Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Wielki Zderzacz Hadronów' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 19 wyników

  1. Badacze z Wielkiego Zderzacza Hadronów, pracujący przy eksperymencie LHCb poinformowali o zaobserwowaniu hipertrytona oraz antyhipertrytona. Ślady ponad 100 tych rzadkich hiperjąder znaleziono podczas analizy danych ze zderzeń protonów prowadzonych w latach 2016–2018. Rejestrowanie takich jąder to wisienka na torcie osiągnięć LHC, gdyż instrument nie został zaprojektowany do ich poszukiwania. Hiperjądro to takie jądro atomowe, w którym jeden z nukleonów (protonów lub neutronów), został zastąpiony przez hiperon, czyli barion zawierający kwark dziwny, ale nie zawierający ani kwarku b, ani kwarku powabnego. Czas życia hipertrytona i jego antycząstki wynosi około 240 pikosekund (ps) czyli 240 bilionowych części sekundy. Jak krótki to czas, niech świadczy fakt, że w tym czasie światło jest w stanie przebyć około 7 centymetrów. Zarejestrowany hipertryton jest zbudowany z protonu, neutronu i najlżejszego z hiperonów, hiperona Λ0 (lambda 0), a antyhipertryton zawiera ich antycząstki. Jako, że hipertryton i antyhipertryton zawierają hiperon, ich badaniem zainteresowana jest astrofizyka, gdyż tworzenie się hiperonów z kwarkiem dziwnym jest najbardziej korzystne energetycznie w wewnętrznych warstwach jądra gwiazd. Zatem poznanie sposobu powstawania hiperonów pozwoli na lepsze modelowanie jąder gwiazd. Równie interesujące dla badaczy kosmosu jest jeden z produktów rozpadu hipertrytona i jego antycząstki. Jest nim hel-3 – i, oczywiście, antyhel-3 – pierwiastek obecny w kosmosie, który może zostać wykorzystany do badania ciemnej materii. Z jednej strony jądra i antyjądra powstają w wyniku zderzeń materii międzygwiezdnej z promieniowaniem kosmicznym, z drugiej, mogą – przynajmniej teoretycznie – powstawać podczas anihilacji materii i antymaterii. Jeśli chcemy poznać dokładną liczbę jąder i antyjąder, które z kosmosu docierają do Ziemi, potrzebujemy precyzyjnych informacji na temat ich powstawania i anihilacji. « powrót do artykułu
  2. CERN podjął pierwsze praktyczne działania, których celem jest zbudowania następcy Wielkiego Zderzacza Hadronów (LHC). Future Circular Collider (FCC) ma mieć 91 kilometrów długości, a plany zakładają, że jego tunel będzie miał 5 metrów średnicy. Urządzenie będzie więc ponaddtrzykrotnie dłuższe od LHC. Akcelerator, który ma powstać w granicach Francji i Szwajcarii, będzie tak olbrzymi, by osiągnąć energię zderzeń sięgającą 100 TeV (teraelektronowoltów). Energia zderzeń w LHC wynosi 14 TeV. Specjaliści z CERN przeprowadzili już analizy teoretyczne, a obecnie rozpoczynają etap działań polowych. Miejsca, w których mają przebiegać FCC zostaną teraz poddane ocenie środowiskowej, a następnie przeprowadzone zostaną szczegółowe badania sejsmiczne i geotechniczne. Trzeba w nich będzie uwzględnić również osiem naziemnych ośrodków naukowych i technicznych obsługujących olbrzymią instalację. Po ukończeniu wspomnianych badań, a mogą one zająć kilka lat, 23 kraje członkowskie CERN podejmą ostateczną decyzję dotyczącą ewentualnej budowy FCC. Poznamy ją prawdopodobnie za 5–6 lat. W FCC mają być początkowo zderzane elektrony i pozytony, a następnie również hadrony. Zadaniem FCC ma być m.in. znalezienie dowodu na istnienie ciemnej materii, szukanie odpowiedzi na pytanie o przyczyny przewagi ilości materii nad antymaterią czy określenie masy neutrino. Fizycy przewidują, że możliwości badawcze Wielkiego Zderzacza Hadronów wyczerpią się około połowy lat 40. Problem z akceleratorami polega na tym, że niezależnie od tego, jak wiele danych dzięki nim zgromadzisz, natrafiasz na ciągle powtarzające się błędy. W latach 2040–2045 osiągniemy w LHC maksymalną możliwą precyzję. To będzie czas sięgnięcia po potężniejsze i jaśniejsze źródło, które lepiej pokaże nam kształt fizyki, jaką chcemy zbadać, mówi Patrick Janot z CERN. W 2019 roku szacowano, że koszt budowy FCC przekroczy 21 miliardów euro. Inwestycja w tak kosztowne urządzenie spotkała się z krytyką licznych specjalistów, którzy argumentują, że przez to może zabraknąć funduszy na inne, bardziej praktyczne, badania z dziedziny fizyki. Jednak zwolennicy FCC bronią projektu zauważając, iż wiele teoretycznych badań przekłada się na życie codzienne. Gdy stworzono działo elektronowe, powstało ono na potrzeby akceleratorów. Nikt nie przypuszczał, że dzięki temu powstanie telewizja. A gdy tworzona była ogólna teoria względności, nikomu nie przyszło do głowy, że będzie ona wykorzystywana w systemie GPS, zauważa Janot. Wśród innych korzyści zwolennicy budowy FCC wymieniają fakt, że zachęci on do trwającej dziesięciolecia współpracy naukowej. Zresztą już obecnie z urządzeń CERN korzysta ponad 600 instytucji naukowych i uczelni z całego świata. « powrót do artykułu
  3. Na zakończonej przed dwoma dniami Recontres de Moriond, organizowanej od 1966 roku dorocznej konferencji, podczas której omawiane są najnowsze osiągnięcia fizyki, naukowcy CERN-u poinformowali o zaobserwowaniu jednoczesnego powstania czterech kwarków wysokich (kwarków t). To rzadkie wydarzenie zarejestrowały zespoły pracujący przy eksperymentach ATLAS i CMS, a może ono pozwolić na badanie zjawisk fizycznych wykraczających poza Model Standardowy. Co niezwykle ważne, obserwacje dokonane zarówno przez ATLAS jak i CMS przekraczają statystyczny poziom ufności 5σ, przy którym można mówić o dokonaniu odkrycia. W przypadku ATLAS poziom ten wyniósł 6.1σ, a w przypadku CMS – 5.5σ. Kwark wysoki to najbardziej masywna cząstka Modelu Standardowego, a to oznacza, że jest najsilniej powiązana z bozonem Higgsa. Dzięki temu kwarki t to najlepsze cząstki mogące posłużyć do badania fizyki poza Modelem Standardowym. Najczęściej kwarki t obserwowane są w parach z odpowiadającym im antykwarkiem. Czasem powstają samodzielnie. Według Modelu Standardowego istnieje możliwość jednoczesnego powstania czterech kwarków wysokich czyli dwóch par składających się z kwarka i antykwarka. Jednak prawdopodobieństwo takiego zdarzenia jest 70 tysięcy razy mniejsze niż prawdopodobieństwo powstania pary kwark-antykwark. Zatem uchwycenie czterech kwarków t jest niezwykle trudne. ATLAS już w roku 2020 i 2021 zarejestrował pewne sygnały sugerujące, że doszło do jednoczesnego powstania czterech kwarków t, a CMS wykrył taki sygnał w 2022 roku, jednak dotychczas poza pewnym wskazówkami, nigdy nie zdobyto pewności. Nie zarejestrowano takiego wydarzenia. Nie dość, że to rzadkie wydarzenie, jest ono trudne do zarejestrowania. Fizycy, rozglądając się za konkretnymi cząstkami, szukają ich sygnatur, czyli produktów rozpadu. Kwark t rozpada się na bozon W i kwark niski (kwark b), a bozon W rozpada się następnie albo na naładowany lepton i neutrino, albo na parę kwark-antykwark. A to oznacza, że sygnatura wydarzenia, w ramach którego jednocześnie powstały cztery kwarki t może zawierać od 0 do 4 naładowanych leptonów i do 12 dżetów powstających w wyniku hadronizacji kwarków. Znalezienie takiej sygnatury jest więc trudne. Na potrzeby badań naukowcy z ATLAS i CMS wykorzystali nowatorskie techniki maszynowego uczenia, dzięki którym algorytm wyłowił z olbrzymiej ilości danych te informacje, które mogły być sygnaturami powstania czterech kwarków t. Skoro się to udało, naukowcy mają nadzieję, że podczas obecnie trwającej kampanii badawczej – Run 3 – zarejestrowanych zostanie więcej tego typu zdarzeń. Run 3 potrwa, z przerwami, do końca 2025 roku. W grudniu 2025 Wielki Zderzacz Hadronów zostanie zamknięty, a przerwa potrwa aż do lutego 2029. « powrót do artykułu
