Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'ciemna materia'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 14 results

  1. Fizycy z Uniwersytetu w Sztokholmie i Instytutu Fizyki im. Maxa Plancka zaproponowali rewolucyjny sposób na zarejestrowanie istnienia ciemnej materii. Uczeni chcą wykorzystać plazmę i specyficzną antenę do zarejestrowania aksjonów. Jedna z teorii mówi, że jeśli aksjony istnieją, to właśnie one mogą tworzyć ciemną materię. Szukanie aksjonów jest jak dostrajanie radia. Trzeba ustawić antenę tak, by złapać odpowiednią częstotliwość. W tym wypadku zamiast muzyki 'usłyszymy' ciemną materię, przez którą podróżuje Ziemia. Przez ostatnie trzy dekady, od czasu nadania im nazwy przez Franka Wilczka, aksjony były jednak ignorowane i nie poszukiwano ich metodami eksperymentalnymi, mówi główny autor obecnych badań, doktor Alexander Millar z Uniwersytetu w Sztokholmie. Z przeprowadzonych właśnie badań wynika,że wewnątrz pola magnetycznego aksjony powinny wytwarzać niewielkie pole magnetyczne, które można wykorzystać do wywołania oscylacji w plazmie. Te oscylacje wzmocnią sygnał z aksjonów, dzięki czemu możemy uzyskać lepsze 'aksjonowe radio'. Zwykle podobne eksperymenty prowadzi się w rezonatorach, jednak to, co proponują uczeni ze Szwecji i Niemiec ma olbrzymią zaletę – brak tutaj ograniczeń co do możliwości wzmacniania sygnału. Różnica jest taka, jak pomiędzy próbami złapania sygnału z krótkofalówki albo z radiowej wieży nadawczej. Bez zimnej plazmy nie może dojść do konwersji aksjonów w światło. Plazm odgrywa tutaj podwójną rolę. Tworzy środowisko pozwalające na konwersję i dostarcza plazmonów zbierających energię przemienionej ciemnej materii, mówi doktor Matthew Lawson ze Sztokholmu. To całkowicie nowy sposób poszukiwania ciemnej materii, który pozwoli na poszukiwanie w zupełnie niebadanych obszarach jednego z najlepszych kandydatów do tego miana, dodaje Millar. Rolę 'aksjonowego radia' ma odegrać coś, co naukowy nazwali 'drucianym metamateriałem'. Ma to być zbiór przewodów cieńszych od ludzkiego włosa, które mogą być poruszane, by zmienić częstotliwość drgań plazmy. Jeśli umieści się je wewnątrz silnego magnesu, takiego, jakie są używane w maszynach do rezonansu magnetycznego, 'druciany metamateriał' stanie się bardzo czułą anteną nasłuchującą aksjony. Urządzenie takie zostało nazwane haloskopem plazmowym. Naukowcy z Uniwersytetu w Sztokholmie i Instytutu Maxa Plancka prowadzili co prawda badania teoretyczne, ale ściśle przy tym pracowali z grupą eksperymentatorów z Berkeley. Teraz Amerykanie zajmują się pracami koncepcyjymi nad odpowiednim eksperymentem i mają nadzieję, że w najbliższej przyszłości uda im się zbudować odpowiednie urządzenie do poszukiwania aksjonów. Haloskopy plazmowe to jeden ze sposobów na poszukiwanie aksjonów. Fakt, że ludzie zajmujący się badaniami eksperymentalnymi tak szybko zainteresowali się naszą pracą jest bardzo ekscytujący i daje nadzieję, że zostaną przeprowadzone odpowiednie eksperymenty, cieszy się Millar. Ze szczegółami badań można zapoznać się na łamach Physical Review Letters. « powrót do artykułu
  2. Naukowcy z Instytut Radioastronomii im. Maxa Plancka w Bonn zaproponowali nowy eksperyment, dzięki któremu mamy dowiedzieć się więcej na temat interakcji pomiędzy ciemną materią, a materią. Ich propozycja została opublikowana na łamach Physical Review Letters. Przed około 400 laty Galileusz stwierdził, że w polu grawitacyjnym ziemi wszystkie ciała doświadczają takiego samego spadku swobodnego. Niedawno przeprowadzony eksperyment z użyciem satelity potwierdził uniwersalność swobodnego spadku w polu grawitacyjnym Ziemi z dokładnością 1:100 bilionów. Takie eksperymenty pozwalają jednak przetestować tylko uniwersalność zasady swobodnego spadku w odniesieniu do materii. Tymczasem zwykła materia stanowi niewielką część materii wszechświat. Jako, że nie znamy natury ciemnej materii, nie wiemy w jaki sposób może ona oddziaływać z materią, jakie siły wchodzą tutaj w rachubę. Czy interakcja pomiędzy materią a ciemną materią odbywa się za pomocą czterech znanych rodzajów oddziaływań podstawowych (grawitacyjne, elektromagnetyczne, silne, słabe) czy też mamy tu do czynienia z hipotetycznym dodatkowym oddziaływaniem, nazwanym „piątą siłą”. Naukowcy z Bonn proponują zweryfikowanie