Search the Community
Showing results for tags ' promieniowanie gamma'.
Found 5 results
-
Troje astronomów, poszukując źródeł atomów antyhelu, które zostały zarejestrowane przez Alpha Magnetic Spectrometer (AMS-02) znajdujący się na pokładzie Międzynarodowej Stacji Kosmicznej, wpadło na ślad 14 gwiazd zbudowanych z antymaterii – antygwiazd. Simon Dupourque, Luigi Tibaldo oraz Peter von Ballmoos z Uniwersytetu w Tuluzie znaleźli antygwiazdy w archiwalnych danych Fermi Gamma-ray Telescope. Koncepcja istnienia antygwiazd jest pomysłem kontrowersyjnym, jeśli jednak one istnieją to powinny być widoczne dzięki słabemu sygnałowi promieniowania gamma, który największą moc osiąga przy energii 70 MeV. Sygnał ten pochodzić ma z cząstek materii opadających na gwiazdę i przez nią anihilowanych. Antyhel-4 uzyskano po raz pierwszy w 2011 roku podczas zderzeń cząstek w Relativistic Heavy Ion Collider w Brookhaven National Laboratory. Wówczas naukowcy doszli do wniosku, że jeśli pierwiastek ten zostanie wykryty w przestrzeni kosmicznej, będzie to oznaczało, że pochodzi on z fuzji we wnętrzu antygwiazd. W 2018 roku AMS-02 wykrył w promieniowaniu kosmicznym 8 atomów antyhelu: sześć atomów antyhelu-3 oraz dwa antyhelu-4. Wówczas jednak uznano, że atomy te powstały w wyniku oddziaływania promieniowania kosmicznego na materię międzygwiezdną, w wyniku czego powstała antymateria. Jednak kolejne analizy zasiały wątpliwość co do pochodzenia antyhelu. Stwierdzono bowiem, że im więcej nukleonów w jądrze pierwiastka antymaterii, tym trudniej takiemu pierwiastkowi uformować się w wyniku oddziaływania promieniowania kosmicznego. Naukowcy obliczyli wówczas, że prawdopodobieństwo, by antyhel-3 powstał w wyniku oddziaływania promieni kosmicznych jest 50-krotnie mniejsze niż powstanie jąder zarejestrowanych przez AMS, a powstanie antyhelu-4 w wyniku oddziaływania promieniowania kosmicznego jest aż 105 mniejsze niż jąder, które zarejestrowano na Międzynarodowej Stacji Kosmicznej. Po tych badaniach naukowcy skupili się więc na poszukiwaniu źródła antyhelu, w tym w stronę mało wiarygodnie brzmiącego wyjaśnienia, mówiącego, że pierwiastek ten powstał w antygwiazdach. Zgodnie z obowiązującymi teoriami, podczas Wielkiego Wybuchu powinno powstać tyle samo materii i antymaterii. Następnie powinno dojść do ich anihilacji i powstania wszechświata, który będzie pełen promieniowania, a pozbawiony będzie materii. Żyjemy jednak we wszechświecie zdominowanym przez materię, a to oznacza, że podczas Wielkiego Wybuchu musiało powstać więcej materii niż antymaterii. Problem ten wciąż stanowi nierozwiązaną zagadkę. Większość naukowców od dekad twierdzi, że obecnie we wszechświecie antymateria niemal nie występuje, z wyjątkiem niewielkich ilości powstających w wyniku zderzeń materii, mówi Tibaldo. Jednak odkrycie antyhelu w przestrzeni kosmicznej może podważać to przekonanie. Może bowiem oznaczać, że istnieją antygwiazdy. Wspomnianych 14 potencjalnych antygwiazd zostało zidentyfikowanych w katalogu obejmującym 5878 źródeł promieniowania gamma zarejestrowanych w ciągu 10 lat przez Fermi Gamma-ray Telescope. Na podstawie tych danych Dupourque, Tibaldo i von Ballmoos wyliczyli pewne cechy, które powinny mieć antygwiazdy obecne w Drodze Mlecznej. Naukowcy stwierdzają, że jeśli antygwiazdy utworzył się w dysku galaktyki obok