  4. Wielki Zderzacz Hadronów, a dokładniej jeden z jego mniejszych eksperymentów – LHCb – zarejestrował nowy rodzaj pentakwarka oraz nigdy wcześniej nie widzianą parę tetrakwarków, w skład której wchodzi nowy typ tetrakwarka. Tym samym rodzina hadronów powiększyła się o trzech egzotycznych członków. Kwarki to cząstki elementarne. Zwykle kwarki łączą się w grupy po dwa lub trzy, tworząc hadrony. Z trzech kwarków składają się np. protony i neutrony tworzące jądro atomu. Czasem jednak kwarki łączą się w grupy po cztery czy pięć, wówczas mówimy o tetra- i pentakwarkach. ich istnienie przewidziano teoretycznie w tym samym czasie, co istnienie „zwykłych” hadronów. Jednak tetra- i pentakwarki obserwujemy dopiero od początku obecnego wieku. Większość odkrytych tetra- i pentakwarków zawiera kwark powabny i antykwark powabny, a pozostałe kwarki to kwark górny, dolny, dziwny lub ich antycząstki. Jednak w ciągu ostatnich lat naukowcy przy LHCb zaczęli rejestrować inne rodzaje egzotycznych hadronów. Tak jest i tym razem. Uczeni z LHCb poinformowali właśnie, że podczas rozpadu mezonów B o ładunku ujemnym, zarejestrowano pentakwarka złożonego z kwarka powabnego, antykwarka powabnego oraz kwarków górnego, dolnego i dziwnego. To pierwszy znany pentakwark zawierający kwark dziwny. Poziom ufności (σ) wynosi w przypadku tej obserwacji wynosi 15, czyli znacznie więcej niż sigma 5 przy którym fizycy mówią o odkryciu nowej cząstki. Drugie odkrycie to podwójnie naładowany tetrakwark o otwartym powabie, składający się z kwarka powabnego, antykwarka dziwnego, kwarka górnego i antykwarka dolnego. Towarzyszył mu neutralny tetrakwark. W przypadku tetrakwarka podwójnie naładowanego σ=6,5, a w przypadku jego towarzysza jest to 8, więc w obu przypadkach możemy mówić o odkryciu. To pierwszy raz, gdy odkryto parę tetrakwarków. Im więcej badań przeprowadzamy, tym więcej odkrywamy egzotycznych hadronów. To podobna sytuacja jak w latach 50. ubiegłego wieku, gdy naukowcy trafili na całe „zoo cząstek”, dzięki czemu w latach 60. mogli stworzyć kwarkowy model hadronów. Teraz tworzymy „zoo cząstek 2.0”" – powiedział koordynator projektu LHCb Niels Tuning. Obecnie niektóre modele teoretyczne opisują egzotyczne hadrony jako pojedyncze cząstki składające się ze ściśle powiązanych ze sobą kwarków. Natomiast według innych modeli są to pary luźno powiązanych standardowych hadronów, tworzących struktury podobne do molekuł. Dopiero kolejne badania pozwolą odpowiedzieć na pytanie, czym naprawdę są egzotyczne hadrony. « powrót do artykułu
  5. Dzisiaj, po trzech latach przerwy, Wielki Zderzacz Hadronów (LHC) ponownie podejmuje badania naukowe. Największy na świecie akcelerator cząstek będzie zderzał protony przy rekordowo wysokiej energii wynoszącej 13,6 teraelektronowoltów (TeV). To trzecia kampania naukowa od czasu uruchomienia LHC. Przez trzy ostatnie lata akcelerator był wyłączony. Trwały w nim prace konserwatorskie i rozbudowywano jego możliwości. Od kwietnia w akceleratorze znowu krążą strumienie cząstek, a naukowcy przez ostatnich kilka tygodni sprawdzali i dostrajali sprzęt. Teraz uznali, że wszystko działa, jak należy, uzyskano stabilne strumienie i uznali, że LHC może rozpocząć badania naukowe. W ramach rozpoczynającej się właśnie trzeciej kampanii naukowej LHC będzie pracował bez przerwy przez cztery lata. Rekordowo wysoka energia strumieni cząstek pozwoli na uzyskanie bardziej precyzyjnych danych i daje szanse na dokonanie nowych odkryć. Szerokość wiązek protonów w miejscu ich kolizji będzie mniejsza niż 10 mikrometrów, co zwiększy liczbę zderzeń, mówi dyrektor akceleratorów i technologii w CERN, Mike Lamont. Uczony przypomina, że gdy podczas 1. kampanii naukowej odkryto bozon Higgsa, LHC pracował przy 12 odwrotnych femtobarnach. Teraz naukowcy chcą osiągnąć 280 odwrotnych femtobarnów. Odwrotny femtobarn to miara liczby zderzeń cząstek, odpowiadająca około 100 bilionom zderzeń proton-proton. W czasie przestoju wszystkie cztery główne urządzenia LHC poddano gruntowym remontom oraz udoskonaleniom ich systemów rejestracji i gromadzeniach danych. Dzięki temu mogą obecnie zebrać więcej informacji o wyższej jakości. Dzięki temu ATLAS i CMS powinny zarejestrować w obecnej kampanii więcej kolizji niż podczas dwóch poprzednich kampanii łącznie. Całkowicie przebudowany LHCb będzie zbierał dane 10-krotnie szybciej niż wcześniej, a możliwości gromadzenia danych przez ALICE zwiększono aż 55-krotnie. Dzięki tym wszystkim udoskonaleniom można będzie zwiększyć zakres badań prowadzonych za pomocą LHC. Naukowcy będą mogli badać bozon Higgsa z niedostępną wcześniej precyzją, mogą zaobserwować procesy, których wcześniej nie obserwowano, poprawią precyzję pomiarów wielu procesów, które mają fundamentalne znaczenie dla zrozumienia fizyki, asymetrii materii i antymaterii. Można będzie badać właściwości materii w ekstremalnych warunkach temperatury i gęstości, eksperci zyskają nowe możliwości poszukiwania ciemnej materii. Fizycy z niecierpliwością czekają na rozpoczęcie badań nad różnicami pomiędzy elektronami a mionami. Z kolei program zderzeń ciężkich jonów pozwoli na precyzyjne badanie plazmy kwarkowo-gluonowej, stanu materii, który istniał przez pierwszych 10 mikrosekund po Wielkim Wybuchu. Będziemy mogli przejść z obserwacji interesujących właściwości plazmy kwarkowo-gluonowej do fazy precyzyjnego opisu tych właściwości i powiązania ich z dynamiką ich części składowych, mówi Luciano Musa, rzecznik prasowy eksperymentu ALICE. Udoskonalono nie tylko cztery zasadnicze elementy LHC. Również mniejsze eksperymenty – TOTEM, LHCf, MoEDAL czy niedawno zainstalowane FASER i SND@LHC – pozwolą na badanie zjawisk opisywanych przez Model Standardowy oraz wykraczających poza niego, takich jak monopole magnetyczne, neutrina czy promieniowanie kosmiczne. « powrót do artykułu
  6. Doktor Agnieszka Dziurda z Instytutu Fizyki Jądrowej PAN stoi na czele międzynarodowego zespołu naukowego, który w CERN prowadzi badania nad oscylacjami cząstek pomiędzy światem materii i antymaterii. Co prawda materia i antymateria wydają się swoimi przeciwieństwami, jednak istnieją cząstki, które raz zachowują się jak należące do świata materii, a raz antymaterii. Grupa doktor Dziurdy zmierzyła właśnie ekstremalne tempo oscylacji takich cząstek. Naukowcy wzięli na warsztat mezony Bs0 i za pomocą detektora LHCb z niespotykaną dotychczas dokładnością zbadali ich oscylacje. Nie byli pierwszymi, którzy podjęli się tego zadania. Już w 2006 roku w amerykańskim Fermilab mierzono to zjawisko. Nam udało się teraz poprawić dokładność pierwotnego pomiaru aż o dwa rzędy wielkości, chwali się doktor Dziurda. Materia widzialna jest złożona głównie z kwarków górnych, dolnych, elektronów i neutrin elektronowych. Na przykład jądra atomów zbudowane są z protonów (składających się z 2 kwarków górnych i 1 kwarka dolnego) oraz neutronów (1 kwark górny i 2 kwarki dolne). Model Standardowy klasyfikuje kwark górny, dolny, elektron i neutrino elektronowe jako cząstki jednej generacji. Istnieją jeszcze dwie inne generacje, z cząstkami o podobnych właściwościach, ale coraz bardziej masywnych. Kwarki nie występują swobodnie. Łączą się