istnienia „piątej siły” za pomocą gwiazdy neutronowej. Są dwa powody, dla których pulsar w układzie podwójnym pozwala na przeprowadzenie nowatorskich badań oddziaływania pomiędzy materią a ciemną materią. Po pierwsze, gwiazda neutronowa składa się z materii, której nie możemy odtworzyć w laboratorium. Jest ona wielokrotnie bardziej gęsta niż jądro atomowe, złożona niemal w całości z neutronów. Ponadto niezwykle silne pola grawitacyjne wewnątrz gwiazdy neutronowej, miliard razy silniejsze niż pole grawitacyjne Słońca, może znakomicie wzmacniać interakcje z ciemną materią, mówi Lijing Shao z Instytutu im. Maxa Plancka. Orbity pulsarów w układach podwójnych można precyzyjnie mierzyć. W niektórych przypadkach znamy orbitę takiej gwiazdy z dokładnością większą niż 30 metrów. Zespół naukowy z Bonn postanowił przetestować swój pomysł wykorzystując w tym celu pulsar PSR J1713+0740 oddalony od Ziemi o około 3800 lat świetlnych. To jeden z najbardziej stabilnych znanych nam pulsarów. Pojedynczy obrót wokół własnej osi zajmuje mu 4,6 milisekundy, a sam pulsar krąży wokół białego karła po niemal kołowej orbicie o okresie 68 dni. To dobry obiekt do badań, gdyż im większa orbita, tym bardziej ciemna materia powinna ją zakłócać. Jeśli swobody spadek w polu grawitacyjnym ciemnej materii jest inny niż w polu grawitacyjnym białego karła (materia), to z czasem powinno dochodzić do deformacji orbity pulsara. Przez ponad 20 lat precyzyjnych pomiarów prowadzonych za pomocą teleskopu Effelsber i innych radioteleskopów, wykazano, że nie dochodzi do zmian orbity. A to z dużym prawdopodobieństwem oznacza, że pulsar jest w ten sam sposób przyciągany do ciemnej materii co do materii, stwierdził Norbert Wex. Naukowcy uważają, że jeszcze lepsze badania można przeprowadzić w miejscach gdzie, jak się przypuszcza, występuje dużo ciemnej materii. "Idealnym miejscem jest centrum galaktyki, które obserwujemy w ramach projektu Black Hole Cam. Gdy uruchomiony zostanie teleskop Square Kilometre Array będziemy mogli przeprowadzić niezwykle precyzyjne testy", mówi Michael Kramer. « powrót do artykułu
  3. Joanna Jałocha, Łukasz Bratek i profesor Marek Kutschera z Polskiej Akademii Nauk w Krakowie wyliczyli, że galaktyce NGC 4736 nie towarzyszy ciemna materia. Jeśli te obliczenia są prawidłowe, oznacza to, że galaktyka nie ma w ogóle lub ma bardzo mało ciemnej materii. To zadziwiające - mówi astrofizyk Jurg Diemand z Uniwersytetu Kalifornijskiego w Santa Cruz. Gwiazdy w galaktykach krążą tak szybko wokół centrum, że powinny od niego odlecieć. Coś jednak je utrzymuje na orbicie. Masa wszystkich obserwowalnych obiektów oraz masa gazów w galaktykach jest zbyt mała, by ich grawitacja mogła powstrzymać gwiazdy przed opuszczeniem galaktyki. Tak więc jest jeszcze coś, co je tam trzyma. Jedna z teorii mówi, że to to tzw. ciemna materia, której nie jesteśmy w stanie zaobserwować. Według innej, znanej jako zmodyfikowana dynamika Newtonowska (MOND), dzieje się tak, ponieważ siły grawitacji mogą zachowywać się inaczej, niż w ziemskich warunkach. Polscy naukowcy zaobserwowali, że galaktyka spiralna NGC 4736 zachowuje się dość nietypowo. Im dalej od „zatłoczonego” przez gwiazdy środka, tym ruch w tej galaktyce jest wolniejszy. Innymi słowy w NGC 4736 zachowuje się tak, jakbyśmy się tego spodziewali. Jakby nie było w pobliżu ani ciemnej materii, ani nie działała MOND. Galaktyka jest dość mała, dlatego, aby dokonać dokładnych obliczeń Polacy musieli opracować nowe metody analizy danych. Z ich obliczeń wynika, że masa widocznych gwiazd i gazu jest równa masie całej galaktyki. Dotychczas wszystkie stosowane metody zawsze wykazywały istnienie ciemnej materii. Stacy McGaugh, specjalistka ds. formowania się i ewolucji galaktyk z University of Maryland, nie potrafi odpowiedzieć na pytanie, czy wyliczenia polskich naukowców są prawidłowe. Zauważa, że jeśli są, to NGC 4736 jest wyjątkową galaktyką. Jeśli wyliczenia polskiego zespołu się potwierdzą, astronomowie będą mieli nie lada orzech do zgryzienia. Jurg Diemand mówi, że ciemna materia umożliwia formowanie się galaktyk. To ona przyciąga gaz, z którego z czasem powstają gwiazdy. Nie wiadomo, w jaki sposób mogłyby powstać galaktyki, którym nie towarzyszy ciemna materia. Ze szczegółowym opisem nowej metody analizy można zapoznać się w Sieci.