zwyczajnych gwiazd, to powinna istnieć 1 antygwiazda na 400 000 zwykłych gwiazd. Jeśli jednak antygwiazdy są gwiazdami pierwotnymi i powstały we wczesnym wszechświecie w czasie, gdy Droga Mleczna dopiero się tworzyła, co oznacza, że znajdują się w najstarszych regionach naszej galaktyki – w galaktycznym halo – to mogą stanowić nawet 20% wszystkich gwiazd. Jeśli przyjmiemy, że antymateria została uwięziona w antygwiazdach, to mamy tutaj prawdopodobne wyjaśnienie, dlaczego nie doszło do anihilacji. Szczególnie, jeśli antygwiazdy istnieją w regionach, gdzie zwykła materia występuje rzadko, w takich jak galaktyczne halo, mówi von Ballmoos. Oczywiście trzeba też przyjąć, że zarejestrowanych 14 kandydatów na antygwiazdy to coś zupełnie innego. Dlatego też Dupourque, Tibaldo i von Ballmoos sugerują, że następnym krokiem badań może być sprawdzenie, czy tych 14 źródeł emituje też sygnały w innych zakresach, które mogłyby świadczyć o tym, że są to np. aktywne jądra galaktyk czy pulsary. Autorzy badań opublikowali ich wyniki na łamach Physical Review D. « powrót do artykułu
- 19 replies
-
- promieniowanie gamma
- promieniowanie kosmiczne
- (and 3 more)
-
W czasopiśmie „Nature” ukazała się praca badaczy z międzynarodowego obserwatorium H.E.S.S. (w tym zespołu z Obserwatorium Astronomicznego UJ), prezentująca odkrycie wysokoenergetycznej emisji gamma z relatywistycznej strugi, „dżetu”, bliskiej aktywnej galaktyki Centaurus A („Cen A”). Wykorzystując w sumie 202 godziny obserwacji (to odpowiada około 1/6 całego czasu obserwacyjnego w ciągu roku!) stwierdzono, że znana już wcześniej emisja wysokoenergetycznego promieniowania gamma z tego obiektu pochodzi nie tylko z okolicy znajdującej się w jego centrum supermasywnej czarnej dziury, ale rozciąga się również wzdłuż dżetu, na tysiące lat świetlnych w głąb badanej galaktyki. Promieniowanie gamma to generowane w kosmosie promieniowanie elektromagnetyczne o wielkich energiach, które powstaje głównie w wyniku oddziaływania przyspieszonych i naładowanych elektrycznie cząstek z otaczającym je gazem lub polem promieniowania. Dżety są potężnymi emiterami promieniowania w całym widmie elektromagnetycznym, od fal radiowych, do zakresu promieniowania gamma. Pochodzą one z sąsiedztwa supermasywnych czarnych dziur aktywnych jąder galaktyk i poruszają się z prędkością bliską prędkości światła. Badanie struktury dżetu do tej pory odbywało się za pomocą obserwacji radiowych, optycznych i rentgenowskich charakteryzujących się dużą czułością i zdolnością rozdzielczą. Co się zaś tyczy promieniowania gamma, jak dotąd obserwowano jedynie nierozdzieloną emisję, która mogłaby w całości pochodzić z aktywnego centrum galaktyki. Przełom w tym zakresie, zaprezentowany we wspomnianej na początku pracy, okazał się możliwy dzięki technice pomiaru wykorzystującej optyczne „teleskopy Czerenkowa” z obserwatorium H.E.S.S. Wysokoenergetyczne promienie gamma z kosmosu rejestruje się w tym obserwatorium dzięki wytwarzanym przez nie w górnych warstwach atmosfery kaskadom cząstek wtórnych, olbrzymich pęków lecących z prędkością bliską prędkości światła elektronów i pozytonów (anty-elektronów). W rzeczywistości promieniowanie gamma jest dla nas niewidoczne, bowiem atmosfera Ziemi pochłania je niemal w całości. Jednakże, zderzając się z nią przy dużych energiach, wytwarza