z innymi kwarkami. A najprostsze takie połączenie tworzy mezon, złożony z par kwark-antykwark. Mezony mogą przenosić ładunek elektryczny, lecz nie muszą. Te pozbawione ładunku elektrycznego, określane jako neutralne, wykazują frapującą cechę: oscylują między postacią materialną a antymaterialną. My skupiliśmy się na analizie częstotliwości oscylacji neutralnych mezonów zawierających kwark piękny b z trzeciej generacji i kwark dziwny s z drugiej, oznaczonych jako Bs0, mówi doktor Dziurda. Mezony są niestabilne i rozpadają się w czasie pikosekund. Jedna pikosekunda to 0,000000000001. Jednak zgodnie z zasadami mechaniki kwantowej, produkty rozpadu neutralnych mezonów są różne, w zależności od tego, czy w momencie rozpadu znajdowały się w świecie materii czy antymaterii. Zatem dopiero po zarejestrowaniu i zidentyfikowaniu produktów rozpadu danego mezonu mogliśmy ustalić, czy rozpadł się on jako reprezentant świata materii, czy antymaterii. Połączenie tej wiedzy z informacją o naturze cząstki w momencie produkcji pozwoliło nam na pomiar częstotliwości oscylacji, stwierdza polska uczona. Zespół Dziurdy przeanalizował mezony Bs0 powstałe w latach 2015–2018 w Wielkim Zderzaczu Hadronów jako wynik zderzeń proton-proton o łącznej energii 13 TeV (teraelektronowoltów). Badania wykazały, że mezony te oscylują pomiędzy materią i antymaterią 3 tryliony razy na sekundę. To aż 300-krotnie szybciej niż oscylacje typowego cezowego zegara atomowego. Badania takie nie tylko potwierdzają przewidywania mechaniki kwantowej, ale pozwalają zawęzić też obszar poszukiwania nieznanych cząstek spoza Modelu Standardowego. « powrót do artykułu
  7. Podczas ostatnich badań w CERN zdobyto dane, które – jeśli zostaną potwierdzone – będą oznaczały, że doszło do naruszenia Modelu Standardowego. Dane te dotyczą potencjalnego naruszenia zasady uniwersalności leptonów. O wynikach uzyskanych w LHCb poinformowano podczas konferencji Recontres de Moriond, na której od 50 lat omawia się najnowsze osiągnięcia fizyki oraz w czasie seminarium w CERN. Podczas pomiarów dokonywanych w LHCb porównywano dwa typy rozpadu kwarków powabnych. W pierwszym z nich pojawiają się elektrony, w drugim miony. Miony są podobne do elektronów, ale mają około 200-krotnie większą masę. Elektron, mion i jeszcze jedna cząstka – tau – to leptony, które różnią się pomiędzy sobą zapachami. Zgodnie z Modelem Standardowym, interakcje, w wyniku których pojawiają się leptony, powinny z takim samym prawdopodobieństwem prowadzić do pojawiania się elektronów i mionów podczas rozpadu kwarka powabnego. W roku 2014 zauważono coś, co mogło wskazywać na naruszenie zasady uniwersalności leptonów. Teraz, po analizie danych z lat 2011–2018 fizycy z CERN poinformowali, że dane wydają się wskazywać, iż rozpad kwarka powabnego częściej dokonuje się drogą, w której pojawiają się elektrony niż miony. Istotność zauważonego zjawiska to 3,1 sigma, co oznacza, iż prawdopodobieństwo, że jest ono zgodne z Modelem Standardowym wynosi 0,1%. Jeśli naruszenie zasady zachowania zapachu leptonów zostanie potwierdzone, wyjaśnienie tego procesu będzie wymagało wprowadzenie nowych podstawowych cząstek lub interakcji, mówi rzecznik prasowy LHCb profesor Chris Parkes z University of Manchester. Rozpad kwarka powabnego prowadzi do pojawienia się kwarka dziwnego oraz elektronu i antyelektronu lub mionu i antymionu. Zgodnie z Modelem Standardowym w procesie tym pośredniczą bozony W+ i Z0. Jednak naruszenie zasady uniwersalności leptonów wskazuje, że zaangażowana w ten proces może być jakaś nieznana cząstka. Jedna z hipotez mówi, że jest to leptokwark, masywny bozon, który wchodzi w interakcje zarówno z leptonami jak i z kwarkami. Co istotne, dane z LHCb zgadzają się z danymi z innych anomalii zauważonych wcześniej zarówno w LHCb, jak i obserwowanych od 10 lat podczas innych eksperymentów na całym świecie. Nicola Serra z Uniwersytetu w Zurichu mówi, że jest zbyt wcześnie by wyciągać ostateczne wnioski. Jednak odchylenia te zgadzają się ze wzorcem anomalii obserwowanych przez ostatnią dekadę. Na szczęście LHCb jest odpowiednim miejscem, w którym możemy sprawdzić potencjalne istnienie nowych zjawisk fizycznych w tego typu rozpadach. Musimy przeprowadzić więcej pomiarów. LHCb to jeden z czterech głównych eksperymentów Wielkiego Zderzacza Hadronów.Jego zadaniem jest badanie rozpadu cząstek zawierających kwark powabny. Artykuły na temat opisanych tutaj badań zostały opublikowane na stronach arXiv oraz CERN. « powrót do artykułu
  8. Fizycy z Caltechu i CERN-u przeprowadzili badania, które pozwoliły im na obserwowanie niezwykle rzadkich zjawisk fizycznych. Dzięki wykorzystaniu eksperymentu CMS (Compact Muon Solenoid) mogli jako pierwsi w historii obserwować triplety złożone z bozonów W i Z. To bozony cechowania, będące nośnikami oddziaływań słabych, a więc jednego z czterech rodzajów oddziaływań podstawowych (pozostałe to oddziaływanie grawitacyjne, elektromagnetyczne i silne). Różnica pomiędzy bozonami W i Z polega na tym, że bozon Z jest neutralny, a bozony W mają ładunek elektryczny (dodatni lub ujemny). Bozony W i Z są odpowiedzialne za radioaktywność, stanowią podstawowy element procesu termonuklearnego zachodzącego w Słońcu. Do powstania tripletów doszło podczas zderzeń wysokoenergetycznych protonów przyspieszonych do prędkości bliskich prędkości światła. Podczas takich kolizji w niezwykle rzadkich przypadkach – w 1 na 1 000 000 000 000 zderzeń – pojawiają się triplety WWW, WWZ, WZZ i ZZZ. Jak mówi jeden z autorów badań, Zhicai Zhang, takie wydarzenia są 50-krotnie rzadsze niż pojawienie się bozonu Higgsa. Jak mówi główny autor badań, profesor Harvey Newman, obserwacja tych tripletów nie była głównym celem eksperymentów. Jednak dzięki zebraniu danych na temat tego i innych rzadkich zjawisk, naukowcy mogą z coraz większą precyzją testować Model Standardowy. Takie testy są zaś konieczne, jeśli chcemy rozszerzyć nasze pojmowanie fizyki poza ten model. Z obserwacji obrotu i rozkładu galaktyk wiemy, że musi istnieć ciemna materia, która wywiera oddziaływanie grawitacyjne na materię. Jednak ciemna materia nie mieści się w Modelu Standardowym. Nie ma tam miejsca na ciemne cząstki, na grawitację, model ten nie działa w skalach energii wczesnego wszechświata zaraz po Wielkim Wybuchu. Wiemy, że musi istnieć bardziej podstawowa od Modelu Standardowego, nieodkryta jeszcze teoria, mówi Newman. Naukowcy przygotowują obecnie Wielki Zderzacz Hadronów do kolejnej trzyletniej kampanii badawczej, zaplanowanej na lata 2021–2024. Pod jej koniec główne eksperymenty LHC będą zdolne do zbierania 30-krotnie większej ilości danych niż obecnie. Mamy tutaj duży, wciąż niezrealizowany potencjał. Ilość danych, jakie obecnie zbieramy, to jedynie kilka procent tego, co spodziewamy się gromadzić po rozbudowie CMS i LHC do High Luminosity LHC, który ma ruszyć w 2027 roku. Ma on pracować przez 10 lat. Jesteśmy dopiero na początku przewidzianych na 30 lat badań, dodaje Newman. Szczegółowy opis eksperymentu, w ramach którego obserwowano triplety bozonów W i Z, można przeczytać na stronach CERN-u. « powrót do artykułu