  4. Dzięki hawajskiemu teleskopowi Keck II znaleziono najciemniejszą znaną nam galaktykę. Mówiąc o ciemnej galaktyce astronomia nie przesądza o ilości światła, którą ona emituje, ale o stosunku masy widzialnych gwiazd do masy całej galaktyki. Segue 1, bo tak nazywa się kosmiczne „jądro ciemności" jest 3400 razy cięższa niż wynika z obliczeń masy jej gwiazd widzialnych. Oznacza to, że w olbrzymiej mierze składa się z olbrzymich chmur ciemnej materii. Po raz pierwszy o istnieniu „Najciemniejszej Galaktyki" poinformowano przed dwoma laty. Jej odkrywcy twierdzili wówczas, że jest to przypadkowy zbiór grup gwiazd, które pochodzą z pobliskiej galaktyki karłowatej Strzelca. Jednak takie wytłumaczenie nie przekonało astronomów z Cambridge University. Postanowili oni zbadać prędkość poruszania się gwiazd w nowej galaktyce zarówno względem Drogi Mlecznej jak i względem siebie. Uczonym udało się zebrać dane dotyczące zawartości żelaza z 7 gwiazd. W trzech z nich zawartość żelaza jest ponad 2500 razy mniejsza niż w Słońcu. To dowodzi, że mamy do czynienia z jednymi z najstarszych i najmniej wyewoluowanych gwiazd - stwierdził Joshua Simon z Carnegie Institution w Waszyngtonie. W naszej Drodze Mlecznej, wśród miliardów gwiazd, udało się dotychczas odnaleźć zaledwie 30 tak prymitywnych gwiazd. W Segue 1 już mamy 10% tego, co udało się znaleźć w Drodze Mlecznej. Galaktyki karłowate będą niezwykle ważnym źródłem wiedzy o najbardziej prymitywnych gwiazdach - dodaje Geha. Galaktyka posłuży też do badań nad ciemną materią. Uczeni mają nadzieję, że uda się wykryć ślady promieniowania gamma, które, teoretycznie, może być wynikiem kolizji i anihilacji cząsteczek ciemnej materii. Jak na razie kosmiczny teleskop Fermi Gamma Ray nie wykrył takiego promieniowania. Sądzimy, że Fermi albo nie jest w stanie albo ledwo jest w stanie wykryć takie promieniowanie - mówi Simon. Naukowcy nie tracą jednak nadziei. Jego odkrycie byłoby czymś spektakularnym. Ludzie od 35 lat dowiedzieć się czegoś o ciemnej materii i nie poczynili zbyt wielkiego postępu. Nawet zarejestrowanie bardzo słabego promieniowania byłoby znaczącym dowodem na potwierdzenie teoretycznych rozważań o naturze ciemnej materii - dodaje uczony.
  5. Po zakończeniu naszych badań wiemy o ciemnej materii mniej niż przedtem. Te słowa Marka Walkera z Harvard-Smithsonian Center for Astrophysics pokazują, po jak niepewnym terenie poruszamy się badając wszechświat. Zgodnie z obecnie obowiązującym modelem kosmologicznym wszechświat zdominowany jest przez ciemną energię i ciemną materię. Astronomowie uważają, że ciemna materia składa się z zimnych (czyli mających niską energię) egzotycznych cząsteczek, które pod wpływem grawitacji zbijają się w grupy. Po pewnym czasie ciemnej materii jest tak dużo, że przyciąga ona widoczną materię, tworząc galaktyki. Komputerowe modelowanie tego zjawiska wskazuje, że ciemna materia powinna być gęsto upakowana i znajdować się w centrach galaktyk. Tymczasem prowadzone przez Walkera i jego zespół badania dwóch galaktyk karłowatych wykazały, że ciemna materia jest w nich równomiernie rozłożona. Wyniki naszych badań stoją w sprzeczności z przypuszczeniami dotyczącymi struktury zimnej ciemnej materii w galaktykach karłowatych. Teorie na jej temat nie zgadzają się z uzyskanymi danymi obserwacyjnymi - dodaje Walker. Galaktyki karłowate są idealnymi obiektami do badania ciemnej materii, gdyż stanowi ona aż 99% ich składu. Walker i Jorge Peñarrubia z University of Cambridge poddali szczegółowej analizie dwie galaktyki - Karzeł Pieca i Karzeł Rzeźbiarza. Zawierają one od 1 do 10 milionów gwiazd. Są więc mikroskopijne np. w porównaniu z Drogą Mleczną, która zawiera około 400 miliardów gwiazd. Naukowcy zmierzyli położenie, prędkość i skład 1500-2500 gwiazd. Gwiazdy w galaktyce karłowatej roją się jak pszczoły w ulu, zamiast poruszać się po eleganckich orbitach, jak w galaktykach spiralnych. To powoduje, że określenie dystrybucji ciemnej materii jest znacznie trudniejsze - stwierdził Peñarrubia. Uzyskane przez uczonych dane wskazują, że w obu galaktykach ciemna materia rozkłada się równomiernie na dość dużym obszarze o średnicy kilkuset lat świetlnych. Jeśli galaktyka karłowata byłaby brzoskwinią, to standardowy model kosmolgiczny mówi, iż ciemna materia stanowi jej pestkę. Tymczasem badane przez nas dwie galaktyki nie mają pestek - dodaje Peñarrubia. Na razie nie wiadomo, jak wytłumaczyć ten fenomen. Już wcześniej sugerowano, że wskutek interakcji pomiędzy materią a ciemną materią ta druga może się rozprzestrzeniać, jednak współczesne symulacje komputerowe nie wskazują, by takie zjawisko miało miejsce w galaktykach karłowatych. Badania Walkera i Peñarrubii mogą być sygnałem, że albo materia wpływa na ciemną materię bardziej, niż sądzimy, albo też ciemna nie jest zimna.
