Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' aksjon'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. W czerwcu informowaliśmy, że najczulszy detektor ciemnej materii – XENON1T – zarejestrował niezwykłe sygnały. Jak wówczas pisaliśmy, możliwe są trzy interpretacje tego, co zauważono. Najmniej interesująca z nich to zanieczyszczenie urządzenia. Drugim możliwym wyjaśnieniem jest zarejestrowanie aksjonu, hipotetycznej cząstki tworzącej ciemną materię, a trzecim – równie interesująca możliwość wchodzenia neutrin w niezwykłe interakcje z wypełniającym detektor ksenonem. Na łamach Physical Review D i Physical Review Letters ukazało się właśnie 5 artykułów, których autorzy dokonują niezwykle interesujących interpretacji sygnałów. Fuminotu Takahashi, Masaki Yamada i Wen Yin uważają, że zarejestrowane sygnały świadczą o zauważeniu cząstek podobnych do aksjonów. Mają mieć one masę kilku keV/c2 i wchodzić w interakcje z elektronami. Ich zdaniem cząstki o takich właściwościach tłumaczą zarejestrowany sygnał, stanowią ciemną materię i wyjaśniają pewne anomalie obserwowane w białych karłach i czerwonych olbrzymach. Z kolei niemiecki zespół naukowy, Andreas Bally, Sudip Jana i Andreas Trautner, pisze, że sygnał może pochodzić od nieznanego bozonu cechowania, który pośredniczy w interakcjach pomiędzy pochodzącymi ze Słońca neutrinami a elektronami. Jeszcze inny pomysł ma Nicole F. Bell z University of Melbourne i jej koledzy z USA. Uważają oni, że źródłem sygnału jest cząstka ciemnej materii o relatywnie niskiej masie. Ich zdaniem cząstka taka można trafiać do detektora w "lekkim stanie" i rozpraszać się do "stanu ciężkiego", który rozpada się z towarzyszącą emisją fotonu. I to właśnie ten foton wchodzi w reakcje z elektronem, dając obserwowany sygnał. Bartosz Fornal z University of Utah oraz naukowcy z Pekinu i Hongkongu również uważają, że mamy do czyeniania z cząstką ciemnej materii. Ma ona pochodzić z centrum galaktyki. Sygnał zaś bierze się z jej interakcji z elektronami w XENON1T. Autorami ostatniego artykułu są Joseph Bramante i Ningqiang Song z Kanady. Naukowcy sądzą, że źródłem sygnału są rozpraszające się cząstki ciemnej materii będącej termicznym reliktem wczesnego wszechświata. Na ostateczne rozstrzygnięcie zagadki będziemy musieli jeszcze poczekać. Uda się to pod warunkiem, że podobny sygnał zostanie zarejestrowany w kolejnych eksperymentach związanych z poszukiwaniem ciemnej materii. « powrót do artykułu
  2. Fizycy pracujący przy najbardziej czułym eksperymencie poszukującym ciemnej materii poinformowali o zarejestrowaniu nietypowych sygnałów. Istnieją trzy możliwe interpretacje tego, co zauważono. Ta najmniej interesująca, to wystąpienie zanieczyszczenia. Dwie alternatywne są za to bardzo ekscytujące. Pierwsza z nich mówi o nieznanych właściwościach neutrin. Druga zaś – i to byłaby największa sensacja – dopuszcza, że po raz pierwszy w historii zdobyto dowód na istnienie aksjonu, hipotetycznej cząstki spoza Modelu Standardowego. Jesteśmy bardzo podekscytowani tym sygnałem, ale musimy uzbroić się w cierpliwość, powiedział Luca Grandi z University of Chicago, jeden z liderów eksperymentu XENON1T. Jak wyjaśnia uczony, najpierw trzeba sprawdzić, czy nie doszło do zanieczyszczeniem atomami trytu. Wykaże to następca eksperymentu XENON1T – XENONnT – który rozpocznie pracę jeszcze w bieżącym roku. Wielu specjalistów zauważa, że zwykle prawdziwe okazuje się to wyjaśnienie, na które najmniej czekamy. Jednak nie zawsze tak jest i jeśli istnieje chociaż cień szansy, że XENON1T zarejestrował coś więcej niż zanieczyszczenie trytem, warto to sprawdzić. Jeśli okaże się, że to nowa