  9. Naukowcy pracujący przy Wielkim Zderzaczu Hadronów (LHC) poinformowali o nowym sposobie używania tego niezwykłego urządzenia badawczego. Eksperyment ATLAS zaobserwował pierwsze zderzenie fotonów, w wyniku którego powstała para bozonów W, będących nośnikami oddziaływań słabych. Okazuje się zatem, że LHC można wykorzystywać też do bezpośrednich badań oddziaływań słabych. Obserwacje potwierdzają jedno z najważniejszych przewidywań teorii dotyczących tych oddziaływań – ich nośniki mogą oddziaływać ze sobą. Klasyczna elektrodynamika mówi, że dwa przecinające się promienie światła nie odbiją się od siebie, nie będą się absorbowały lub nawzajem niszczyły. Jednak elektrodynamika kwantowa dopuszcza interakcje pomiędzy fotonami. Nie są to pierwsze badania fotonów przeprowadzone przy użyciu LHC. Obserwowano rozpraszanie światła przez światło, kiedy to pary fotonów wchodziły w interakcje tworząc inną parę fotonów. W eksperymencie ATLAS zdobyto pierwsze bezpośrednie dowody takiego rozpraszania. Podczas nowych eksperymentów badano zupełnie inne zjawisko. W wyniku interakcji pomiędzy dwoma fotonami pojawiły się dwa bozony W o przeciwnych ładunkach elektrycznych. Już kilka lat temu uzyskano pierwsze wskazówki, że zjawisko takie zachodzi. Potrzeba było jednak więcej danych, by je potwierdzić. Teraz naukowcy zyskali pewność. Wynosi ona bowiem 8,4 sigma, a o odkryciu mówi się już przy poziomie 5 sigma. W centralnym detektorze były widoczne tylko produktu rozpadu dwóch bozonów W, elektron i mion. Co prawda pary bozonów W powstają też – i to znacznie częściej – w wyniku interakcji pomiędzy kwarkami i gluonami w zderzających się protonach, jednak w takim przypadku widoczne są jeszcze inne sygnały niż gdy powstają one w wyniku zderzeń fotonów. Nowe badania potwierdziły, że bozony cechowania – bozony W, Z i fotony – również wchodzą ze sobą w interakacje. Ich badanie może stać się nowym sposobem testowania Modelu Standardowego. « powrót do artykułu
  10. CERN informuje, że eksperymenty ATLAS i CMS zdobyły pierwsze dowody wskazujące, że bozon Higgsa rozpada się na dwa miony. Mion to cięższa kopia elektronu, jednej z podstawowych cząstek, z których zbudowany jest cała materia. O ile jednak elektrony są cząstkami pierwszej generacji, to miony należą do generacji drugiej. Rozpad bozonu Higgsa do mionów to rzadkie zjawisko, zachodzące w 1 na 5000 rozpadów. To ważne odkrycie, gdyż wskazuje, że bozon Higgsa wchodzi w interakcje z cząstkami drugiej generacji. Według Modelu Standardowego cała materia zbudowana jest z fermionów. Jest ich 12 i dzielą się na 6 kwarków i 6 leptonów. Otaczającą nas materię trwałą tworzą cząstki pierwszej generacji: elektron, neutrino elektronowe, kwark dolny i kwark górny. Druga generacja cząstek to mion, neutrino mionowe, kwark dziwny i kwark powabny. Istnieje jeszcze trzecia generacja fermionów (taon, neutrino taonowe, kwark spodni i kwark szczytowy) oraz 4 bozony cechowania przenoszące oddziaływania i bozon Higgsa, nadający masę cząstkom, z którymi oddziałuje. Bozon Higgsa jest przedmiotem intensywnych badań od czasu jego wykrycia w 2012 roku. Jego znalezienie było głównym zadaniem Wielkiego Zderzacza Hadronów. Jedną z podstawowych metod badań jest obserwacja jego rozpadu. Eksperyment CMS wykazał, że bozon Higgsa rozpada się na dwa miony a prawdopodobieństwo takiego wydarzenia wynosi 3 sigma. Oznacza to, że jeśli taki rozpad nie istnieje, to pojawienie się takich danych w CMS wynosi mniej niż 1:700. Z kolei ATLAS wskazał na istnienie rozpadu Higgsa do dwóch mionów z prawdopodobieństwem 2 sigma. Tutaj szanse na otrzymanie fałszywego sygnału to 1:40. Razem z pewnością znacznie przekraczającą 3 sigma można mówić o istnieniu opisanego mechanizmu. Odkrycie ogłasza się przy 5 sigma. Wydaje się, że bozon Higgsa wchodzi w interakcje z cząstkami elementarnymi drugiej generacji w sposób zgodny z Modelem Standardowym. Podczas kolejnej kampanii badawczej będziemy uściślali te wyniki, mówi Roberto Carlin, rzecznik prasowy CMS. Bozon Higgsa to kwantowa manifestacja pola Higgsa, które nadaje masę cząstkom elementarnym. Mierząc tempo rozpadu bozonu Higgsa w różne cząstki fizycy mogą obliczyć siłę ich interakcji z polem Higgsa. Im szybszy rozpad, tym silniejsze interakcje. Dotychczas Wielki Zderzacz Hadronów wykazał, że bozon Higgsa rozpada się w różne bozony, jak W i Z czy cięższe fermiony, jak leptony tau. Zmierzono też interakcje z najcięższymi kwarkami, górnym i spodnim. Miony są znacznie lżejsze, więc słabiej reagują z polem Higgsa. Pomiary bozonu Higgsa osiągnęły wyższy poziom precyzji, dzięki czemu możemy badać rzadsze sposoby rozpadu, mówi Karl Jakobs, rzecznik prasowy eksperymentu ATLAS. Poważnym problemem w prowadzeniu opisywanych tutaj badań jest fakt, że na każdy bozon Higgsa rozpadający się na dwa miony przypadają tysiące par mionów powstających w wyniku innych procesów. Charakterystyczną sygnaturą bozonu Higgsa po rozpadzie do mionów jest niewielki nadmiar mas par mionów przy energii 125 GeV, czyli masie bozonu Higgsa. Wyizolowanie tego rozpadu nie jest łatwe. By to zrobić naukowcy musieli mierzyć energię, pęd oraz moment pędu mionów. Specjaliści spodziewają się, że dzięki kolejnym kampaniom badawczym oraz wykorzystaniu w przyszłości High-Luminosity LHC można będzie mówić o osiągnięciu pewności (5 sigma) i odkryciu, że bozon Higgsa rozpada się do mionów. « powrót do artykułu
  11. Japoński akcelerator cząstek SuperKEKB pobił światowy rekord jasności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć jasność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati. Jasność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego. SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki. Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 manometrów, czyli około 1/1000 grubości ludzkiego włosa. Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania jasności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi. Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało z jasnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął jasność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął jasność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje z jasnością wynoszącą 2,40x1034 cm-2s-1. W ciągu najbliższych lat jasność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1. Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji. Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleść ciemną materię i rozpocząć badania jej właściwości. « powrót do artykułu
  12. Wielki Zderzacz Hadronów odkrył nieznaną dotychczas cząstkę składającą się z czterech kwarków. Naukowcy pracujący przy eksperymencie LHCb poinformowali o zarejestrowaniu tetrakwarka, który może być pierwszą z nieznanej dotychczas klasy cząstek. Odkrycie pozwoli fizykom na zrozumienie sposobu, w jaki kwarki tworzą inne cząstki, jak protony i neutrony obecne w jądrze atomowym. Kwarki zwykle łączą się w grupy po dwa lub trzy tworząc hadrony. Przez dziesięciolecia teoretycy przewidywali, że istnieją hadrony złożone z czterech i pięciu kwarków, zwane tetra- i pentakwarkami. W ciągu ostatnich lat udało się potwierdzić ich istnienie. Informowaliśmy zarówno o niezwykłym tetrakwarku, jak i o pentakwarkach odkrytych przez polskiego uczonego. Już samo istnienie cząstek stworzonych z czterech kwarków jest czymś niezwykłym. Teraz odkryliśmy pierwszą cząstkę złożoną z czterech ciężkich kwarków tego samego typu. Jest ona zbudowana z dwóch kwarków powabnych i dwóch antykwarków powabnych, mówi Giovanni Passaleva, rzecznik prasowy LHCb. Dotychczas znaliśmy tetrakwarki składające się co najwyżej z dwóch ciężkich kwarków i nigdy nie zawierały