w niej ono owe charakterystyczne kaskady cząstek, które ostatecznie generują promieniowanie widzialne, „świecąc” w zakresie optycznym (jest to tak zwane promieniowanie Czerenkowa). Teleskopy H.E.S.S., dzięki dużej precyzji pomiarów tych poświat obserwowanych optycznie, mogą zatem pośrednio badać także odpowiadające za ich powstanie promieniowanie gamma pochodzące ze źródeł kosmicznych, i to ze zdolnością rozdzielczą znacznie przewyższającą możliwości obserwatoriów satelitarnych badających emisję gamma sponad atmosfery (takich, jak obserwatorium Fermiego). To właśnie dzięki temu stało się możliwe obecne odkrycie – dla „Cen A” potrzeba było tylko niezwykle długich obserwacji jego słabej emisji gamma oraz bardzo precyzyjnej i trudnej analizy danych obserwacyjnych. Co tak naprawdę oznacza odkrycie emisji promieniowania gamma rozciągającego się nie tylko w okolicy czarnej dziury, ale i wzdłuż całego dżetu, mierzącego tysiące lat świetlnych? Otóż, w dżecie „Cen A”, daleko od centrum produkującej go galaktyki macierzystej, muszą działać potężne procesy przyśpieszania cząstek – o energii większej niż ta, jaką mają protony przyśpieszane przez fizyków w najpotężniejszych ziemskich akceleratorach. Natura tych procesów nie jest w pełni wyjaśniona – naukowcy podejrzewają, że mogą być one związane z przyśpieszaniem cząstek w falach uderzeniowych lub w procesach tzw. rekoneksji pola magnetycznego. Biorąc pod uwagę fakt, że dżet „Cen A” nie jest wyjątkowy pod względem mocy, długości ani prędkości, prawdopodobne jest też, że tak wysoce przyśpieszone elektrony występują powszechnie w wielkoskalowych dżetach galaktyk aktywnych. To ważne dla astronomii odkrycie zostało dokonane z udziałem polskich badaczy, w tym zespołu z Obserwatorium Astronomicznego UJ, w skład którego wchodzą Michał Ostrowski, Marek Jamrozy, Łukasz Stawarz i Angel Priyama Noel. « powrót do artykułu
-
- Obserwatorium Astronomiczne UJ
- dżet
- (and 2 more)
-
Fizyk z Uniwersytetu Kalifornijskiego w Riverside przeprowadził obliczenia, z których wynika, że bąble wypełnione gazem zawierającym pozytonium są stabilne w ciekłym helu. Obliczenia przybliżają nas do powstania lasera emitującego promieniowanie gamma, który może mieć zastosowanie w obrazowaniu medycznym, napędzie kosmicznym i leczeniu nowotworów. Pozytonium to układ złożony z elektronu (e-) i jego antycząstki pozytonu (e+) krążących wokół wspólnego środka masy. Jego średni czas życia wynosi około 142 ns, a następnie pozyton i elektron ulegają anihilacji, podczas której emitowane jest promieniowanie gamma. Do stworzenia lasera gamma potrzebujemy pozytonium w stanie zwanym kondensatem Bosego-Einsteina. Z moich obliczeń wynika, że zanurzone w ciekłym helu bąble składające się z milionów pozytonium miałyby gęstość sześciokrotnie większą od powietrza i tworzyłyby kondensat Bosego-Einsteina, mówi autor badań, Allen Mills z Wydziału Fizyki i Astronomii. Praca Millsa ukazał się właśnie w Physical Review A. Hel, drugi najbardziej rozpowszechniony pierwiastek we wszechświecie, przybiera formę ciekłą jedynie w bardzo niskich temperaturach. Hel ma ujemne powinowactwo do pozytonium, więc w ciekłym helu powstają bąble, gdyż hel odpycha pozytonium. Mills, który stoi na czele Positron Laboratory w UC Riverside poinformował, że jego laboratorium rozpoczęło konfigurację swoich urządzeń tak, by uzyskać stabilne bąble pozytonium w ciekłym helu. Mogą one służyć jako źródło zbudowanego z pozytonium kondensatu Bosego-Einsteina. Chcemy w najbliższym czasie przeprowadzić eksperymenty z tunelowaniem pozytonium przez grafenową membranę, która nie przepuszcza zwykłych atomów, w tym atomów helu, oraz stworzenie lasera działającego dzięki pozytonium. Laser taki mógłby znaleźć zastosowanie w informatyce kwantowej, mówi Mills. « powrót do artykułu