cząstka, będziemy mieli przełom, na który czekamy od 40 lat, stwierdza Adam Falkowski z Uniwersytetu Paris-Saclay. Takiego odkrycia nie da się przecenić, dodaje. Z kolei Kathryn Zurek, fizyczka-teoretyczka z California Institute of Technology mówi, że jeśli sygnały pochodzą z aksjonów, które są głównymi kandydatami na cząstki tworzące ciemną materię, lub z niestandardowych neutrin to będzie to niezwykle ekscytujące. Uczona pozostaje jednak ostrożna i dodaje, że jej zdaniem najbardziej prawdopodobne jest jednak zanieczyszczenie trytem. XENON1T to wspólny projekt, przy którym pracuje 160 naukowców z Europy, USA i Bliskiego Wschodu. Laboratorium Narodowe Gran Sasso, którego właścicielem jest włoski Narodowy Instytut Fizyki Jądrowej, znajduje się na głębokości 1400 metrów pod masywem Gran Sasso. To wykrywacz ciemnej materii, a jego umiejscowienie głęboko pod ziemią ma chronić przed promieniowaniem kosmicznym generującym fałszywe sygnały. Zgodnie z teoretycznymi założeniami, cząstki ciemnej materii mają zderzać się z atomami w detektorze, a sygnały ze zderzeń będą rejestrowane. Centralna część XENON1T to cylindryczny zbiornik o długości 1 metra wypełniony 3200 kilogramami płynnego ksenonu o temperaturze -95 stopni Celsjusza. Gdy ciemna materia zderzy się z atomem ksenonu, energia trafia do jądra, które pobudza jądra innych atomów. Wskutek tego pobudzenia pojawia się słaba emisja w zakresie ultrafioletu, którą wykrywają czujniki na górze i na dole cylindra. Te same czujniki są też zdolne do zarejestrowania ładunku elektrycznego pojawiającego się wskutek zderzenia. W ubiegłym roku informowaliśmy, że XENON1T zarejestrował najrzadsze wydarzenie we wszechświecie, rozpad ksenonu-124. Obecnie XENON1T jest wyłączony, gdyż trwa jego rozbudowa do XENONnT. Nowy detektor będzie zawierał 3-krotnie więcej ksenonu i będzie lepiej zabezpieczony przed szumem tła. Dzięki temu jego czułość będzie o cały rząd wielkości lepsza. Eksperymenty z serii XENON to pomysł fizyczki Eleny Aprile z Columbia University. Ona opracowała metody detekcji i od początku stoi na czele eksperymentów. XENON zostały zaprojektowane do poszukiwania hipotetycznych cząstek ciemnej materii o nazwie WIMP (weakly interacting massive particles). Przez 14 lat niczego nie znaleziono. Brak sukcesów odnotowały też konkurencyjne projekty naukowe. Wiele lat temu naukowcy pracujący przy XENON zdali sobie sprawę, że mogą wykorzystać swój eksperyment do poszukiwań cząstek inną metodą. Zamiast rejestrować cząstki, które zderzą się z jądrem ksenonu, można spróbować wychwycić takie, które zderzają się z elektronem. Zwykle tego typu zderzenia traktowane są jako szum tła i odfiltrowywane, gdyż wiele z takich sygnałów pochodzi z prozaicznych źródeł, jak ołów czy krypton. Jednak z czasem uczeni coraz bardziej udoskonalali swoje urządzenia, eliminowali coraz więcej źródeł potencjalnych zakłóceń i w końcu eksperymenty XENON stały się tak czułe i dobrze izolowane od zakłóceń, że stwierdzono, iż szum tła również może przynieść interesujące informacje. I właśnie na nim się teraz skupiono. Naukowcy przeanalizowali szum tła z pierwszego roku eksperymentu XENON1T. Spodziewali się, że w danych znajdą 232 sygnały zderzeń z elektronami, pochodzące ze znanych źródeł zanieczyszczeń. Tymczasem okazało się, że sygnałów takich jest 285. To spory naddatek świadczący o istnieniu nieznanego źródła sygnału. Naukowcy przez rok trzymali swoje spostrzeżenie w tajemnicy. Przez ten czas próbowali zrozumieć sygnały i odnaleźć ich źródło. W końcu, po wyeliminowaniu wszystkich możliwych źródeł sygnału pozostały wspomniane na wstępie trzy wyjaśnienia, które pasują do nadmiarowych danych. Pierwsze