one więcej niż dwóch kwarków tego samego typu. Odkrycie egzotycznych ciężkich cząstek to dla naukowców okazja, by przetestować modele teoretyczne, które następnie można będzie wykorzystać do wyjaśnienia natury materii. Dzięki niezwykłemu tetrakwarkowi możemy więcej dowiedzieć się o protonach i neutronach. Nową cząstkę odkryto analizując nadmiarowe sygnały pochodzące ze zderzeń. Podczas przeszukiwania pełnych danych z dwóch kampanii badawczych LHC (2009–2013 i 2015–2018) naukowcy natknęli się na skok w dystrybucji masy pary cząstek J/ψ, która zawiera kwark powabny i antykwark powabny. Istotność statystyczna przekracza w tym przypadku 5 sigma, jest więc powyżej poziomu, od którego z całą pewnością mówimy o odkryciu. Szczegółowa analiza wykazała, że za zauważony nadmiar jest związany z istnieniem wspomnianego tetrakwarka. Naukowcy – podobnie jak w przypadku wcześniej odkrytych tetrakwarków – nie mają jeszcze pewności, czy mamy do czynienia z „prawdziwym tetrakwarkiem”, w którym wszystkie kwarki są silnie ze sobą związane czy też z dwiema cząstkami składającymi się z dwóch kwarków każda, słabo powiąznymi w strukturze przypominającej molekukłę. Niezależnie jednak od tego, nowa cząstka pozwoli na testowanie modeli chromodynamiki kwantowej. « powrót do artykułu
  13. Podczas konferencji Large Hadron Collider Physics 2020 eksperymenty ATLAS i CMS przedstawiły najnowsze wyniki dotyczące rzadkich sposobów rozpadu bozonu Higgsa produkowanego na Wielkim Zderzaczu Hadronów w CERN. Nowe kanały obejmują rozpady Higgsa na bozon Z, współodpowiedzialny za słabe oddziaływania jądrowe, oraz inną cząstkę, jak również rozpady na cząstki „niewidzialne”. Te pierwsze, w razie rozbieżności z przewidywaniami Modelu Standardowego, mogą świadczyć o zjawiskach wykraczających poza znaną nam fizykę (tzw. nowa fizyka), podczas gdy niewidzialne rozpady cząstki Higgsa rzuciłyby nowe światło na naturę cząstek tzw. ciemnej materii kosmicznej. Przedstawione analizy oparte są o całość danych zebranych w latach 2015-2018, czyli około miliarda milionów zderzeń proton-proton. Eksperyment ATLAS zmierzył częstość rozpadu Higgsa na Z i foton (γ) na 2.0+1.0−0.9 częstości przewidzianej w Modelu Standardowym, tym samym zbliżając się do czułości umożliwiającej obserwację ewentualnych odstępstw od przewidywań modelu. Eksperyment CMS poszukiwał o wiele rzadszych rozpadów na Z i mezon ρ lub φ i stwierdził, że w nie więcej niż 1.9% przypadków może nastąpić rozpad na Zρ, a nie więcej niż w 0.6% przypadków na Zφ. Obserwacja tego typu rozpadów przy obecnie zebranej ilości danych świadczyłaby o zjawiskach związanych z istnieniem nowej fizyki. Niektóre hipotezy dotyczące nowej fizyki przewidują, że bozon Higgsa może rozpadać się na dwie tzw. słabo oddziałujące masywne cząstki (ang.: WIMP), odpowiedzialne za ciemna materię kosmiczną, a niewidoczne dla aparatury eksperymentalnej. Zespół eksperymentu ATLAS wykluczył, aby prawdopodobieństwo takiego procesu przekraczało 13%. Analogiczne wykluczenie rozpadu bozonu Higgsa na parę tzw. ciemnych fotonów przedstawiła współpraca CMS. Polskie grupy z IFJ, AGH i UJ w Krakowie współtworzą zespól eksperymentu ATLAS, a grupy eksperymentalne z UW i NCBJ w Warszawie uczestniczą w eksperymencie CMS. « powrót do artykułu
  14. Rada CERN jednogłośnie przyjęła dzisiaj plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Plan zakłada m.in. wybudowanie 100-kilometrowego akceleratora cząstek. O stworzeniu wstępnego raportu projektowego budowy Future Circular Collider (FCC) informowaliśmy na początku ubiegłego roku. The European Strategy for Particle Physics został po raz pierwszy przyjęty w 2006 roku, a w roku 2013 doczekał się pierwszej aktualizacji. Prace nad jego obecną wersją rozpoczęły się w 2018 roku, a w styczniu ostateczna propozycja została przedstawiona podczas spotkania w Niemczech. Teraz projekt zyskał formalną akceptację. CERN będzie potrzebował znaczniej międzynarodowej pomocy, by zrealizować swoje ambitne plany. Stąd też w przyjętym dokumencie czytamy, że Europa i CERN, za pośrednictwem Neutrino Platform, powinny kontynuować wsparcie dla eksperymentów w Japonii i USA. W szczególności zaś, należy kontynuować współpracę ze Stanami Zjednoczonymi i innymi międzynarodowymi partnerami nad Long-Baseline Neutriono Facility (LBNF) oraz Deep Underground Neutrino Experiment (DUNE). Obecnie szacuje się, że budowa nowego akceleratora, który byłby następcą Wielkiego Zderzacza Hadronów, pochłonie co najmniej 21 miliardów euro. Instalacja, w której dochodziłoby do zderzeń elektronów z pozytonami, miała by zostać uruchomiona przed rokiem 2050. Zatwierdzenie planów przez Radę CERN nie oznacza jednak, że na pewno zostaną one zrealizowane. Jednak decyzja taka oznacza, że CERN może teraz rozpocząć pracę nad projektem takiego akceleratora, jego wykonalnością, a jednocześnie rozważać inne konkurencyjne projekty dla następcy LHC. Myślę, że to historyczny dzień dla CERN i fizyki cząstek, zarówno w Europie jak i poza nią, powiedziała dyrektor generalna CERN Fabiola Gianotti po przyjęciu proponowanej strategii. Z opinią taką zgadzają się inni specjaliści. Dotychczas bowiem CERN rozważał wiele różnych propozycji. Teraz wiadomo, że skupi się przede wszystkim na tej jednej. Przyjęta właśnie strategia zakłada dwuetapowe zwiększanie możliwości badawczych CERN. W pierwszym etapie CERN wybuduje zderzacz elektronów i pozytonów, którego energia zostanie tak dobrana, by zmaksymalizować produkcję bozonów Higgsa i lepiej zrozumieć ich właściwości. Później instalacja ta zostanie rozebrana, a w jej miejscu powstanie potężny zderzacz protonów. Urządzenie będzie pracowało z energiami rzędu 100 teraelektronowoltów (TeV). Dla porównania, LHC osiąga energie rzędu 16 TeV. Zadaniem nowego zderzacza będzie poszukiwanie nowych cząstek i sił natury. Większość technologii potrzebna do jego zbudowania jeszcze nie istnieje. Będą one opracowywane w najbliższych dekadach. Co ważne, mimo ambitnych planów budowy 100-kilometrowego zderzacza, nowo przyjęta strategia zobowiązuje CERN do rozważenia udziału w International Linear Collider, którego projekt jest od lat forsowany przez japońskich fizyków. Japończycy są zadowoleni z takiego stanowiska, gdyż może pozwoli to na przekonanie rządu w Tokio do ich projektu. W przyjętej właśnie strategii czytamy, że CERN będzie kontynuował rozpoczęte już prace nad High Luminosity LHC (HL-LHC), czyli udoskonaloną wersją obecnego zderzacza. Budowa 100-kilometrowego tunelu i zderzacza elektronów i pozytonów ma rozpocząć się w roku 2038. Jednak zanim ona wystartuje, CERN musi poszukać pieniędzy na realizację swoich zamierzeń. Chris Llewellyn-Smith, były dyrektor generalny CERN, uważa, że do europejskiej organizacji mogłyby dołączyć Stany Zjednoczone, Japonia i Chiny, by powołać nową globalną organizację fizyczną. Nie wszyscy eksperci entuzjastycznie podchodzą do planów CERN. Sabine Hossenfelder, fizyk teoretyczna z Frankfurckiego Instytutu Zaawansowanych Badań krytykuje wydawanie olbrzymich kwot w sytuacji, gdy nie wiemy, czy zwiększanie energii zderzeń cząstek przyniesie jakiekolwiek korzyści naukowe poza pomiarami właściwości już znanych cząstek. Z opinią tą zgadza się Tara Shears z University of Liverpool. Uczona zauważa, że o ile powodem, dla którego budowano LHC było poszukiwanie bozonu Higgsa i urządzenie spełniło stawiane przed nim zadanie, to obecnie brak dobrze umotywowanych powodów naukowych, by budować jeszcze potężniejszy akcelerator. Nie mamy obecnie żadnych solidnych podstaw. A to oznacza, że cały projekt obarczony jest jeszcze większym ryzykiem, mówi. Dodaje jednak, że jednocześnie wiemy, że jedynym sposobem na znalezienie odpowiedzi są eksperymenty, a jedynymi miejscami, gdzie możemy je znaleźć są te miejsca, w które jeszcze nie zaglądaliśmy. « powrót do artykułu