-
- Allen Mills
- promieniowanie gamma
-
(and 3 more)
Tagged with:
-
Po 10 latach badań naukowcy potwierdzili istnienie 2-letniego cyklu promieniowania gamma w blazarze. Blazary, czyli galaktyki z supermasywnymi czarnymi dziurami, to najbardziej energetyczne i najjaśniejsze obiekty we wszechświecie. Po raz pierwszy w aktywnej galaktyce potwierdziliśmy regularne okresowe emisje promieniowania gamma, mówi Stefano Ciprini z INFN Tor Vergata w Rzymie. Fakt, że emisja rośnie i zanika w przewidywalnych interwałach jest znakiem, że w centrum badanej galaktyki może znajdować się więcej niż jedna supermasywna czarna dziura. Naukowcy sądzą, że blazar PG 1553+113 może zawierać parę supermasywnych czarnych dziur. To wyjaśniałoby periodyczność. W takiej koncepcji jedna z tych dziur emituje promieniowanie gamma i inny materiał, a druga dziura, okrążając ją, regularnie zakłóca tę emisję. Po raz pierwszy na wyjaśnienie niezwykłego cyklu naukowcy wpadli w 2015 roku. Zaczęli wówczas podejrzewać, że mamy do czynienia z blazarem, u którego cykl emisji może być liczony w latach. Po kolejnych latach badań potwierdzono przypuszczenia. Takie wyniki uzyskaliśmy po 10 lat ciągłych badań za pomocą Fermi's Large Area Telescope, mówi Sara Cutini z Włoskiego Instytutu Fizyki Nuklearnej w Perugii. « powrót do artykułu
-
- PG 1553+113
- promieniowanie gamma
-
(and 2 more)
Tagged with:
-
Naukowcy od wieków badają 11-letni cykl słoneczny, ale dopiero od kilkudziesięciu lat zaczynamy go rozumieć. Wiemy, że w czasie słonecznego maksimum nasza gwiazda bombarduje Ziemię olbrzymią ilością naładowanych cząstek, które zakłócają pracę satelitów i sieci energetycznych. Cykl słoneczny ma też pewien wpływ na klimat, gdyż różnice w irradiancji mogą powodować drobne zmiany w średniej temperaturze powierzchni oceanów i wpływać na wzorce opadów. Mimo wielu lat badań wciąż nie powstał model, który pozwoliłby dokładnie przewidzieć główne cechy każdego cyklu, takie jak długość jego trwania i siłę każdej z faz. Cykl słoneczny jest zjawiskiem tak stabilnym i widocznym, że musi być coś, co przeoczyliśmy, uważa Ofer Cohen, zajmujący się fizyką Słońca na University of Massachusetts. Jego zdaniem, jedną z przeszkód, dla których trudno zrozumieć ten cykl jest fakt, iż prawdopodobnie wpływ nań ma pole magnetyczne naszej gwiazdy, a ono jest przed nami ukryte. To może się jednak zmienić. Tim Linden i jego zespół z Ohio State University zmapowali przepływ wysoko energetycznych cząstek na powierzchni Słońca i znaleźli potencjalny związek pomiędzy ich emisją, zmianami pola magnetycznego gwiazdy a cyklami. W swoich najnowszych badaniach, które czekają na publikację w Physical Review Letters, naukowcy przeanalizowali dane z Fermi Gamma-ray Space Telescope. Ze zdumieniem zauważyli, że najbardziej intensywna emisja promieniowania gamma ze Słońca wydaje się skorelowana z