  6. Im dalej w las, tym więcej drzew, a drzewa zasłaniają nam las - tak można by podsumować kłopoty, jakich przysparza nam dalszy rozwój nauki. Wykonanie koniecznych pomiarów, czy eksperymentów wymaga coraz większych nakładów i rozwiązywania różnych technicznych kłopotów. Dotyczy to także astronomii kosmologii, dlatego NASA postanowiła zaprząc do pomocy chętnych naukowców z zupełnie innych dziedzin. Jedną z największych zagadek kosmologii jest ciemna materia i ciemna energia. To one tworzą większość masy naszego wszechświata, odpowiednio 24 procent i 72 procent, ponieważ materia, jaką znamy, to zaledwie cztery procent. Ciemna materia prawdopodobnie przenika się ze zwykłą, ale oddziałuje z nią grawitacyjnie, podczas gdy jeszcze bardziej tajemnicza ciemna energia zamiast przyciągać - odpycha. Nie mogąc w sposób fizyczny ich „pomacać", naukowcy chcą zbadać ich rozłożenie we Wszechświecie opierając się na ich grawitacyjnym oddziaływaniu na obiekty kosmiczne, zwłaszcza galaktyki. Metoda ta oparta jest o znane powszechnie soczewkowanie grawitacyjne, przewidziane jeszcze przez Einsteina, czyli zakrzywianie biegu promieni światła przez obiekty o dużej masie. Obraz odległych galaktyk i gwiazd, jaki obserwujemy, jest zniekształcony przez taki właśnie efekt soczewkowania. Czasami taka galaktyka lub gwiazda wydaje się powiększona, czasem przekrzywiona, często zniekształcenie jest tak drobne, że niewidoczne dla gołego oka. Analiza tych zniekształceń mogłaby powiedzieć nam wiele o strukturze przestrzeni, ale zagadnienie przekracza możliwości nie tylko pojedynczego badacza, ale dowolnego zespołu. A do problemu dochodzi jeszcze kwestia niedoskonałości naszych przyrządów - najlepsze nawet teleskopy wprowadzają własne zniekształcenia, często większe od tych pochodzących od soczewkowania, które trzeba odfiltrować. Dlatego 3 grudnia NASA ogłosiła otwarty konkurs dla naukowców różnych specjalności, którzy chcieliby zmierzyć się z tym zagadnieniem. Na rozwiązanie czekają „galaktyczne puzzle", każde złożone z tysięcy obrazów. W istocie problem jest zbliżony do innego ciekawego, a popularnego ostatnio zagadnienia, jakim jest zautomatyzowane rozpoznawanie i analizowanie obrazów (na przykład twarzy) przez zaawansowane algorytmy. To może być ciekawe wyzwanie dla inżynierów i naukowców różnych specjalności, chętnych do podejścia interdyscyplinarnego. Na rozwiązanie zagadek chętni mają dziewięć miesięcy, zwycięzca zostanie ogłoszony na specjalnej gali i oprócz satysfakcji i chwały otrzyma okolicznościowe gadżety. Pełne informacje można znaleźć na oficjalnej stronie GREAT 2010 (GRavitational lEnsing Accuracy Testing). Nie jest to pierwsze takie „powszechne ruszenie", ogłoszone przez NASA, pierwszy otwarty konkurs ogłoszono w 2008 roku, a dzięki wartościowym efektom zdecydowano się kontynuować pomysł w postaci corocznej tradycji.
  7. Kiedy w 1965 roku przypadkowo dostrzeżono mikrofalowe promieniowanie tła (inaczej: promieniowanie reliktowe), szybko zdano sobie sprawę z wagi odkrycia. Mimo to pierwszą mapę rozkładu tego promieniowania, będącego śladem Big Bangu, wykonano dopiero w 1992 roku dzięki satelicie COBE. Była ona jednak mało dokładna, dlatego w 2001 roku rozpoczęła się misja WMAP (Wilkinson Microwave Anisotropy Probe) mająca na celu sporządzenie dokładnej mapy nieba w promieniowaniu mikrofalowym. Wykonanie wszystkich pomiarów trwało aż dziewięć lat i dopiero w sierpniu tego roku satelita przesłał ostatnie zgromadzone dane. WMAP ostatecznie potwierdził, mimo pojawiających się wątpliwości, że znana nam materia stanowi mniejszość we wszechświecie. Atomy, jakie opisują nasze teorie to zaledwie 4,6 procenta jej masy (wcześniej szacowano ją nawet na jedynie 4%). Reszta to dwa składniki, których nie rozumiemy. Ciemna materia tworzy 23 procent wszechświata (nieco więcej, niż dotychczas sądzono) i próbuje się ją znaleźć i zidentyfikować w laboratorium. Ciemna energia, która ma dziwne właściwości odpychania grawitacyjnego to 72 procent (nie 74%, jak dotychczas sądzono). WMAP był pierwszym satelitą pracującym w punkcie grawitacyjnej równowagi L2 układu Ziemia - Słońce, półtora miliona kilometrów od Ziemi. Ósmego września satelita uruchomił silniki, opuścił punkt L2 i wszedł na stałą orbitę parkingową wokół Słońca. Analiza zgromadzonych informacji zajmie naukowcom całe lata, a już teraz miejsce amerykańskiego WMAP w punkcie L2 zajmuje teraz europejski satelita misji Planck, wystrzelony w ubiegłym roku, który ma dostarczyć jeszcze bardziej szczegółowych danych.
  8. Niewidzialna ciemna materia, której naukowcom nie udało się dotąd nawet „pomacać", stanowi większość masy materii naszego Wszechświata. Mimo to, nie wiadomo dotąd, czym ona naprawdę jest i nie są znane jej właściwości. W szczególności jej znikoma interakcja ze zwykłą materią przysparza wielu zagadek, do tego stopnia, że niektórzy nawet powątpiewają w jej istnienie. Tym niemniej, według obecnej teorii nie było by Wszechświata w obecnym kształcie, bowiem to sferyczne skupiska ciemnej materii, oddziałując grawitacyjnie, stanowią miejsce, czy też „szkielet" formowania się gwiazd i chmur gazowych. Tym bardziej dziwne jest, że nie mamy dotąd pojęcia, dlaczego skupiska ciemnej materii mają taki, a nie inny kształt, czy strukturę, uważa Steen Hansen, astrofizyk z Centrum Ciemnej Kosmologii (Dark Cosmology Centre) w Niels Bohr Institute na duńskim University of Copenhagen. Brak innych oddziaływań poza grawitacyjnym powinien ułatwiać zrozumienie regularności w obserwowanych zmianach gęstości i temperatury ciemnej materii. Czy stoją za nią jakieś podstawowe prawa, czy jej kształt jest wynikiem całkowicie przypadkowych zderzeń albo innych kosmicznych zdarzeń? Przykładowo, z obserwacji jasności gwiazd łatwo można wywnioskować o jej właściwościach, ponieważ musi być zawsze zachowana równowaga pomiędzy ciśnieniem radiacyjnym a siłą grawitacji. Dlatego gwiazdy ewoluują w podobny sposób, to podobieństwo, wynikające z praw natury, jest atraktorem dla widzialnej materii: niezależnie od stanu początkowego zmierzają ona do przewidywalnego. Dla ciemnej materii istnieje grawitacja, nie ma dla niej natomiast ciśnienia radiacyjnego. Dlatego nie było dotąd wiadomo, czy posiada ona jakiś atraktor, pozwalający wyjaśnić identyczność sferycznych struktur, w jakie się formuje. Nie było wiadomo aż dotąd, ponieważ Steen Hansen, dzięki symulacjom komputerowym wykazał, że taki atraktor musi istnieć. Po raz pierwszy udało się ustalić, że stosunek pomiędzy temperaturą a gęstością ciemnej materii zmienia się regularny i zawsze taki sam sposób, jeśli rozpatrywać go od wewnątrz do zewnątrz sfer ciemnej materii. Stworzone komputerowe modele tych struktur pozostawały zawsze w doskonałej równowadze, nawet, kiedy w symulacji zmieniano im parametry energii. Tym się różnią od gwiazd - kiedy gwieździe kończy się wodór, przestaje ona mieścić się w ramach swoich przemian - mówi się, że opuszcza swój atraktor. Tymczasem ponieważ w przypadku ciemnej materii nie występuje ani ciśnienie radiacyjne, ani zderzenia, prawdopodobnie pozostaje ona w oddziaływaniu swojego atraktora na zawsze.
  9. Ciemna materia, która według szacunków odpowiada za 80% masy naszego Wszechświata, wciąż wymyka się naukowcom. Nie daje się ani zaobserwować, ani znaleźć w laboratorium. Astronomowie z koledżu Royal Holloway na Uniwersytecie Londyńskim chcą jej szukać... na Słońcu. Ciemna materia miałaby wypełniać przestrzeń kosmiczną, nie świeci, więc nie potrafimy jej zaobserwować. Na jej istnienie wskazuje jedynie fakt, że oddziałuje grawitacyjnie ze zwykłą, naszą materią. Jej istnienie wypełniło by również lukę w teoretycznych obliczeniach masy, jaką powinien zawierać Wszechświat oraz wyjaśniało wiele grawitacyjnych anomalii w obserwowanym kosmosie. Nie wiadomo tak naprawdę, czym miałaby być, nie udało się dotychczas zaobserwować jej interakcji (zderzeń) ze zwykłą materią ani w kosmosie, ani w laboratorium. Uczeni liczą na przełom dzięki Wielkiemu Zderzaczowi Hadronów, ale uruchomienie go z pełną mocą nastąpi nieprędko. Doktor Stephen West z Wydziału Fizyki koledżu Royal Holloway na Uniwersytecie Londyńskim zajął się w swoim ostatnim studium możliwym wpływem ciemnej materii na właściwości naszego Słońca. Jego zdaniem, wobec fiaska dotychczasowych metod, właśnie nasza gwiazda mogłaby stanowić naturalne laboratorium do poszukiwań tego fenomenu. Ciemna materia tworzy halo, obłok wokół naszej Galaktyki. Jej ruch obrotowy sprawia, że każde ciało niebieskie poruszając się doświadcza swego rodzaju „wiatru" ciemnej materii, która przez nie przenika. Ponieważ oddziałuje ona grawitacyjnie ze zwykłą materią, obiekty o dużej masie są szczególnie predestynowane do wykrycia takich oddziaływań. Skoro ciemna materia wpływa na ruch ciał niebieskich, to zależność musi być obustronna. Jak spodziewa się dr West, cząsteczki przelatującej ciemnej materii zderzają się z materią Słońca i zostają schwytane przez jego grawitację, gromadząc się w jego wnętrzu. Narastająca masa ciemnej materii w rdzeniu gwiazdy musi wywoływać jakieś efekty, które dadzą się przewidzieć i zaobserwować. Jeśli teoretyczne kalkulacje pokryją się z obserwacjami, będzie to oznaczało, że wykorzystany model ciemnej materii jest prawidłowy. Jeśli nie, to albo ma ona właściwości inne, niż się spodziewamy, albo... wcale jej nie ma, bo niektórzy naukowcy są takiego właśnie zdania. Komputerowe symulacje, wykonane w zespole Stephena Westa wskazują, że nagromadzona we wnętrzu gwiazdy ciemna materia powinna doprowadzić do spadku temperatury jego rdzenia. Działałaby ona według założonego modelu jak radiator, nagrzewając się i odprowadzając temperaturę ze środka na powierzchnię. Porównanie temperatury powierzchni Słońca i jego rdzenia z tymi wynikającymi z obliczeń powinno dostarczyć bezcennych informacji na temat masy nagromadzonych ciemnych cząstek oraz ich oddziaływania z materią słoneczną. Temperaturę wnętrza Słońca można poznać mierząc emisję neutrin, które są produktem ubocznym reakcji zachodzących w gwieździe. To będzie następny etap planowanych przez doktora Westa badań: poszukiwanie zmian w ilości powstających w Słońcu neutrin, uwzględnienie czułości istniejących detektorów neutrin, które są aparaturą względnie nową technologicznie. Po uruchomieniu całej mocy Wielkiego Zderzacza Hadronów planowane są eksperymenty mające na celu wykrycie i zbadanie właściwości ciemnej materii. Wówczas dane obserwacyjne, zgromadzone według pomysłu Stephena Westa, dostarczą bezcennego materiału porównawczego i weryfikującego.
  10. Ciemna materia i ciemna energia - ta niepoznana część wszechświata, niewykryte nadal cząstki, dla których nie ma zadowalającej teorii od lat niepokoją umysły naukowców. W zrozumienie tego fenomenu włożono wiele wysiłku a tymczasem okazuje się, że być może wcale go nie ma... Tak sugerują na podstawie swoich badań student Utane Sawangwit i profesor Tom Shanks z Uniwersytetu Durham. Hipoteza istnienia ciemnej materii wzięła się z niespójności danych na temat tempa rozszerzania się wszechświata z wyliczeniami - szacowana na podstawie oddziaływania grawitacyjnego masa materii we wszechświecie nie zgadzała się z ilością zaobserwowaną. Rozbieżność była tak duża, że wymagała uzupełnienia braku jakąś teorią. Dane wskazują na istnienie większej ilości materii niż możemy zaobserwować, zatem istnieje jakaś niewidoczna dla nas materia, która oddziałuje jedynie grawitacyjnie. Dane uzyskane z badań metodą soczewkowania grawitacyjnego potwierdziły jej istnienie i nawet pozwoliły określić jej rozkład w obserwowanym kosmosie. Mimo to istnienie czegoś, czego nie sposób dotknąć, nawet przy pomocy przyrządów, niepokoi uczonych, zwłaszcza fizyków. Choć na temat ciemnej materii powstało już wiele hipotez i podejmowane są próby jej zarejestrowania, fizycy teoretycy zapewne odetchną z ulgą, kiedy nie będą musieli głowić się nad czymś niewidocznym i niezbadanym. Rezygnacja z tej hipotezy usunie także niektóre problemy teoretyczne, na przykład związane z tworzeniem się gwiazd, na który to proces ciemna materia musiałaby wpływać. Jak jednak podsumowuje prof. Shanks, jeszcze nie jest przesądzone, czy ciemna materia istnieje, czy też nie. Być może nowe, dokładne wyniki wyeliminują konieczność jej istnienia, a może jedynie zmienią proporcje. Być może przesądzą o tym dane z europejskiego satelity PLANCK, który rejestruje dokładniejszą mapę rozkładu promieniowania resztkowego.
  11. Zagadnienie ciemnej materii to jedna z najciekawszych zagadek współczesnej nauki, nad którą głowi się i astronomia, i fizyka kwantowa. Większość osób już słyszała, że ciemna materia miałaby wypełniać przestrzeń kosmiczną, że nie świeci, więc nie potrafimy jej zaobserwować. Na jej istnienie wskazuje jedynie fakt, że oddziałuje grawitacyjnie ze zwykłą, naszą materią. Jej istnienie wypełniało by także lukę w teoretycznych obliczeniach masy, jaką powinien zawierać Wszechświat oraz wyjaśniało wiele grawitacyjnych anomalii w obserwowanym kosmosie. Podejmowane są oczywiście próby zarejestrowania jej obecności. Dotychczas odnotowano dwa eksperymenty, których wyniki mogłyby świadczyć o istnieniu tej hipotetycznej materii. Nie są one jednak pewne, ani potwierdzone, na razie również nic nie wyjaśniają. Tymczasem australijski fizyk z Uniwersytetu w Melbourne, Robert Foot, uważa, że zarówno niepewne wyniki eksperymentów, jak i inne własności ciemnej materii można wyjaśnić, uznając, że jest to tzw. materia lustrzana. Hipotetyczna lustrzana materia miałaby być odbiciem naszej ze złamaniem tak zwanej symetrii parzystości P. Parzystość to w fizyce zmiana znaku fali lub pola spowodowana zmianą znaku jednego z jej argumentów: współrzędnych przestrzennych (P), kierunku upływu czasu (T) lub ładunku elektrycznego ©. Hipoteza symetryczności mówi, że cząstki poddane zmianie parzystości powinny się zachowywać tak samo. Jednak zmiana parzystości P powoduje, że cząstki zachowują się zupełnie inaczej: zmienia się działanie tzw. sił słabych. To zupełnie, jakby nasze lustrzane odbicie zachowywało się inaczej, niż my. Według większości teorii, zaraz po Wielkim Wybuchu wszystkie rodzaje materii występowały w równych ilościach, później jednak, z jakichś powodów, ich liczba zaczęła się różnicować. Lustrzana materia może być kojarzona z antymaterią, która też jest odwrotnością naszej, tyle że pod względem ładunku elektrycznego. O ile jednak materia i antymateria reagują ze sobą najgwałtowniej, jak można - ulegają wzajemnemu zniszczeniu, wydzielając ogromne ilości energii; o tyle materia nasza z materią lustrzaną reaguje bardzo słabo. Tak słabo, że mogą się wręcz wzajemnie przenikać. Jej promieniowanie jest dla nas niedostrzegalne, można jej obecność zaobserwować jedynie dzięki sile przyciągania, która działa między nimi normalnie. Brzmi znajomo? Zupełnie jak teoretyczna ciemna materia. Teoria sugeruje jednak, że możliwe jest zaobserwowanie bardzo delikatnych oddziaływań pomiędzy materią zwykłą i lustrzaną. Dwa eksperymenty: DAMA oraz CoGeNT dały wyniki, które można interpretować jako oznaki zderzeń cząstek materii zwykłej i lustrzanej. Wg modelu Foota cząstki te mogą się zderzać dzięki zjawisku zwanemu mieszaniem kinetycznym fotonów i fotonów lustrzanych, tłumaczyłoby ono wyniki eksperymentów. Plazma złożona z lustrzanych cząsteczek stanowiłaby główną składową galaktycznych halo, czyli tam, gdzie „ukrywa się" poszukiwana ciemna materia. Potrzebne są jednak dalsze, dokładniejsze eksperymenty, które pozwoliłyby przetestować model zaproponowany przez Roberta Foota.
  12. Profesor Paul Frampton z University of North Carolina uważa, że ciągle nieodnaleziona ciemna materia tworzy średniej wielkości czarne dziury. Są one na tyle małe, że nie możemy ich dostrzec, a na tyle duże, iż nie wyparowują. Frampton zauważa, że żadna z cząsteczek Modelu Standardowego nie ma właściwości ciemnej materii. Dlatego też proponuje inne podejście do problemu. Najpierw stwierdził, jaka powinna być entropia wszechświata. Obliczył też entropię wszystkich znanych czarnych dziur. Przyjął też, że w centrum każdej galaktyki znajduje się olbrzymia czarna dziura. Z obliczeń wynika, że "we wszechświecie nie ma wystarczająco dużo widzialnej materii, a więc różnica w entropii musi brać się z entropii ciemnej materii". stwierdził Frampton. Jego zdaniem należy jej poszukiwać w średniej wielkości czarnych dziurach. Tutaj powstaje pytanie, w jaki sposób mogło uformować się tak dużo niewielkich czarnych dziur. Tego nie wyjaśniają współczesne teorie formowania się wszechświata. Frampton uważa, że mogły być dwa, a nie jeden, etapy rozszerzania się kosmosu. "Podczas pierwszego doszło do powstania olbrzymiej struktury wszechświata, jaką dzisiaj widzimy. Podczas drugiego - do łączenia się materii i powstawania dodatkowych czarnych dziur" - powiedział profesor. Z jego zdaniem nie zgadza się profesor Warwick Couch z Swinburne University. Zauważa jednak, że "jeśli obliczenia Framptona są prawidłowe, widać wyraźnie niezgodność pomiędzy liczbą znanych nam czarnych dziur, a liczbą, jaka powinna być, gdybyśmy bazowali na entropii". Dodaje przy tym, że zwykle kosmolodzy nie postrzegają wszechświata przez pryzmat entropii, jednak tego typu podejście może być bardzo dobrą metodą jego badania.
  13. Rozpoczęły się prace konstrukcyjne nad najgłębiej położonym laboratorium we wnętrzu ziemi. W Jaskini Davisa naukowcy będą prowadzili badania ciemnej materii. Jaskinia znajduje się w nieczynnej kopalni złota, na głębokości niemal 1500 metrów. Została nazwana tak na cześć Raya Davisa Juniora, który w latach 60. ubiegłego wieku wykorzystywał kopalnię do badania neutrino. Niezwykłe laboratorium powstanie na tak znacznej głębokości, dzięki czemu oddziaływanie promieniowania kosmicznego nie powinno zakłócać wyników badań. W podziemnym laboratorium stanie aparatura badawcza o nazwie Large Underground Xenon (LUX). W projekcie bierze udział kilka amerykańskich uniwersytetów i grup badawczych. Otwarcie laboratorium jest przewidziane na 2016 rok. Zanim do niego dojdzie konieczna jest naprawa wielu korytarzy oraz odpowiednie zabezpieczenie terenu. Już rozpoczęto prace na głębokości około 1500 metrów pod powierzchnią planety. Tymczasem Kongres USA rozważa podjęcie decyzji o sfinansowaniu budowy dwóch kolejnych laboratoriów, które mają powstać jeszcze głębiej, niż obecnie budowane.
  14. Patrząc na pokryty jasnymi punktami firmament, trudno w to uwierzyć, ale fizycy z University of Utah w Salt Lake City wyliczyli, że pierwsze gwiazdy mogły być tak przysłonięte przez chmury ciemnej materii, że nie mogły świecić. Gdyby się to potwierdziło, musielibyśmy zmienić poglądy na ewolucję gwiazd i proces tworzenia się czarnych dziur w dobie młodości kosmosu. Teraz większość astronomów uznaje, że wszechświat zaczął się formować wokół zbitek ciemnej materii. W sumie jest jej 6-krotnie więcej niż materii widzialnej, do tej pory nikomu jednak nie udało się jej bezpośrednio zaobserwować. Widać tylko skutki jej działania grawitacyjnego. Wg naukowców, zbitki ciemnej materii miały ok. 13 mld lat temu spełniać rolę "jądra"/zakotwiczenia grawitacji. Wokół nich najpierw kondensowały się chmury wodoru i helu, a potem formowały się pierwsze gwiazdy i galaktyki. Fizyk Paolo Gondolo i jego zespół zaprezentowali jednak alternatywną koncepcję. Na razie nie była ona testowana podczas symulacji komputerowych. Sądzą oni, że cząsteczki ciemnej materii (neutralino) zderzały się ze sobą, ogrzewając chmury gazów i nie dopuszczając do ich skraplania się oraz rozpoczęcia reakcji termojądrowych. To dlatego gwiazdy pozostały ciemne (nie wiadomo na jak długo). Były też większe od swoich współczesnych odpowiedników. Być może ich rozmiary 15 tys. razy przekraczały "gabaryty" Układu Słonecznego (Physical Review Letters). Niewykluczone, że nadal gdzieś istnieją. Amerykanie odwołali się do teorii supersymetrii, która zakłada, że ciemna materia powinna się składać z tzw. superpartnerów cząsteczek elementarnych (cięższych, nierozszczepialnych i pozbawionych ładunku elektrycznego). I tak superpartnerem neutrina byłoby neutralino.
×
×
  • Create New...