  15. Analiza danych z Wielkiego Zderzacza Hadronów wskazuje, że w LHC powstają podwójne pary kwark t/antykwark t. Najnowsze odkrycie jest pierwszym krokiem w kierunku przetestowania prawdziwości hipotezy mówiącej, że podwójne pary kwarków t pojawiają się częściej niż wynika to z Modelu Standardowego. Kwarki t to najcięższe cząstki elementarne. Każdy z nich ma masę podobną do masy atomu wolframu. Jednocześnie, jako że kwarki t są znacznie mniejsze od protonu, oznacza to, iż są najgęstszą formą materii. Kwarki t powstały podczas Wielkiego Wybuchu, jednak błyskawicznie się rozpadły. Obecnie możemy je uzyskiwać i badać jedynie w akceleratorach cząstek. Pierwsze kwarki t zostały odkryte w 1995 roku w akceleratorze Tevatron w Fermilab. Tevatron był wówczas najpotężniejszym akceleratorem na świecie i można w nim było uzyskać parę kwark t/antykwark t raz na kilka dni. Tevatron – najbardziej zasłużony dla nauki akcelerator cząstek – został wyłączony w 2011 roku, po uruchomieniu Wielkiego Zderzacza Hadronów (LHC). LHC pracuje z 6,5-krotnie większymi energiami niż Tevatron, a do zderzeń dochodzi w nim około 100-krotnie częściej. Dzięki temu w urządzeniach ATLAS i CMS, będących częścią LHC, możliwe jest uzyskiwanie par kwark t/antykwark t co sekundę. Niedawno naukowcy analizowali dane z eksperymentu ATLAS, by sprawdzić, jak często powstają podwójne pary kwark t/antykwark t. Model Standardowy przewiduje, że powinny one powstawać około 70 000 razy rzadziej niż pojedyncze pary kwark t/antykwark t. Analizie poddano dane z eksperymentów ATLAS i CMS z lat 2015–2018. Okazało się, że w przypadku eksperymentu ATLAS pewność uzyskiwania tam podwójnych par kwarków t wynosi sigma 4.3, a w przypadku CMS jest to sigma 2.6. Dotychczas uważano, że w obu przypadkach wartość ta wynosi 2.6. Sigma to miara pewności statystycznej. Fizycy cząstek mówią o odkryciu, gdy wartość sigma wynosi 5 lub więcej. Oznacza to bowiem, że prawdopodobieństwo, iż mamy do czynienia z przypadkową fluktuacją, a nie z prawdziwą obserwacją, wynosi 1:3500000. Wartość sigma 3 oznacza, że prawdopodobieństwo wystąpienia przypadkowej fluktuacji wynosi 1:740. Wówczas mówi się o dowodzie, wymagającym dalszych potwierdzeń obserwacyjnych. Osiągnięcie wartości 4.6 oznacza, że jesteśmy bardzo blisko potwierdzenia, że w LHC powstają podwójne pary kwarków t. A gdy już zostanie to potwierdzone, można będzie sprawdzić, czy częstotliwość ich powstawania jest zgodna z Modelem Standardowym. « powrót do artykułu
  16. Naukowcy z Fermilab poinformowali o wygenerowaniu najsilniejszego pola magnetycznego stworzonego na potrzeby akceleratorów cząstek. Nowy rekord wynosi 14,1 tesli, a wynik taki uzyskano w magnecie schłodzonym do 4,5 kelwinów, czyli -268,65 stopnia Celsjusza. Poprzedni rekord, 13,8 tesli, został osiągnięty przed 11 laty w Lawrence Berkeley National Laboratory. Zwiększenie indukcji magnetycznej to znaczące osiągnięcie w fizyce cząstek. Silniejsze magnesy mogą posłużyć do zbudowania doskonalszych akceleratorów, które zastąpią w przyszłości Wielki Zderzacz Hadronów (LHC). Magnesy są wykorzystywane w akceleratorach do kontrolowania poruszających się cząstek. Im są silniejsze, tym łatwiej kontrolować cząstki poruszające się niemal z prędkością światła. Przez kilkanaście lat pracowaliśmy nad przekroczeniem granicy 14 tesli, więc to ważne osiągnięcie. W pierwszym teście uzyskaliśmy 14,1 tesli na demonstracyjnym magnesie, dla którego teoretyczna granica wynosi 15 tesli. Pracujemy nad wyciśnięciem z niego jeszcze więcej, mówi Alexander Zlobin, który stoi na czele grupy badawczej. Przyszłość zderzaczy hadronów zależy od dostępności silnych magnesów, dlatego fizycy na całym świecie są zainteresowani pracami mającymi na celu stworzenie niobowo-cynowych magnesów o indukcji 15 tesli. Sercem takiego urządzenia jest nadprzewodzący stop niobu z cyną. Prąd przepuszczany przez magnes powoduje pojawienie się pola magnetycznego. Jako, że materiał schłodzony jest do bardzo niskich temperatur, prąd nie napotyka oporu, nie dochodzi do generowania energii cieplnej. Całe energia elektryczna przyczynia się do wygenerowania pola magnetycznego. Indukcja zależy zaś od maksymalnego napięcia prądu, jakie może znieść dany materiał. Niobowo-tytanowe magnesy Wielkiego Zderzacza Hadronów nie są w stanie pracować z napięciem, które pozwalałoby na osiągnięcie 15 tesli. Można to uzyskać magnesach niobowo-cynowych, problem jednak w tym, że są one kruche i mogą się rozsypać pod wpływem działających na nie olbrzymich sił. Zespół z Fermilab stworzył taką architekturę magnesu, która go wzmacnia i pozwala przetrzymać ściskające i rozciągające go siły. Dziesiątki przewodów o okrągłym przekroju zostało skręconych w odpowiedni sposób, by uzyskane przewody spełniały specyficzne wymagania elektryczne i mechaniczne. Po utworzeniu z kabli zwojów całość była podgrzewana przez dwa tygodnie w temperaturach sięgających niemal 650 stopni Celsjusza, co nadało materiałowi właściwości nadprzewodzące. Następnie zwoje zostały zamknięte w żelaznych obejmach zamkniętych aluminiowymi klamrami, na co nałożono powłokę ochronną z nierdzewnej stali, która ma ochronić zwoje przed ich deformacją. To olbrzymie osiągnięcie, kluczowe dla rozwoju kolejnych generacji kołowych akceleratorów cząstek, mówi Soren Prestemon, naukowiec z Berkeley Lab i dyrektor U.S. Magnet Development Program, w skład którego wchodzi zespół z Fermilab. To wyjątkowy krok milowy na drodze ku opracowaniu magnesów. Osiągnięcie zostało z entuzjazmem przyjęte przez badaczy, którzy będą w przyszłości wykorzystywali akceleratory nowej generacji. Naukowcy z Fermilab zapowiadają, że w ciągu najbliższych miesięcy wzmocnią swój magnes pod względem mechanicznym i jesienią poddadzą go kolejnemu testowi, w czasie którego spróbują uzyskać 15 tesli. Ma być to wstępem do stworzenia jeszcze potężniejszych magnesów. W oparciu o ten projekt i o to, czego się nauczyliśmy, mamy zamiar udoskonalić magnesy niobowo-cynowe i w przyszłości osiągnąć 17 tesli, mówi Ziobin. Naukowiec nie wyklucza, że w przyszłości, wykorzystując nowe nadprzewodniki, jego zespół dojdzie do 20 tesli. Maksymalna indukcja pola magnetycznego magnesów LHC wynosi 8,34 tesli, czyli jest blisko górnej granicy 10 tesli dla magnesów niobowo-tytanowych. Z kolei w ubiegłym roku CERN informował o uzyskaniu dzięki magnesowi FRESCA2 14,6 tesli. FRESCA2 jest to magnes, który służy do testowania nadprzewodników, a nie do pracy wewnątrz akceleratora cząstek. « powrót do artykułu