najspokojniejszym okresem cyklu. Podczas ostatniego minimum słonecznego, z lat 2008-2009 Fermi odkrył osiem epizodów wysokoenergetycznego promieniowania gamma. Energia każdego z nich przekraczała 100 gigaelektronowoltów. Jednak przez kolejnych osiem lat, gdy Słońce wychodziło z minimum i zbliżało się do maksimum, nie zarejestrowano żadnych wysokoenergetycznych promieni gamma. Linden uważa, że jest mało prawdopodobne, by był to przypadek. Jego zdaniem zjawisko to ma ma związek z cyklem słonecznym, jednak jego mechanizm pozostaje tajemnicą. Zespół Lindena spekuluje, że promienie gamma są emitowane przez Słońce gdy potężne promienie kosmiczne uderzają w powierzchnię naszej gwiazdy. Kiedy promieniowanie kosmiczne trafia na cząstkę w atmosferze Słońca, pojawia się cała grupa innych cząstek i dochodzi do promieniowania, w tym promieniowania gamma. Zwykle promieniowanie takie powinno być całkowicie pochłonięte przez Słońce. Jednak część tego promieniowania może zostać odbita przez silne fluktuacje pola magnetycznego i promieniowanie gamma wydostaje się poza gwiazdę. Jeśli hipoteza Lindena jest prawdziwa, to nic dziwnego, że promieniowanie gamma jest skojarzone z minimum słonecznym. Jak zauważa astronom Randy Jokipii z University of Arizona, w czasie minimum słonecznego z gwiazdy wydostaje się mniej naładowanych cząstek, które chronią cały Układ Słoneczny przed promieniowaniem kosmicznym. Gdy jest ich mniej, więcej promieniowania kosmicznego trafia do Układu, w tym do samego Słońca. Zwiększona liczba promieniowania padająca na naszą gwiazdę powinna zatem skutkować większą emisją promieniowania gamma. To jednak nie koniec zaskakujących odkryć. Zespół Lindena zauważył, że w czasie minimum słonecznego większość promieniowania gamma o energii większej niż 50 GeV pochodzi z okolic równika, ale w innych okresach cyklu słonecznego promieniowanie to pochodzi z biegunów. To oznacza, że podczas minimum emisja promieniowania gamma jest najbardziej intensywne na równiku, a podczas maksimum – na biegunach. Przyczyna tej zmiany pozostaje nieznana. Próbowałem wyobrazić sobie, jaki mechanizm może to powodować i, a to jeden z nielicznych przypadków w moim życiu zawodowym, nie znalazłem żadnego możliwego wytłumaczenia, stwierdza Jokipii. Z kolei Ofer Cohen zauważa, że podobnemu procesowi przesuwania się od równika ku biegunom podlegają plamy słoneczne. Brak jednak wyjaśnienia tego mechanizmu. Widoczne są jednak także inne korelacje. Wspomnianych 8 epizodów wysokoenergetycznego promieniowania gamma miało miejsce w ciągu jednego roku. Dwa epizody nastąpiły w odstępie kilku godzin on siebie, w tym samym czasie, w którym doszło do koronalnego wyrzutu masy. Linden, gdy to zauważył, jeszcze raz przyjrzał się danym z Fermi i znalazł kolejny epizod wysokoenergetycznego promieniowania gamma powiązany czasowo z koronalnym wyrzutem masy. Jednak, jak podkreśla, sześć innych epizodów promieniowania nie było powiązanych z wyrzutem masy. Z kolei najwięcej koronalnych wyrzutów masy ma miejsce podczas maksimum słonecznego. Naukowcy mają nadzieję, że dalsze badania nad emisją promieniowania gamma ze Słońca pozwolą na powiązanie tego zjawiska z polem magnetycznym, przez co umożliwią jego badanie i wyjaśnienie fenomenu cykli słonecznych. « powrót do artykułu
-
- Słońce
- promieniowanie gamma
-
(and 2 more)
Tagged with: