatem dowiadujemy się, jak różnią się materia i antymateria. Gdyby elektron nie był idealną sferą, oznaczałoby to, ze materia i antymateria różnią się znacznie bardziej, niż dotychczas sądzono, a to z kolei pozwoliłoby wyjaśnić, dlaczego antymateria zniknęła z wszechświata.
  7. KopalniaWiedzy.pl

    Ciemna energia nie jest potrzebna?

    Od kilkudziesięciu lat wiadomo, że wszechświat rozszerza się i robi to z coraz większą prędkością. Obowiązujące obecnie teorie mówią, że za zjawisko to odpowiedzialna jest ciemna energia. Tymczasem Massimo Villata z obserwatorium astronomicznego w Turynie uważa, że rozszerzanie się wszechświata spowodowane jest oddziaływaniem materii i antymaterii. Jego zdaniem odpychają się one od siebie, tworząc rodzaj antygrawitacji, dzięki której z teorii możemy pozbyć się ciemnej energii. Villata wyprowadza swoje rozważania z dwóch założeń. Pierwsze to stwierdzenie, że materia i antymateria mają dodatnią masę i gęstość energetyczną. Takie założenie oznacza, że skoro cząsteczki mają masę i antycząsteczki też ją mają, to z pewnością cząsteczki przyciągają cząsteczki, a antycząsteczki przyciągają antycząsteczki. Jednak aby wyjaśnić interakcje zachodzące pomiędzy cząsteczkami i antycząsteczkami Villata korzysta z drugiego założenia. Brzmi ono, że ogólna teoria względności działa tak samo niezależnie od symetrii CPT. Oznacza to, że prawa rządzące cząsteczkami w polu czasoprzestrzennym są tak samo ważne, niezależnie od tego, jak wygląda symetria CPT (ładunku, położenia i czasu). Jeśli zatem odwrócimy równanie ogólnej teorii względności odnoszące się do CPT czy to dla samej cząsteczki czy dla pola czasoprzestrzennego, w którym się porusza, to uzyskamy zmianę znaku przy wartości grawitacji, co wskazuje na występowanie antygrawitacji. Villata obrazuje to słynnym jabłkiem Newtona. Gdyby antyjabłko spadło na antyZiemię, to oba te obiekty przyciągałyby się i antyNewton zostałby trafiony w głowę. Tymczasem antyjabłko nie mogłoby spaść na zwykłą Ziemię, która jest zbudowana z zwykłej materii. Antyjabłko odleciałoby z Ziemi, gdyż doszłoby do zmiany wartości znaku grawitacji pomiędzy nimi. Jeśli zatem, twierdzi Villata, ogólna teoria względności jest niezmienna względem CPT to antygrawitacja powoduje, że cząsteczki i antycząsteczki ciągle się od siebie odpychają. W większej skali objawia się to rozszerzaniem wszechświata, gdyż materia i antymateria odpychają się od siebie. Villata poradził sobie również z pytaniem, dlaczego nie dochodzi do anihilacji materii i antymaterii. uważa on, że są one od siebie zbyt oddalone. Znajdują się bowiem w olbrzymich przestrzeniach pomiędzy gromadami galaktyk.
  8. Należący do NASA Fermi Gamma-ray Space Telescope zaobserwował strumienie antymaterii, które powstają ponad ziemskimi burzami. Nigdy wcześniej nie widziano podobnego zjawiska. Naukowcy sądzą, że cząstki antymaterii powstają podczas ziemskich rozbłysków gamma (TGF), które obserwowano podczas burz i łączy się je z błyskawicami. Oblicza się, że codziennie na Ziemi dochodzi do około 500 przypadków TGF. Te sygnały to pierwszy bezpośredni dowód na powstawanie antymaterii podczas burz - mówi Michael Briggs z zespołu Fermi's Gamma-ray Burst Monitor na University of Alabama. Fermi, którego zadaniem jest obserwacja promieni gamma, zaobserwował wysoko energetyczne elektrony oraz pozytrony, czyli ich odpowiednik w antymaterii. Gdy elektron spotyka się z pozytronem dochodzi do anihilacji obu cząsteczek i rozbłysku gamma. GBM wykrył promienie gamma o energii 511 000 elektronowoltów, co wskazuje, że jego źródłem jest anihilacja cząsteczki i antycząsteczki. Do odkrycia antymaterii doszło przypadkiem. Fermi GBM ma za zadanie monitorowanie ziemskich rozbłysków gamma i ma w tym zakresie spore osiągnięcia. Operatorzy urządzenia starają się umieszczać je nad burzami. Jednak nie zawsze się to udaje. Tak było 14 grudnia 2009 roku, gdy Fermi znajdował się nad Egiptem, a burza miała miejsce nad położoną 4500 kilometrów dalej Zambią. Nawet mimo tego, że Fermi nie widział burzy, to był z nią magnetycznie połączony. TGF wytworzyło wysokoenergetyczne elektrony i pozytrony, które przeniosły się wzdłuż linii pola magnetycznego i trafiły w Fermi - mówi Joseph Dwyer z Florida Institute of Technology. Strumień cząstek przeszedł przez Fermi, dotarły do tzw. punktu lustrzanego, gdzie jego ruch został odwrócony i 23 milisekundy później ponownie dotarł do urządzenia. Wówczas za każdym razem, gdy pozytron z powracającego strumienia uderzył w elektron przechodzący po raz pierwszy przez urządzenie, dochodziło do anihilacji i rozbłysku gamma rejestrowanego przez GBM.
  9. KopalniaWiedzy.pl

    Anihilacja nie taka prosta

    Model antymaterii, w tym jej anihilacji ze „zwykłą" materią wydawał się prosty i zrozumiały, przecież samą antymaterię wytwarza się już rutynowo. Tak było do czasu eksperymentów, jakie w genewskim CERNie przeprowadził międzynarodowy zespół uczonych z Danii, Węgier, Wielkiej Brytanii i Japonii bombardując cząsteczkowy wodór wolnymi antyprotonami. Odmienność doświadczenia polegała na bombardowaniu nie pojedynczych atomów, lecz cząsteczek, na początek wybrano najprostsze: wodór, a dokładniej gazowy deuter (ciężki izotop wodoru z neutronem w jądrze). Za pociski posłużyły antyprotony, które spowolniono do jednej setnej prędkości światła. Ujemnie naładowane antyprotony nie przyciągają również posiadających ujemny ładunek elektronów, a niewielka prędkość pozwala na pominięcie skomplikowanych poprawek relatywistycznych. Eksperyment, którym kierował Japończyk z instytutu RIKEN, Yasunori Yamazaki, wykazał, że prawdopodobieństwo jonizacji cząsteczek deuteru zależy liniowo od prędkości antyprotonów, co stoi w sprzeczności z oczekiwaniami i dotychczasowym modelem dla atomowego wodoru. Nie jest znany mechanizm tego zachowania. Poszukując teoretycznego wyjaśnienia członkowie zespołu spekulują, że cząsteczkowy cel posiada mechanizm hamujący jonizację - podczas zbliżania się antyprotonu do protonu w jednym jądrze cząsteczki obecność protonu w drugim jądrze powoduje przemieszczenie orbitującej chmury elektronów. Im wolniejszy antyproton, tym więcej czasu pozostaje cząsteczce na dopasowanie się, stąd mniejsze prawdopodobieństwo jonizacji. To wielka niespodzianka, to zmienia nasze rozumienie dynamiki kolizji atomowych, która okazuje się, nawet na poziomie jakościowym, jeszcze w powijakach - mówi Yamazaki. Najbliższe eksperymenty mają sprawdzić, czy prawdopodobieństwo jonizacji zależy od odległości od celu oraz położenia w momencie kolizji.
  10. KopalniaWiedzy.pl

    Jak stworzyć coś z niczego

    Fizycy z University of Michigan zbudowali teoretyczne podstawy do stworzenia czegoś z niczego. Opracowali oni nowe równania, które dowodzą, że wysokoenergetyczny strumień elektronów połączony z intensywnymi impulsami lasera jest w stanie oddzielić w próżni materię od antymaterii, co wywołałoby lawinę wydarzeń prowadzących do powstania dodatkowych par cząstek i antycząstek. Obliczyliśmy jak za pomocą pojedynczego elektronu stworzyć kilkaset cząstek. Sądzimy, że w naturze zjawiska takie zachodzą w pobliżu pulsarów i gwiazd neutronowych - stwierdził Igor Sokolov, który prowadził swoje badania wraz z Johnem Neesem. Uczeni przyjęli założenie, że próżnia nie jest pustką. Z rozważań wybitnego fizyka Paula Diraca wynika bowiem, że próżnia to kombinacja materii i antymaterii czyli cząstek i antycząstek. Nie możemy jednak stwierdzić ich obecności, gdyż dochodzi do ich anihilacji. Jednak, jak mówi Nees, w silnym polu elektromagnetycznym anihilacja może stać się źródłem nowych cząstek. Podczas anihilacji pojawiają się fotony gamma, które mogą wytwarzać dodatkowe elektrony i pozytrony. Teoria Sokolova i Neesa już zyskała miano teoretycznego przełomu i jakościowego skoku w teorii. Już pod koniec lat 90. ubiegłego wieku udało się w warunkach eksperymentalnych uzyskać fotony gamma i przypadkową parę elektron-pozytron. Wspomniane równanie opisuje sposób uzyskania większej liczby cząstek. Sokolov i Nees wiedzą też, w jaki sposób można doświadczalnie zweryfikować ich obliczenia. Do ich potwierdzenia konieczne byłoby wbudowanie lasera typu Herkules (to laser wykorzystywany na University of Michigan) w akcelerator cząstek podobny do SLAC National Accelerator Laboratory na Uniwersytecie Stanforda. Jednak w najbliższym czasie takie urządzenie z pewnością nie powstanie. Sam Sokolov zwraca uwagę na fascynujące filozoficzne pytania rodzące się w związku z jego pracą. Podstawowe pytania o to, czym jest próżnia, czym jest nicość wychodzą poza zakres nauki. Są one zakorzenione głęboko nie tylko w fizyce, ale też w filozoficznym pojmowaniu wszystkiego - rzeczywistości, życia, a nawet w religijnych pytaniach o to, czy świat mógł powstać z niczego.
  11. CERN poinformował o zakończonym sukcesem przechwyceniu atomów antywodoru. Pozwoli to na dokładne jego zbadanie i przeprowadzenie porównań materii i antymaterii. Antymateria od dawna stanowi jedną z największych tajemnic nauki. Jest ona identyczna z materią, ma jednak przeciwny ładunek. Gdy materia i antymateria się spotkają, powinno dojść do anihilacji obu. Uczni uważają, że podczas Wielkiego Wybuchu powstały równe ilości materii i antymaterii. Jednak tej drugiej nie udało się odnaleźć. Mamy do czynienia tylko z materią. Antymateria zniknęła. Naukowcy zaczęli więc się zastanawiać, czy wyjaśnieniem takiego stanu rzeczy nie mogłaby być niewielka nierównowaga w proporcjach materii i antymaterii podczas Wielkiego Wybuchu. Być może wyjaśniałaby ona fenomen budowy wszechświata. Jednym ze sposobów byłoby przeprowadzenie porównania materii i antymaterii. Tą drugą należałoby jednak stworzyć w sposób sztuczny. CERN jest jedynym miejscem na świecie, gdzie mogła powstać - i w końcu powstała - antymateria. Najprostszym atomem antymaterii jest antywodór. Jako że wodór składa się z protonu i elektronu, antywodór trzeba stworzyć z antyprotonu i pozytronu. W 1995 roku stworzono pierwszych 9 atomów antywodoru. Siedem lat później naukowcy wykazali, że możliwe jest tworzenie antywodoru w dużych ilościach. Problemem była jego natychmiastowa anihilicja w zetknięciu z materią. Teraz dzięĸi eksperymentowi ALPHA udało się złapać antywodór w pułapkę magnetyczną, w której pozostaje aż przez 1/10 sekundy. To wystarczy, by przeprowadzić odpowiednie badania. Uczeni biorący udział w badaniach poinformowali właśnie, że 38 spośród tysięcy atomów antywodoru udało się złapać w pułapkę. Z nieznanych nam powodów natura pozbyła się antymaterii. To niezwykłe, że urządzenia ALPHA pozwala nam badać stabilne atomy antymaterii. To inspiruje nas do ciężkiej pracy, której celem jest sprawdzenie, czy antymateria ma jakieś tajemnice - mówi profesor Jeffrey Hangst, rzecznik prasowy ALPHA. Dzięki najnowszym osiągnięciom CERN-u z pewnością jeszcze niejednokrotnie usłyszymy o antymaterii i eksperymencie ALPHA.
  12. KopalniaWiedzy.pl

    Najzimniejsza antymateria

    Fizycy z CERN-u schłodzili antymaterię do najniższej osiągniętej dotychczas temperatury. Zespół naukowców obniżył temperaturę antyprotonów do 9,26 kelwina, jest ona zatem niższa niż temperatura Plutona. Badania pomogą wyjaśnić, dlaczego wszechświat zbudowany jest z materii, a nie antymaterii. Aby zbadać to zjawisko uczeni będą musieli połączyć antyprotony z pozytronami, uzyskując w ten sposób antywodór. Dzięki utrzymywaniu schłodzonego antywodoru w pułapkach magnetycznych będą mogli studiować zachowanie antymaterii. Jak zauważył Jeff Hangst, rzecznik prasowy zespołu badającego antymaterię w niskich temperaturach, wodór jest jednym z najczęściej badanych systemów fizycznych. Uczeni z CERN-u chcieliby z taką samą uwagą zbadać antywodór. Poprzedni rekord schłodzenia antymaterii należał do zespołu z Uniwersytetu Harvarda, który w 1989 roku obniżył temperaturę antyprotonów do 104,3 kelwina.
  13. Już za dwa tygodnie, 10 września, pracę rozpocznie jedno z najbardziej niezwykłych urządzeń naukowych w dziejach ludzkości - Wielki Zderzacz Hadronów (LHC - Large Hadron Collider). Być może dzięki niemu naukowcy udowodnią istnienie bozonów Higgsa, tzw. boskich cząsteczek i zbadają antymaterię. Uruchomienie LHC jest od lat wyczekiwane przez naukowców. Jednak nie tylko ich interesuje to niezwykłe urządzenie. Wielki Zderzacz Hadronów wywołał też duże poruszenie w serwisie YouTube. A raczej wywołała go piosenka o nim. Dwudziestotrzyletnia Kate McAlpine napisała utwór o LHC podczas jazdy komunikacją miejską z Genewy do Europejskiego Ośrodka Badań Nuklearnych (CERN), który jest jednym z autorów LHC. Warto obejrzeć jeden z pierwszych, jeśli nie pierwszy w historii, utwór raperski o przyrządzie naukowym.
×