  17. Tibet AS-gamma Experiment zarejestrował najbardziej intensywne promieniowanie pochodzące ze źródła astrofizycznego. Energia fotonów pochodzących z Mgławicy Kraba wynosiła ponad 100 teraelektronowoltów (TEV), to około 10-krotnie więcej niże maksymalna energia uzyskiwana w Wielkim Zderzaczu Hadronów. Naukowcy spekulują, że źródłem tak intensywnego promieniowania jest pulsar ukryty głęboko we wnętrzu Mgławicy. Pojawienie się Mgławicy Kraba zostało zauważone na Ziemi w 1054 roku. Wydarzenie to odnotowały źródła historyczne. Jako, że Mgławica położona jest w odległości ponad 6500 lat świetlnych od Ziemi wiemy, że eksplozja, w wyniku której powstała, miała miejsce około 7500 lat temu. Nowa gwiazda została po raz pierwszy zaobserwowana 4 lipca 1054 roku. Jej pojawienie się odnotowały chińskie źródła. W ciągu kilku tygodni przygasła, a dwa lata po pojawieniu się zniknęła zupełnie. Obecnie wiemy, że jej pojawienie się odnotowano też w XIII-wiecznym japońskim dokumencie oraz w źródłach arabskich. Niewykluczone też, że jest wspominana w źródłach europejskich. Mgławica Kraba została po raz pierwszy odkryta w 1731 roku przez Johna Bevisa. Następnie obserwowali ją inni astronomowie. Nazwę nadal jej William Parsons w 1844 roku. W latach 20. XX wieku ostatecznie stwierdzono, że Mgławica Kraba to pozostałość supernowej z 1054 roku. Tym samym stała się ona pierwszym obiektem astronomicznym powiązanym z eksplozją supernowej. Mgławica Kraba emituje promieniowanie niemal w każdym zakresie fal. Wysyła zarówno niskoenergetyczne fale radiowe, wysokoenergetyczne promieniowanie gamma i rentgenowskie, emituje też światło widzialne. Jednak zarejestrowanie ultraenergetycznego promieniowania to coś nowego. Wysokoenergetyczne fotony, takie jak promieniowanie gamma, z trudnością przedziera się przez ziemską atmosferę. Gdy promienie gamma trafią na atomy w atmosferze, powstaje cały deszcz innych cząstek. Jednak astronomowie nauczyli się rejestrować te cząstki. Najlepiej zrobić to za pomocą narzędzi o dużej powierzchni. Takich jak Tibet AS-gamma, który składa się z 597 detektorów rozrzuconych na przestrzeni niemal 66 000 metrów kwadratowych. A kilka metrów pod detektorami znajdują się 64 betonowe zbiorniki wypełnione wodą, która służy jako dodatkowy wykrywacz. Dzięki rozłożeniu detektorów na dużej powierzchni można śledzić kierunek i energię wysokoenergetycznych wydarzeń, a woda pozwala na rejestrowanie specyficznych sygnatur takich zjawisk. Dzięki temu specjaliści potrafią odróżnić promieniowanie gamma od promieniowania kosmicznego. Dane zebrane pomiędzy lutym 2014 roku a majem roku 2017 ujawniły istnienie 24 wydarzeń o energiach przekraczających 100 TeV pochodzących z Mgławicy Kraba. Niektóre z docierających do nas promieni miały energię dochodzącą do 450 TeV. Obecnie nie jest jasne, w jaki sposób powstają fotony o tak wysokich energiach, ani czy istnieje jakaś granica intensywności promieniowania. Specjaliści pracujący przy Tibet AS-gamma wyznaczyli sobie ambitny cel – zarejestrowanie fotonów o energiach liczonych w petaelektronowoltach, czyli przekraczających 1000 TeV. Biorąc pod uwagę, że analizy takich zjawisk trwają całymi latami, nie można wykluczyć, iż tego typu fotony już zostały przez Tibet AS-gamma zarejestrowane. Teraz wystarczy je tylko zidentyfikować w danych. « powrót do artykułu
  18. Część fizyków uważa, że w Wielkim Zderzaczu Hadronów (LHC) powstają długo żyjące cząstki, które dotychczas nie zostały wykryte. W przyszłym tygodniu w CERN odbędzie się spotkanie, na którym zostaną omówione metody zarejestrowania tych cząstek. W 2012 roku LHC zarejestrował obecność bozonu Higgsa, ostatniej nieuchwyconej wcześniej cząstki przewidywanej przez Model Standardowy. Jednak od tamtej pory nie znaleziono niczego nowego czy niespodziewanego. Niczego, co wykracałowy poza Model Standardowy. Nie odkryliśmy nowej fizyki, nie potwierdziliśmy założeń, z jakimi rozpoczynaliśmy prace. Może należy zmienić te założenia, mówi Juliette Alimena z Ohio State University, która pracuje przy CMS (Compact Muon Solenoid), jednym z dwóch głównych detektorów cząstek w LHC. Pomimo tego, że w LHC zainwestowano miliardy dolarów, to urządzenia pracuje tak, jak pracowały akceleratory przed kilkudziesięcioma laty. Fizycy od dekad zderzają ze sobą protony lub elektrony, zwiększają ich energie, by w procesie tym uzyskać nowe ciężkie cząstki i obserwować, jak w ciągu biliardowych części sekundy rozpadają się na lżejsze, znane nam cząstki. Te lżejsze są wykrywane i na podstawie ich charakterystyk wiemy, z jakich cięższych cząstek pochodzą. Tak właśnie działa i CMS i drugi z głównych wykrywaczy LHC – ATLAS (A Toroidal LHC Apparatus). Jednak długo żyjące ciężkie cząstki mogą umykać uwadze detektorów. Przypuszczenie takie nie jest nowe. Niemal wszystkie teorie wykraczające poza standardowe modele fizyczne przewidują istnienie długo żyjących cząstek, mówi Giovanna Cottin, fizyk-teoretyk z Narodowego Uniwersytetu Tajwańskiego. Na przykład teoria supersymetrii mówi, że każda z cząstek Modelu Standardowego ma cięższego partnera. Istnieją teorie mówiące też o istnieniu np. ciemnych fotonów i innych „ciemnych” cząstek. Dotychczas niczego takiego nie udało się zaobserwować. LHC nie został zaprojektowany do poszukiwania cząstek wykraczających poza Model Standardowy. CMS i ATLAS skonstruowano tak, by wykrywały cząstki ulegające natychmiastowemu rozpadowi. Każdy z nich zawiera warstwowo ułożone podsystemy rejestrujące produkty rozpadu cząstek. Wszystkie one ułożone są wokół centralnego punktu, w którym dochodzi do zderzenia. Jednak problem w tym, że jeśli w wyniku zderzenia powstanie cząstka, która będzie żyła tak długo, iż przed rozpadem zdoła przebyć chociaż kilka milimetrów, to pozostawi ona po sobie nieoczywiste sygnały, smugi, zaburzone trasy ruchu. Oprogramowanie służące do analiz wyników z detektorów odrzuca takie dane, traktując je jak zakłócenia, artefakty. To problem, bo my tak zaprojektowaliśmy eksperymenty, a programiści tak napisali oprogramowanie, że po prostu odfiltrowuje ono takie rzeczy, mówi Tova Holmes z University of Chicago, która w wykrywaczu ATLAS poszukuje takich zaburzeń. Holmes i jej koledzy wiedzą, że muszą zmienić oprogramowanie. Jednak to nie wystarczy. W pierwszym rzędzie należy upewnić się, że wykrywacze w ogóle będą rejestrowały takie dane. Jako, że w w LHC w ciągu sekundy dochodzi do 400 milionów zderzeń protonów, w samym sprzęcie zastosowano mechanizmy chroniące przed przeładowaniem danymi. Już na poziomie sprzętowym dochodzi do odsiewania zderzeń i podejmowania decyzji, które są interesujące, a które należy odrzucić. W ten sposób do dalszej analizy kierowane są dane z 1 na 2000 zderzeń. To zaś oznacza, że możemy mieć do czynienia z utratą olbrzymiej ilości interesujących danych. Dlatego też część naukowców chciałaby przyjrzeć się kalorymetrowi CMS, do którego mogą docierać długo żyjące ciężkie cząstki. Chcieliby zastosować mechanizm, który od czasu do czasu będzie odczytywał pełne wyniki wszystkich zderzeń. Szukanie ciężkich cząstek nigdy nie było łatwe, chociażby dlatego, że naukowcy mieli różne pomysły na to, jak je zarejestrować. To zawsze było tak, że pracowały nad tym pojedyncze osoby. A każdy z nich sam dla siebie stanowił grupę wsparcia, przyznaje James Beacham z Ohio State University. Teraz zainteresowani połączyli siły i w marcu ukazało się 301-stronicowe opracowanie autorstwa 182 naukowców, w którym zaproponowano metody optymalizacji poszukiwań ciężkich cząstek. Niektórzy z nich proponują, by w najbliższej kampanii, planowanej na lata 2012–2023 częściej zbierano kompletne dane ze wszystkich zderzeń. Niewykluczone, że to ostatnia szansa na zastosowanie tej techniki, gdyż później intensywność generowanych wiązek zostanie zwiększona i zbieranie wszystkich danych stanie się trudniejsze. Inni chcą zbudowania kilku nowych detektorów wyspecjalizowanych w poszukiwaniu ciężkich cząstek. Jonathan Feng, fizyk-teoretyk z Uniwersytetu Kalifornijskiego w Irvine, wraz z kolegami uzyskali nawet od CERN zgodę na zbudowanie Forward Search Experiment (FASER). To niewielki detektor, który ma zostać umieszczony w tunelu serwisowym w odległości 480 metrów w dół wiązki od ATLAS-a. Naukowcy zebrali już nawet 2 miliony dolarów od prywatnych sponsorów i dostali potrzebne podzespoły. FASER ma poszukiwać lekkich cząstek, takich jak ciemne fotony, które mogą być wyrzucane z ATLAS-a, przenikać przez skały i rozpadać się w pary elektron-pozyton. Jeszcze inna propozycja zakłada wykorzystanie pustej komory znajdującej się za niewielkim wykrywaczem LHCb. Umieszczony tam Compact Detector for Exotics at LHCb miałby poszukiwać długo żyjących cząstek, szczególnie tych pochodzących z rozpadu bozonu Higgsa. Jednak najbardziej ambitną propozycją jest budowa detektora o nazwie MATHULSLA. Miałby to być wielki pusty budynek wzniesiony na powierzchni nad detektorem CMS. W jego dachu miałyby zostać umieszczone czujniki, które rejestrowałyby dżety pochodzące z rozpadu długo żyjących cząstek powstających 70 metrów poniżej, wyjaśnia David Curtin z Uniwersytetu w Toronto, jeden z pomysłodawców wykrywacza. Uczony jest optymistą i uważa, że detektor nie powinien kosztować więcej niż 100 milionów euro. Po nocach śni nam się koszmar, w którym Jan Teoretyk powie nam za 20 lat, że niczego nie odkryliśmy bo nie rejestrowaliśmy odpowiednich wydarzeń i nie prowadziliśmy właściwych badań, mówi Beacham, który pracuje przy wykrywaczu ATLAS. « powrót do artykułu
  19. CERN opublikował wstępny raport projektowy (Conceptual Design Report), w którym zarysowano plany nowego akceleratora zderzeniowego. Future Circular Collider (FCC) miałby być niemal 4-krotnie dłuższy niż Wielki Zderzacz Hadronów (LHC) i sześciokrotnie bardziej potężny. Urządzenie, w zależności od jego konfiguracji, miałoby kosztować od 9 do 21 miliardów euro. Publikacja raportu odbyła się w ramach programu European Strategy Update for Particle Pysics. Przez dwa kolejne lata specjaliści będą zastanawiali się nad priorytetami w fizyce cząstek, a podjęte decyzje wpłyną na to, co w tej dziedzinie będzie się działo w Europie w drugiej połowie bieżącego stulecia. To olbrzymi krok, tak jakbyśmy planowali załogową misję nie na Marsa, a na Uran, mówi Gian Francesco Giudice, który stoi na czele wydziału fizyki teoretycznej CERN i jest przedstawicielem tej organizacji w Physics Preparatory Group. Od czasu odkrycia bozonu Higgsa w 2012 roku LHC nie odkrył żadnej nowej cząstki. To pokazuje, że potrzebne jest urządzenie, które będzie pracowało z większymi energiami. Halina Abramowicz, fizyk z Tel Aviv University, która kieruje europejskim procesem opracowywania strategii rozwoju fizyki cząstek, nazwała propozycję CERN „bardzo ekscytującą”. Dodała, że projekt FCC będzie szczegółowo rozważany razem z innymi propozycjami. Następnie Rada CERN podejmie ostateczną decyzję, czy należy sfinansować FCC. Jednak nie wszyscy uważają, że nowy zderzacz jest potrzebny. Nie ma żadnych podstaw, by sądzić, że przy energiach, jakie mógłby osiągnąć ten zderzacz, można będzie dokonać jakichś znaczących odkryć. Wszyscy to wiedzą, ale nich nie chce o tym mówić, stwierdza Sabine Hossenfelder, fizyk teoretyk z Frankfurckiego Instytutu Zaawansowanych Badań. Jej zdaniem pieniądze, które miałyby zostać wydane w FCC można z większym pożytkiem wydać na inne urządzenia, na przykład na umieszczenie na niewidocznej stronie Księżyca dużego radioteleskopu czy też zbudowanie na orbicie wykrywacza fal grawitacyjnych. Takie inwestycje z większym prawdopodobieństwem przyniosą znaczące odkrycia naukowe. Jednak Michael Benedikt, fizyk, który stał na czele grupy opracowującej raport nt. FCC mówi, że warto wybudować nowy zderzacz niezależnie od spodziewanych korzyści naukowych, gdyż tego typu wielkie projekty łączą instytucje naukowe ponad granicami. Hossenfelder zauważa, że podobnie łączą je inne duże projekty naukowe. Prace nad FCC rozpoczęły się w 2014 roku i zaangażowało się w nie ponad 1300 osób i instytucji. Rozważanych jest kilka konfiguracji, a większość z nich zakłada, że FCC powstanie obok LCH, a jego tunele będą miało 100 kilometrów długości. Sama budowa tunelu i powiązanej z nim infrastruktury naziemnej pochłoną około 5 miliardów euro. Kolejne 4 miliardy będzie kosztował akcelerator, w którym będą zderzanie elektrony z pozytonami. urządzenie miałoby pracować z energię do 365 gigaelektronowoltów. To mniejsza energia niż w LHC, jednak zderzenia lżejszych cząstek, jak elektron z pozytonem, dają znacznie bardziej szczegółowe dane niż zderzanie protonów, jakie zachodzi w LHC, zatem w FCC można by bardziej szczegółowo zbadać np. bozon Higgsa. FCC miałby zostać uruchomiony około roku 2040. Warto tutaj na chwilę się zatrzymać i przypomnieć opisywany przez nas projekt International Linear Collider. Przed ponad pięciu laty świat obiegła wiadomość o złożeniu szczegółowego raportu technicznego 31-kilometrowego liniowego zderzacza elektronów i pozytonów. Raport taki oznaczał, że można rozpocząć budowę ILC. Urządzenie to, dzięki swojej odmiennej od LHC architekturze, ma pracować – podobnie jak FCC – z elektronami i pozytonami i ma dostarczać bardziej szczegółowych danych niż LHC. W projekcie ILC biorą udział rządy wielu krajów, a najbardziej zainteresowana jego budową była Japonia, skłonna wyłożyć nawet 50% jego kosztów. Jednak budowa ILC dotychczas nie ruszyła. Brak kolejnych odkryć w LHC spowodował, że szanse na budowę ILC znacznie zmalały. Rząd Japonii ma 7 marca zdecydować, czy chce u siebie ILC. Inny scenariusz budowy FCC zakłada wydatkowanie 15 miliardów euro i wybudowanie w 100-kilometrowym tunelu zderzacza hadronów (kolizje proton–proton) pracującego z energią dochodzącą do 100 TeV, czyli wielokrotnie wyższą niż 16 TeV uzyskiwane w LHC. Jednak bardziej prawdopodobnym scenariuszem jest zbudowanie najpierw zderzacza elektronów i pozytonów, a pod koniec lat 50. bieżżcego wieku rozbudowanie go do zderzacza hadronów. Scenariusz taki jest bardziej prawdopodobny z tego względu, że skonstruowanie 100-teraelektronowoltowego zderzacza hadronów wymaga znacznie więcej badań. Gdybyśmy dysponowali 100-kilometrowym tunelem, to już moglibyśmy rozpocząć budowę zderzacza elektronów i pozytonów, gdyż dysponujemy odpowiednią technologią. Stworzenie magnesów dla 100-teraelektronowego zderzacza wymaga jeszcze wielu prac badawczo-rozwojowych, mówi Guidice. Trzeba w tym miejscu wspomnieć, że podobny projekt prowadzą też Chiny. Państwo Środka również chce zbudować wielki zderzacz. O ile jednak w FCC miałyby zostać wykorzystane magnesy ze stopu Nb3Tn, to Chińczycy pracują nad bardziej zaawansowanymi, ale mniej sprawdzonymi, nadprzewodnikami bazującymi na żelazie. Ich zaletą jest fakt, że mogą pracować w wyższych temperaturach. Jeśli pracowałyby przy 20 kelwinach, to można osiągnąć olbrzymie oszczędności, mówi Wang Yifang, dyrektor chińskiego Instytutu Fizyki Wysokich Energii. Także i Chińczycy uważają, że najpierw powinien powstać zderzacz elektronów i pozytonów, a następnie należy go rozbudować do zderzacza hadronów. Jako, że oba urządzenia miałyby bardzo podobne możliwości, powstaje pytanie, czy na świecie są potrzebne dwa takie same wielkie zderzacze. « powrót do artykułu
×
×
  • Dodaj nową pozycję...