z nich, i najbardziej interesujące, to zarejestrowanie „słonecznych aksjonów”, hipotetycznych cząstek ciemnej materii powstających wewnątrz Słońca. To cząstki spoza Modelu Standardowego. Ich odkrycie byłoby dowodem, że aksjony istnieją, można więc znaleźć i te, które tworzą ciemną materię, jaka powstała po Wielkim Wybuchu. Druga hipoteza mówi, że zarejestrowane sygnały mogą świadczyć o tym, iż neutrino mają silny moment magnetyczny. Właściwość ta pozwalałaby im zwiększać rozpraszanie elektronów, co tłumaczyłoby nadmiarowy sygnał. Neutrino z momentem magnetycznym również nie mieści się w Modelu Standardowym. W końcu trzecia z możliwości, to zanieczyszczenie zbiornika z ksenonem śladową ilością trytu. Zdaniem naukowców niezaangażowanych w XENON1T, najbardziej prawdopodobna jest ostatnia odpowiedź. Jeśli bowiem Słońce tworzy aksjony, to powstają one również w innych gwiazdach. Aksjony unoszą zaś ze sobą energię od gwiazdy. W najgorętszych gwiazdach, jak czerwone olbrzymy czy białe karły, produkcja aksjonów powinna być największa, a ilość unoszonej przez nie energii powinna być wystarczająca, by ochłodzić gwiazdy. Biały karzeł wytwarzałby tyle aksjonów, że nie obserwowalibyśmy tak wielu gwiazd tego typu, co obecnie, mówi Zurek. Podobnie wygląda problem z neutrino z dużym momentem magnetycznym. Również ono powinno ochłodzić gwiazdy, więc tych gorących nie powinno być tyle, ile jest. Na odpowiedź nie powinniśmy długo czekać. Eksperyment XENONnT ruszy w najbliższych miesiącach. Jeśli i tam zaobserwujemy nadmiar sygnałów na podobnym poziomie, powinniśmy w ciągu kilku miesięcy być w stanie stwierdzić, która z hipotez jest prawdziwa, mówi Grandi. « powrót do artykułu
  3. ADMX, prowadzony w Fermilab superczuły eksperyment, w ramach którego poszukiwane są aksjony, wykluczył, że istnieją one w pewnych zakresach masy. Aksjony to hipotetyczne cząstki tworzące ciemną materię. Axion Dark Matter eXperiment (ADMX) szuka ich sprawdzając, czy w silnym polu magnetycznym w skutek reakcji aksjonu ze znanymi cząstkami nie dojdzie do pojawienia się fotonu. Gdy poszukuje się nieznanych cząstek, takich jak aksjon, bada się interakcje, których wynikiem są znane cząstki, jak fotony, mówi Rakshya Khatiwada, która przez ostatnie cztery lata była odpowiedzialna za eksperyment ADMX. Wewnątrz ADMX znajduje się wnęka i nadprzewodzący magnes, który generuje silne pole magnetyczne. Teoria przewiduje, że w takich warunkach w niskiej temperaturze dochodzi do rozpadu aksjonu na 2 fotony z części mikrofalowej widma elektrycznego.Detektor można dostroić do różnych częstotliwości odpowiadających różnej masie aksjonów pochodzących z halo ciemnej materii otaczającej Drogę Mleczną. Od 2017 roku ADMX jest najbardziej czułym eksperymentem tego typu. Jego twórcy mają nadzieję, że tak, jak udało się zarejestrować obecność neutrino, tak w końcu zarejestrujemy aksjony. Teraz poinformowano o wynikach badań przeprowadzonych w roku 2018. To bardzo cenne dane, gdyż zwiększają naszą pewność, iż aksjony nie występują w określonym zakresie energii, mówi Khatiwada. Analiza ubiegłorocznych danych wykazała, że masa aksjonów nie mieści się w przedziale od 2,66 milionowych do 3,33 milionowych elektronowolta. Dla porównania, masa elektronu to 511 000 elektronowoltów. Obecnie w ramach ADMX badany jest zakres mas powyżej 3,33 milionowych elektronowolta. Eksperyment nie tylko wyklucza kolejne zakresy występowania aksjonów, ale też staje się coraz bardziej czuły, gdyż jego operatorzy coraz lepiej potrafią odfiltrować zakłócenia tła. To dość surrealistyczne zbudować i uruchomić jedyny w swoim rodzaju eksperyment na świecie. Ale olbrzymią radość sprawia nam fakt, że wiele osób, od studentów po profesorów, korzysta z wyników naszych prac, cieszy się Khatiwada. W poprzedniej wersji ADMX, w której wykorzystywaliśmy wzmacniacze bazujące na tranzystorach, potrzebowalibyśmy setek lat by przeskanować częstotliwości, w którym mogą występować aksjony. Dzięki nowym nadprzewodzącym czujnikom możemy to zrobić w ciągu kilku lat, mówi Gianpaolo Carosi, rzecznik prasowy ADMS. Mamy odpowiednią czułość i szansą na odkrycie aksjonów. Nie potrzebujemy żadnej nowej technologii. Już nie potrzebujemy cudu. Potrzebujemy tylko czasu, dodaje profesor Leslie Rosenberg z University of Washington. « powrót do artykułu
  4. Fizycy z Uniwersytetu w Sztokholmie i Instytutu Fizyki im. Maxa Plancka zaproponowali rewolucyjny sposób na zarejestrowanie istnienia ciemnej materii. Uczeni chcą wykorzystać plazmę i specyficzną antenę do zarejestrowania aksjonów. Jedna z teorii mówi, że jeśli aksjony istnieją, to właśnie one mogą tworzyć ciemną materię. Szukanie aksjonów jest jak dostrajanie radia. Trzeba ustawić antenę tak, by złapać odpowiednią częstotliwość. W tym wypadku zamiast muzyki 'usłyszymy' ciemną materię, przez którą podróżuje Ziemia. Przez ostatnie trzy dekady, od czasu nadania im nazwy przez Franka Wilczka, aksjony były jednak ignorowane i nie poszukiwano ich metodami eksperymentalnymi, mówi główny autor obecnych badań, doktor Alexander Millar z Uniwersytetu w Sztokholmie. Z przeprowadzonych właśnie badań wynika,że wewnątrz pola magnetycznego aksjony powinny wytwarzać niewielkie pole magnetyczne, które można wykorzystać do wywołania oscylacji w plazmie. Te oscylacje wzmocnią sygnał z aksjonów, dzięki czemu możemy uzyskać lepsze 'aksjonowe radio'. Zwykle podobne eksperymenty prowadzi się w rezonatorach, jednak to, co proponują uczeni ze Szwecji i Niemiec ma olbrzymią zaletę – brak tutaj ograniczeń co do możliwości wzmacniania sygnału. Różnica jest taka, jak pomiędzy próbami złapania sygnału z krótkofalówki albo z radiowej wieży nadawczej. Bez zimnej plazmy nie może dojść do konwersji aksjonów w światło. Plazm odgrywa tutaj podwójną rolę. Tworzy środowisko pozwalające na konwersję i dostarcza plazmonów zbierających energię przemienionej ciemnej materii, mówi doktor Matthew Lawson ze Sztokholmu. To całkowicie nowy sposób poszukiwania ciemnej materii, który pozwoli na poszukiwanie w zupełnie niebadanych obszarach jednego z najlepszych kandydatów do tego miana, dodaje Millar. Rolę 'aksjonowego radia' ma odegrać coś, co naukowy nazwali 'drucianym metamateriałem'. Ma to być zbiór przewodów cieńszych od ludzkiego włosa, które mogą być poruszane, by zmienić częstotliwość drgań plazmy. Jeśli umieści się je wewnątrz silnego magnesu, takiego, jakie są używane w maszynach do rezonansu magnetycznego, 'druciany metamateriał' stanie się bardzo czułą anteną nasłuchującą aksjony. Urządzenie takie zostało nazwane haloskopem plazmowym. Naukowcy z Uniwersytetu w Sztokholmie i Instytutu Maxa Plancka prowadzili co prawda badania teoretyczne, ale ściśle przy tym pracowali z grupą eksperymentatorów z Berkeley. Teraz Amerykanie zajmują się pracami koncepcyjymi nad odpowiednim eksperymentem i mają nadzieję, że w najbliższej przyszłości uda im się zbudować odpowiednie urządzenie do poszukiwania aksjonów. Haloskopy plazmowe to jeden ze sposobów na poszukiwanie aksjonów. Fakt, że ludzie zajmujący się badaniami eksperymentalnymi tak szybko zainteresowali się naszą pracą jest bardzo ekscytujący i daje nadzieję, że zostaną przeprowadzone odpowiednie eksperymenty, cieszy się Millar. Ze szczegółami badań można zapoznać się na łamach Physical Review Letters. « powrót do artykułu
×
×
  • Create New...