Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' światło'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 19 results

  1. Niemieccy fizycy z Uniwersytetu im. Goethego we Frankfurcie dokonali najkrótszego w historii pomiaru czasu. We współpracy z naukowcami z DESY (Niemiecki Synchrotron Elektronowy) w Hamburgu i Instytutu Fritza Habera w Berlinie zmierzyli czas przejścia światła przez molekułę. Dokonany pomiar mieści się w przedziale zeptosekund. W 1999 roku egipski chemik Ahmed Zewail otrzymał Nagrodę Nobla za zmierzenie prędkości, z jaką molekuły zmieniają kształt. Wykorzystując laser stwierdził, że tworzenie się i rozpadanie wiązań chemicznych odbywa się w ciągu femtosekund. Jedna femtosekunda to zaś 0,000000000000001 sekundy (10-15 s). Teraz zespół profesora Reinharda Dörnera po raz pierwszy w historii dokonał pomiarów odcinków czasu, które są o cały rząd wielkości krótsze od femtosekundy. Niemcy zmierzyli, ile czasu zajmuje fotonowi przejście przez molekułę wodoru. Okazało się, że dla średniej długości wiązania molekuły czas ten wynosi 247 zeptosekund. To najkrótszy odcinek czasu, jaki kiedykolwiek udało się zmierzyć. Jedna zeptosekunda to 10-21 sekundy. Pomiarów dokonano wykorzystując molekułę H2, którą wzbudzono w akceleratorze za pomocą promieniowania rentgenowskiego. Energia promieni została dobrana tak, by pojedynczy foton wystarczył do wyrzucenia obu elektronów z molekuły. Elektrony zachowują się jednocześnie jak cząstki i fale. Wyrzucenie pierwszego z nich skutkowało pojawieniem się fali, po chwili zaś dołączyła fala drugiego elektronu. Z kolei foton zachowywał się jak płaski kamyk, który dwukrotnie skakał po falach. Jako, że znaliśmy orientację przestrzenną molekuły wodoru, wykorzystaliśmy interferencję fal obu elektronów, by dokładnie obliczyć, kiedy foton dotarł do pierwszego, a kiedy do drugiego atomu wodoru. Okazało się, że czas, jaki zajęło fotonowi przejście pomiędzy atomami, wynosi do 247 zeptosekund, w zależności od tego, jak daleko z punktu widzenia fotonu znajdowały się oba atomy, wyjaśnia Sven Grudmann. Profesor Reinhard Dörner dodaje: Po raz pierwszy udało się zaobserwować, że elektrony w molekule nie reagują na światło w tym samym czasie. Opóźnienie ma miejsce, gdyż informacja w molekule rozprzestrzenia się z prędkością światła. Dzięki tym badaniom możemy udoskonalić naszą technologię i wykorzystać ją do innych badań. « powrót do artykułu
  2. Po raz pierwszy w historii zaobserwowano wpływ fluktuacji kwantowych na obiekt w skali człowieka. Naukowcy pracujący przy detektorze fal grawitacyjnych LIGO informują na łamach Nature o zarejestrowaniu poruszenia się pod wpływem fluktuacji kwantowych 40-kilogramowych luster wykorzystywanych w obserwatorium. Zespół naukowy, który pracował pod kierunkiem specjalistów z MIT, a w skład którego wchodzili też uczeni z Caltechu, przeprowadził swoje badania w LIGO Livingston Observatory w Louizjanie. Okazało się, że szum kwantowy wystarczy, by przemieścić lustra o 10-20 metra. Takie przesunięcie jest zgodne z teoretycznymi przewidywaniami mechaniki kwantowej. Dopiero jednak teraz udało się to zjawisko zmierzyć. Wykonanie tak dokładnych pomiarów było możliwe dzięki zastosowaniu kwantowego „ściskacza światła”. Wczoraj informowaliśmy o ważnym przełomie dokonanym na polu budowy takich urządzeń. Dzięki „ściskaczowi” naukowcy byli w stanie zredukować szum kwantowy, dzięki czemu określili, jak bardzo wpływał on na ruch luster. To naprawdę niezwykłe, że ściśnięcie światła może zmniejszyć ruch luster, które ważą tyle, co nieduży człowiek. Przy tych częstotliwościach istnieje wiele źródeł szumu, które powodują ruch luster. To naprawdę duże osiągnięcie, że mogliśmy obserwować wpływ właśnie tego źródła, cieszy się współautorka badań, Sheila Dwyer, która pracuje przy detektorze LIGO w Hanford. Profesor fizyki Rana Adhikari wyjaśnia, że ściśnięcie światła zmniejsza ilość szumu kwantowego w promieniu lasera poprzez przesunięcie go z fazy do amplitudy światła. To amplituda światła porusza lustra. Wykorzystaliśmy tę cechę natury, która pozwoliła nam przesunąć szum w obszar, który nas nie interesuje. Ściśnięcie światła i zredukowanie tym samym szumu kwantowego naukowcy mogli dokonać pomiarów poza standardowy limit kwantowy. W przyszłości technika ta pozwoli LIGO na wykrywanie słabszych, odleglejszych źródeł fal grawitacyjnych. W jeszcze dalszej przyszłości może to zostać wykorzystane do udoskonalenia smartfonów, autonomicznych samochodów i innych technologii, zapowiada Adhikari. « powrót do artykułu
  3. Naukowcy z Uniwersytetu Ben-Guriona oraz Instytutu Weizmanna poinformowali o opracowaniu techniki podsłuchu z... drgań żarówki znajdującej się w pokoju, w której prowadzona jest rozmowa. Wywołane dźwiękiem zmiany ciśnienia powietrza na powierzchni wiszącej żarówki powodują jej niewielkie drgania, które można wykorzystać do podsłuchu w czasie rzeczywistym, stwierdzili naukowcy. Metoda została opisana w najnowszym numerze Science i zostanie zaprezentowana podczas wirtualnej konferencji Black Hat USA 2020, która odbędzie się w sierpniu. Podobne metody podsłuchu były już opisywane. Jednak wiele takich metod albo nie działa w czasie rzeczywistym, albo nie jest pasywnych, co oznacza, że konieczne jest wykorzystanie np. światła lasera, które może nas zdradzić. Metoda „lamphone” jest i pasywna i działa w czasie rzeczywistym. Ben Nassi i jego koledzy prowadzili swoje eksperymenty za pomocą teleskopów (o średnicach luster 10, 20 i 35 centymetrów), które umieścili w odległości 25 metrów od „podsłuchiwanej” żarówki. W zestawie do podsłuchu znalazł się jeszcze elektrooptyczny czujnik Thorlabs PDA100A2, a celem była 12-watowa żarówka LED. Żarówka wibrowała w reakcji na dźwięki w pomieszczeniu. Wibracje te znajdowały swoje odzwierciedlenie w zmianach sygnału świetlnego rejestrowanego przez czujnik umieszczony przy okularze teleskopu. Zbierane sygnały zmieniane są z analogowych na cyfrowe, a następnie przetwarzane przez oprogramowanie odfiltrowujące szumy. Jest ono wspomagane przez Google Cloud Speech API rozpoznające ludzką mowę oraz aplikacje takie jak Shazam czy SoundHound, których zadaniem jest rozpoznawanie utworów muzycznych. Podczas swoich eksperymentów naukowcy byli w stanie zebrać różne dźwięki w podsłuchiwanego pomieszczenia, w tym rozpoznać piosenki Let it Be Beatlesów czy Clocks Coldplay oraz przemówienie prezydenta Trumpa We will make America great again. Autorzy nowej techniki podsłuchu mówią, że sprawdzi się ona na odległość większą niż 25 metrów. Należy użyć większego teleskopu lub innego konwertera analogowo-cyfrowego. Przeciwdziałać podsłuchowi można przyciemniając światło, gdyż metoda ta tym słabiej działa im mniej światła przechwytuje czujnik, lub używając cięższej żarówki, która mniej drga pod wpływem dźwięku. Zaprezentowany przez Izraelczyków sposób podsłuchu ma sporo ograniczeń. Przede wszystkim teleskop musi widzieć bezpośrednio światło emitowane z żarówki. Można więc zgasić światło czy zaciągnąć kotary. Jednak mimo tych niedoskonałości powyższa praca pokazuje, że z jednej strony warto rozważyć możliwość wykorzystania różnych źródeł światła w technikach podsłuchowych, z drugiej zaś warto zastanowić się, w jaki sposób można przed takim podsłuchem się chronić. « powrót do artykułu
  4. W elektronice konsumenckiej kropki kwantowe wykorzystywane są np. w telewizorach, gdzie znacząco poprawiają odwzorowanie kolorów. Używa się ich, gdy telewizory LCD wymagają tylnego podświetlenia. Standardowo do podświetlenia używa się białych LED-ów, a kolory uzyskuje dzięki filtrom. Zanim pojawiły się kropki kwantowe znaczna część światła nie docierała do ekranu, była blokowana przez filtry. Zastosowanie kropek kwantowych w LCD wszystko zmieniło. Obecnie telewizory QD LCD wykorzystują niebieskie LED-y jako źródło światła, a kropki kwantowe, dzięki efektom kwantowym, zmieniają to światło w czerwone i zielone. Do filtrów docierają wówczas wyłącznie trzy składowe kolorów – czerwony, zielony i niebieski – a nie całe spektrum światła białego, to znacznie mniej światła jest blokowane i marnowane dzięki czemu otrzymujemy jaśniejsze, bardziej nasycone i lepiej odwzorowane kolory. Okazuje się, że ta sama technologia może być przydatna przy uprawie roślin. Wykazują one bowiem preferencje odnośnie kolorów światła. Wiemy na przykład, że nie absorbują zbyt dużo światła zielonego. Odbijają je, dlatego wydają się zielone. Niedawne badania wykazały, że różne rośliny są dostosowane do różnych długości fali światła. W Holandii niektórzy plantatorzy już od dłuższego czasu eksperymentują i uprawiają pomidory pod światłem w kolorze fuksji, róże ponoć lubią bardziej białe światło, a papryka żółte. W 2016 roku Hunter McDaniel i jego koledzy z UbiQD zaczęli zastanawiać się nad wykorzystaniem kropek kwantowych w hodowli roślin. Biorąc bowiem pod uwagę fakt, że kropki kwantowe pozwalają na bardzo precyzyjne dobranie długości fali światła oraz fakt, że światło nie jest blokowane, więc i nie mamy tutaj dużych strat energii, takie rozwiązanie mogłoby się sprawdzić. Wcześniej McDaniel był badaczem w Los Alamos National Laboratory. Pracował tam właśnie nad kropkami kwantowymi i tam zdał sobie sprawę, że toksyczny kadm, wykorzystywany w kropkach, można zastąpić siarczkiem miedziowo-indowym. W 2014 roku założył UbiQD by skomercjalizować opracowaną przez siebie technologie. Na początku naukowiec wyobrażał sobie kilka pól zastosowania dla nowych kropek kwantowych. I wtedy wpadliśmy na pomysł wykorzystania ich w rolnictwie. Ten rynek ma gigantyczny potencjał. Może on wchłonąć nawet ponad miliard metrów kwadratowych powierzchni kropek kwantowych rocznie. Przedstawiciele UbiQD postanowili produkować długie płachty zawierające kropki kwantowe, które byłyby podwieszane pod dachami szklarni i zmieniałyby spektrum wpadającego światła słonecznego. Pierwsze takie płachty dawały światło pomarańczowe o długości fali około 600 nm. Badacze testowali je na badawczych uprawach sałaty na University of Arizona. Z czasem zaczęto prowadzić testy na większą skalę. Inne płachty, dające inne kolory światła, sprawdzano w Nowym Meksyku na pomidorach, ogórkach i ziołach, w Holandii badano wpływ światła z kropek kwantowych na uprawy truskawek i pomidorów, w Kolorado do testów wybrano konopie przemysłowe, w Kalifornii i Oregonie konopie indyjskie, a w Kanadzie ogórki i pomidory. UbiQD nawiązała tez współpracę w firmą Nanosys, która od 2013 roku produkuje kropki kwantowe w ilościach przemysłowych na potrzeby producentów telewizorów. Niedawno UbiQD rozpoczęła komercyjną sprzedaż swoich płacht z kropkami kwantowymi. Mogą je kupić producenci z Azji, Europy i USA. Obecnie na skalę przemysłową produkowane są jedynie płachty dające światło pomarańczowe, jednak trwają badania nad innymi kolorami. UbiQD otrzymała też kilka grantów od NASA. Za te pieniądze ma stworzyć produkt do użycia w warunkach kosmicznych. Tego typu płachta powinna blokować szkodliwe dla roślin promieniowanie ultrafioletowe i zamieniać je w światło o takiej długości, by rośliny mogły przeprowadzać fotosyntezę. « powrót do artykułu
  5. Do fotosyntezy potrzebne jest nie tylko światło, ale i ciepło - dowodzą naukowcy z Lublina. Rośliny odzyskują część ciepła, które powstaje w fotosyntezie, i używają go ponownie do zasilania reakcji napędzanych światłem, w tym – do produkcji tlenu – tłumaczy prof. Wiesław Gruszecki. Naukowcy mają nadzieję, że wiedzę dotyczącą gospodarowania strumieniami energii w aparacie fotosyntetycznym roślin uda się wykorzystać np. w rolnictwie, by zwiększyć plony. Energia niezbędna do podtrzymywania życia na Ziemi pochodzi z promieniowania słonecznego. Wykorzystanie tej energii możliwe jest dzięki fotosyntezie. W ramach fotosyntezy dochodzi do przetwarzania energii światła na energię wiązań chemicznych, która może być wykorzystana w reakcjach biochemicznych. W procesie tym rośliny rozkładają też wodę, wydzielając do atmosfery tlen, potrzebny nam do oddychania. Do tej pory sądzono, że w fotosyntezie rośliny korzystają tylko z kwantów światła. Zespół z Uniwersytetu Marii Curie-Skłodowskiej i Instytutu Agrofizyki PAN w Lublinie wskazał jednak dodatkowy mechanizm: do fotosyntezy potrzebna jest również energia cieplna, która - jak się wydawało - powstaje w tym procesie jako nieistotny skutek uboczny. Tymczasem z badań wynika, że ten „recykling energii” jest niezbędny w procesie wydajnego rozkładania wody do tlenu. Wyniki ukazały się w renomowanym czasopiśmie Journal of Physical Chemistry Letters. Wydajność energetyczna fotosyntezy jest niewielka – mówi w rozmowie z PAP prof. Wiesław Gruszecki z UMCS. Wyjaśnia, że roślina zamienia w biomasę najwyżej 6 proc. energii słonecznej, którą pobiera. Natomiast około 90 proc. energii pochłanianej ze światła jest oddawana do środowiska w postaci ciepła. Dotąd uważaliśmy, że frakcja oddawana do środowiska w postaci ciepła, z punktu widzenia wydajności energetycznej tego procesu, jest nieodwracalnie stracona. Ku naszemu zaskoczeniu okazało się jednak, że aparat fotosyntetyczny w roślinach jest na tyle sprytny, że potrafi jeszcze wykorzystywać część energii rozproszonej na ciepło – mówi. Naukowiec podkreśla, że są to badania podstawowe. Jego zdaniem mają one jednak szansę znaleźć zastosowanie choćby w rolnictwie. Jeśli procesy produkcji żywności się nie zmienią, to w połowie XXI wieku, kiedy Ziemię może zamieszkiwać nawet ponad 9 mld ludzi, nie starczy dla wszystkich jedzenia, tym bardziej przy niepokojących zmianach klimatycznych – alarmuje naukowiec. Badania jego zespołu są częścią międzynarodowych działań naukowców. Badają oni, co reguluje przepływy i wiązanie energii w procesie fotosyntezy. W powszechnym przekonaniu wiedza ta umożliwi inżynierię bądź selekcję gatunków roślin, które dawać będą większe plony. Gdyby produkować rośliny, w których ścieżka odzyskiwania energii cieplnej będzie jeszcze sprawniejsza – uważa badacz – to fotosynteza przebiegać będzie efektywniej, a roślina produkować będzie więcej biomasy. To zaś przekłada się bezpośrednio na większe plony. Zdaniem prof. Gruszeckiego kolejnym miejscem, gdzie można zastosować nową wiedzę, jest produkcja urządzeń do sztucznej fotosyntezy. Prace nad nimi trwają już w różnych miejscach na Ziemi, również w Polsce. Naukowiec wyjaśnia, na czym polegało odkrycie jego zespołu. Z badań wynika, że wśród struktur w chloroplastach, w których zachodzi fotosynteza, znajdują się kompleksy barwnikowo-białkowe. Pełnią one funkcję anten zbierających światło. Okazuje się, że kompleksy te grupują się spontanicznie w struktury zdolne do recyklingu energii rozproszonej w postaci ciepła. Anteny te przekazują również energię wzbudzenia uzyskaną z ciepła do centrów fotosyntetycznych, w których zachodzą reakcje rozszczepienia ładunku elektrycznego (w szczególności do Fotosystemu II). Proces ten wpływa na wzrost wydajności energetycznej fotosyntezy. I umożliwia wykorzystanie w tym procesie promieniowania o niższej energii (również z obszaru bliskiej podczerwieni). Wydaje się mieć to szczególne znaczenie w warunkach niskiej intensywności światła słonecznego. « powrót do artykułu
  6. Muszki owocowe wydają się nie pamiętać traumatycznych wydarzeń, jeśli są trzymane w ciemności. Jak widać, światło wpływa na magazynowanie (retencję) w pamięci długotrwałej (ang. long-term memory, LTM). Naukowcy z Tokyo Metropolitan University zidentyfikowali mechanizm molekularny, który odpowiada za to zjawisko. Autorzy artykułu z Journal of Neuroscience uważają, że ich odkrycie może się przyczynić do opracowania nowych metod terapii dla osób, które przeżyły traumę. Podtrzymywanie wspomnienia nie jest wcale trywialnym procesem. Niewiele wiadomo o tym, w jaki sposób skonsolidowane wspomnienie jest przez długi czas utrzymywane w mózgu mimo ciągłej wymiany molekularnych substratów i reorganizacji komórkowej. To bardzo ważne zjawisko stanowi przedmiot zainteresowania licznych neuronaukowców. Wiadomo, że światło odkrywa bardzo istotną rolę w regulowaniu zwierzęcej fizjologii, np. rytmów okołodobowych czy nastroju. Chcąc się dowiedzieć, jak to wygląda w przypadku LTM, prof. Takaomi Sakai postanowił zbadać dzienne muszki (Drosophila). Japończycy stykali samce z samicami, które kopulowały i przez to stały się niereagujące. Dla samców, które nie spółkowały, jest to stresujące. W normalnych warunkach po przekazaniu takiego doświadczenia do LTM samce nie próbują się już zalecać (nawet jeśli są otoczone samicami, które nie kopulowały). Naukowcy stwierdzili, że samce, które doświadczyły traumy, a potem przez 2 lub więcej dni były trzymane w ciemności, nie miały oporów związanych ze spółkowaniem, a muszki funkcjonujące w ramach normalnego cyklu dnia i nocy już tak. To pokazuje, że światło środowiskowe w jakiś sposób modyfikuje magazynowanie w LTM (jest kluczowe dla podtrzymania wspomnień). Ponieważ okazało się, że nie chodzi o niedobór snu, Japończycy skupili się na białku zwanym czynnikiem rozpraszającym pigment (ang. pigment-dispersing factor, Pdf), którego ekspresja zachodzi w odpowiedzi na światło. Po raz pierwszy udało się wykazać, że Pdf reguluje transkrypcję białka wiążącego się z elementem odpowiedzi na cAMP (ang. cAMP-response element binding protein, CREB) w ciałach grzybkowatych, a więc strukturze związanej z pamięcią i uczeniem. Czasowa aktywacja neuronów Pdf kompensowała zaburzenia LTM związane z ciągłą ciemnością. Trudno zapomnieć traumatyczne doświadczenia, a mogą one poważnie obniżyć jakość życia. Odkrycia zespołu pokazują, jak na pamięć żywego organizmu wpływają czynniki środowiskowe. To otwiera drogę nowym terapiom dla ofiar urazów; Japończycy wspominają nawet o wymazywaniu wspomnień. « powrót do artykułu
  7. Amerykańscy naukowcy opracowali syntetyczne rozwiązanie, które wykazuje fototropizm, czyli podąża za kierunkiem padającego światła. Jest ono porównywane do sztucznego słonecznika. Opis systemu SunBOT (od ang. sunflower-like biomimetic omnidirectional tracker) ukazał się w periodyku Nature Technology. Akademicy podkreślają, że wiele sztucznych materiałów wykazuje reakcje nastyczne, co oznacza. że kierunek wygięcia nie zależy od tego, z jakiego miejsca działa bodziec. Niestety, dotąd żaden nie wykrywał i nie podążał precyzyjnie za kierunkiem bodźca, a więc nie wykazywał tropizmu. SunBOT powstał z połączenia 2 rodzajów nanomateriałów: światło- i termowrażliwego. Pierwszy pochłania światło i przekształca je w ciepło, drugi zaś kurczy się pod wpływem ekspozycji na ciepło. Zespół nadał polimerowi formę łodygi i oświetlał ją pod różnymi kątami. Okazało się, że łodyga wyginała się, nakierowując się na źródło światła. Jak tłumaczą Amerykanie, światło było absorbowane przez konkretny fragment łodygi, a powstające ciepło prowadziło do kurczenia się materiału po stronie źródła światła, przez co łodyga wyginała się w jego kierunku. Łodyga zatrzymywała się, gdy zaczynała częściowo zasłaniać promień. Podczas testów na łodydze umieszczano też "kwiat" będący małym panelem słonecznym. Wyniki pokazują, że urządzenie można wykorzystać do utrzymania ogniw fotowoltaicznych nakierowanych na słońce (znacząco podwyższa to ich wydajność).     « powrót do artykułu
  8. W połączeniu z limonenem, który zapewnia produktom czyszczącym i odświeżaczom powietrza cytrusowy zapach, oraz światłem opary wybielaczy prowadzą do powstawania związków szkodliwych dla ludzi i zwierząt. Stosowanie w pomieszczeniach roztworów wybielacza chlorowego (głównym składnikiem jest tu podchloryn sodu, NaClO) prowadzi do emisji dwóch silnych utleniaczy: gazowego kwasu podchlorawego (HOCl) i chloru (Cl2). W słabo wentylowanych środowiskach podczas sprzątania mogą one osiągać stosunkowo wysokie stężenia. Zespół Chena Wanga z Uniwersytetu w Toronto dodaje, że HOCl i Cl2 reagują z nienasyconymi związkami organicznymi na powierzchniach i w powietrzu. Chcąc uzupełnić luki w wiedzy, akademicy sprawdzali, czy limonen, który należy do lotnych związków organicznych najczęściej występujących we wnętrzach, i opary wybielacza mogą reagować, tworząc ostatecznie wtórne aerozole organiczne (ang. secondary organic aerosols, SOAs). Testy prowadzono w obecności światła i w ciemności. Warto przypomnieć, że SOAs powiązano m.in. z problemami dot. układu oddechowego. Autorzy artykułu z pisma Environmental Science & Technology dodawali limonen, HOCl i Cl2 do powietrza w komorze klimatycznej. Produkty reakcji badano za pomocą spektrometrii mas. W ciemności limonen i HOCl/Cl2 szybko reagowały, dając szereg lotnych związków. Kiedy zespół włączał fluorescencyjne światła albo wystawiał komorę na oddziaływanie światła słonecznego, te lotne związki wchodziły w interakcje z generowanymi przez światło rodnikami hydroksylowymi i atomami chloru, tworząc SOAs. Naukowcy dodają, że choć trzeba przeprowadzić dalsze pogłębione badania, bardzo możliwe, że powstające SOAs stwarzają zagrożenie dla osób zawodowo zajmujących się sprzątaniem. « powrót do artykułu
  9. Międzynarodowy zespół naukowy opracował metodę przechowywania danych, która niemal nie zużywa energii. Cyfrowe dane są zapisane na nośniku magnetycznym, który nie potrzebuje zasilania. Cała metoda jest niezwykle szybka i rozwiązuje problem zwiększenia wydajności przetwarzania danych bez zwiększania poboru energii. Obecnie centra bazodanowe odpowiadają za 2–5 procent światowego zużycia energii. W czasie ich pracy generowane są olbrzymie ilości ciepła, które wymagają dużych ilości energii przeznaczonej na chłodzenie. Problem jest na tyle poważny, że np. Microsoft zatopił centra bazodanowe w oceanie, by je lepiej chłodzić i obniżyć koszty. Większość danych przechowywanych jest w formie cyfrowej, gdzie 0 i 1 są reprezentowane za orientacji domen magnetycznych. Nad materiałem magnetycznym przesuwa się głowica odczytująco/zapisująca. Teraz na łamach Nature dowiadujemy się o nowej metodzie zapisu, która wykorzystuje niezwykle krótkie, trwające bilionowe części sekundy, impulsy światła, które wysyłane są do anten umieszczonych na magnesach. Całość pracuje niezwykle szybko i niemal nie zużywa przy tym energii, gdyż temperatura magnesów nie rośnie. Autorzy nowej metody wykorzystali impulsy światła w zakresie dalekiej podczerwieni, w paśmie teraherców. Jednak nawet najpotężniejsze terahercowe źródła światła nie są na tyle mocne, by zmienić orientację pola magnetycznego. Przełom nadszedł, gdy uczeni opracowali wydajny mechanizm sprzęgania pomiędzy spinem pola magnetycznego i terahercowym polem elektrycznym. Następnie stworzyli miniaturowe anteny, które pozwalają skoncentrować, a zatem i wzmocnić pole elektryczne światła. Okazało się ono na tyle silne, że można za jego pomocą zmieniać spin w ciągu bilionowych części sekundy. Temperatura magnesu nie rośnie podczas pracy, gdyż cały proces zapisu wymaga jednego kwanta energii na spin. Rekordowo niski pobór energii czyni tę metodę skalowalną. Przyszłe systemy do składowania danych będą mogły wykorzystać również świetne zdefiniowanie przestrzenne anten, co pozwoli na stworzenie praktycznych układów pamięci magnetycznej o maksymalnej prędkości i efektywności energetycznej, mówi jeden z autorów badań, doktor Rościsław Michajłowskij z Lancaster University. Uczony planuje przeprowadzenie kolejnych badań, podczas których chce wykorzystać nowy ultraszybki laser z Lancaster University oraz akceleratory z Cockroft Institute zdolne do generowania intensywnych impulsów światła. Chce w ten sposób określić praktyczne i fundamentalne limity prędkości i energii dla zapisu magnetycznego. « powrót do artykułu
  10. Obecnie choroba Alzheimera jest nieuleczalna. Istnieje nieco leków, które czasowo poprawiają funkcjonowanie chorych, jednak żaden z nich nie powstrzymuje ani znacząco nie spowalnia postępów choroby. Wszystkie dotychczasowe próby farmakologicznego leczenia zawiodły. Tymczasem pojawiła się nadzieja na leczenie bez użycia środków chemicznych. W najnowszym numerze Cell czytamy o eksperymentach, w wyniku których w mózgach myszy z alzheimerem poddanych działaniu światła i dźwięku doszło do zmniejszenia liczby blaszek amyloidowych oraz splątków neurofibrylarnych. To fascynujący artykuł. I bardzo prowokacyjny pomysł. To nieinwazyjny, łatwy do zastosowania i tani sposób. Jeśli przynosiłoby to korzyści ludziom, byłoby cudownie, mówi neurolog Shannon Macauley z Wake Forest School of Medicine, która nie była zaangażowana w opisywane badania. Wszystko zaczęło się w 2015 roku, gdy neurolog Li-Huei Tsai, dyrektor The Picower Institute for Learning and Memory w MIT prowadziła eksperyment, którego celem było manipulowanie aktywnością mózgu myszy za pomocą błysków białego światła. Gdy duże grupy neuronów wspólnie oscylują, dochodzi do powstawania fal mózgowych. Tsai poddawała myszy działaniom światła o częstotliwości 40 Hz, czyli migającego 40 razy na sekundę. W odpowiedzi ich mózgach pojawiły się fale gamma o częstotliwości 40 Hz. Wówczas stało się coś niespodziewanego, o czym uczona przekonała się, gdy poddała mózgi myszy sekcji. Zauważyła wówczas, że zmniejszyła się w nich liczba blaszek amyloidowych i splątków neurofibrylarnych. To było coś niezwykłego. Stymulowanie za pomocą błyskającego światła wywołała silną odpowiedź mikrogleju. To komórki odpornościowe mózgu, które oczyszczają go z resztek i toksyn, w tym z amyloidu. W chorobie Alzheimera ich działanie jest upośledzone, jednak wydaje się, że światło przywraca im ich zdolności, mówi uczona. Proces oczyszczania przebiegł tylko w korze wzrokowej, gdzie mózg przetwarza informacje uzyskiwane ze światła. Uczona postanowiła sprawdzić, czy możliwe jest pobudzenie innych obszarów mózgu i do światła o częstotliwości 40 Hz dodała dźwięk podobny do kliknięć delfina, również o częstotliwości 40 Hz. Badane myszy umieszczono w pomieszczeniu, gdzie przez godzinę dziennie przez tydzień były poddawane działaniu zarówno światła jak i dźwięku. Okazało się, że liczba blaszek amyloidowych i splątków neurofibrynalnych zmniejszyła się nie tylko w korze wzrokowej i słuchowej, ale również w korze przedczołowej i w hipokampie. To jedna z najważniejszych informacji, gdyż są to centra uczenia się i pamięci. A liczba blaszek i splątków zmniejszyła się o 40–50 procent. To imponujące, mówi Macauley. Tsai poddała swoje myszy testom poznawczym. Miały one przyjrzeć się obiektom, które już wcześniej znały oraz takim, które widziały po raz pierwszy. Okazało się, że myszy, które nie było poddawane terapii za pomocą światła i dźwięku traktowały wcześniej widziany obiekt jak zupełnie nowy. To wskazuje na problemy z pamięcią, mówi Tsai. Z kolei myszy poddawane terapii spędziły na badaniu widzianego wcześniej obiektu o 1/3 czasu mniej niż myszy nieleczone. To niewiarygodne. Po raz pierwszy stwierdziliśmy, że nieinwazyjna stymulacja poprawiła funkcje poznawcze. Tego nie zrobił lek, przeciwciało czy cokolwiek innego. Tylko światło i dźwięk, mówi uczona. Naukowcy nie wiedzą, dlaczego uzyskali takie wyniki. Jedna z możliwych hipotez mówi, że w mózgach chorych na alzheimera mamy do czynienia z nieregularną aktywnością neuronów. Stymulacja za pomocą regularnych sygnałów może dostrajać mózg do odpowiedniej pracy. Uczeni nie wiedzą też, czy podobny efekt można będzie zauważyć przy innych częstotliwościach światła i dźwięku. I, co najważniejsze, nie wiedzą też, czy podobne skutki uda się uzyskać u ludzi. Li-Huei Tsai już pracuje nad odpowiedziami na te pytanie. Wraz z kolegą Edem Boydenem założyła firmę Cognito Therapeutics i rozpoczęła testy na ludziach. Na razie zauważono, że stymulacja światłem i dźwiękiem wydaje się zwiększać ilość fal gamma u zdrowych osób i nie występują żadne skutki uboczne. Nikt się nie pochorował, nikt się na nic nie skarżył. Jednak minie dużo czasu zanim będziemy mogli mówić o ewentualnych działaniach terapeutycznych. Jeśli ta metoda działa, to pierwsze potwierdzenie otrzymamy nie wcześniej niż po pięciu latach eksperymentów, zastrzega uczona. « powrót do artykułu
  11. Zapomnijmy o standardowych drukarkach 3D. Na Uniwersytecie Kalifornijskim powstał bowiem "replikator", urządzenie nazwane tak od maszyn ze Star Treka. To rodzaj drukarki 3D, która tworzy obiekty nie warstwa po po warstwie, ale od razu w jednym przebiegu. Urządzenie działa jak odwrócony tomograf komputerowy, wyjaśnia Hayden Taylor, inżynier z Uniwersytetu Kalifornijskiego w Berkeley. Tomografy komputerowe serię zdjęć wokół ciała pacjenta, a następnie komputer składa zdjęcia w trójwymiarowy obraz. Tymczasem, jak widzimy na przykładzie replikatora, proces ten można odwrócić. Uczeni zdali sobie sprawę, że jeśli mamy komputerowy model trójwymiarowego obiektu, to można obliczyć jak ten obiekt będzie wyglądał w dwóch wymiarach fotografowanych z różnych kątów. Maszyna tworzy więc serię zdjęć 2D z trójwymiarowego obiektu, następnie zdjęcia te wędrują do projektora, który zaczyna wyświetlać je na przezroczystym cylindrze wypełnionym syntetyczną żywicą, akrylanem. Cylinder obraca się i jest oświetlany przez projektor. W ten sposób można niezależnie kontrolować ilość światła docierającego do każdego punktu w żywicy. Gdy całkowita ilość światła przekroczy pewien próg, płynna żywica staje się ciałem stałym, mówi Taylor. Dzieje się tak, gdyż żywica absorbuje fotony, a gdy jest ich odpowiednia ilość, zachodzi w niej polimeryzacja. W efekcie z płynnej żywicy otrzymujemy stały trójwymiarowy obiekt. W ciągu około dwóch minut można wyprodukować obiekt o długości kilku centymetrów. Pozostała płynna żywica jest usuwana. Cały proces jest znacznie bardziej elastyczny niż istniejące techniki 3D. Można na przykład tworzyć obiekty, wewnątrz których znajdują się inne obiekty. Ponadto stworzone w replikatorze przedmioty mają bardziej gładką powierzchnię niż te tworzone w drukarkach 3D. Dzięki temu replikatora będzie można używać do produkcji komponentów optycznych czy medycznych. Replikator ma wiele zalet w porównaniu z drukarkami 3D. Drukarki takie tworzą obiekty warstwa po warstwie, przez co na krawędziach powstaje schodkowanie. Ponadto źle współpracują one z elastycznymi materiałami, gdyż te mogą się deformować w procesie druku. Jakby tego było mało, drukowanie niektórych kształtów, np. łuków, wymaga wsporników. Replikator jest pozbawiony tych wad. Co więcej, naukowcy wykorzystali w nim zwykły projektor wideo. Jak mówi Taylor, do uzyskania prostych kształtów wystarczy tutaj przezroczysty cylinder wypełniony żywicą, który musi się obracać oraz standardowy projektor. W tej chwili naukowcy są w stanie produkować obiekty o długości do 10 centymetrów. To pierwszy przypadek, gdy nie musimy budować obiektu 3D warstwa po warstwie. Mamy tutaj do czynienia z prawdziwie trójwymiarowym drukiem 3D, cieszy się Brett Kelly, jeden z twórców replikatora. Mamy nadzieję, że w ten sposób otworzyliśmy przed innymi zespołami naukowymi okazję do eksploracji tej fascynującej dziedziny technologii, jaką jest druk 3D, dodaje Maxim Shusteff z Lawrence Livermore National Laboratory.   « powrót do artykułu
  12. Inżynierowie z MIT i Penn State University odkryli, że w odpowiednich warunkach krople zwykłej czystej wody umieszczone na przezroczystym podłożu tworzą żywe kolory bez dodatku atramentów czy tuszy. W artykule opublikowanym na łamach Nature uczeni informują, że na powierzchni pokrytej mgiełką z kropli wody oświetlonych pojedynczą lampą można uzyskać żywe kolory pod warunkiem, że wszystkie krople są tych samych rozmiarów. Mamy tutaj do czynienia z iryzacją, która zachodzi gdy światło wchodzi w interakcje ze strukturą geometryczną obiektu. Amerykańscy naukowcy stworzyli model, który pozwala przewidzieć, jaki kolor uzyskamy z danej kropli w zależności od jej struktury i warunków. Model ten może zostać wykorzystany do projektowania papierków lakmusowych bazujących na niewielkich kroplach czy do tworzenia zmieniających kolor tuszy i barwników używanych w produktach kosmetycznych. Syntetyczne barwniki używane w produktach konsumenckich w celu uzyskania żywych barw mogą nie być tak bezpieczne dla zdrowia, jak powinny. Użycie niektórych z nich jest mocno ograniczone, dlatego też przemysł poszukuje innych możliwości produkcji barwników, mówi Mathias Kolle, profesor z MIT. W ubiegłym roku Amy Goodling i Lauren Zarzar z Penn State badały przezroczyste krople wykonane z mieszanin olejów o różnej gęstości. Obserwowały ich interakcje na szalce Petriego. W pewnym momencie zauważyły, że krople są zadziwiająco błękitne. Zrobiły więc zdjęcie i wysłały do profesora Kolle z pytaniem, skąd się bierze taki kolor. Uczony początkowo sądził, że ma do czynienia z rozpraszaniem, podobnym do tego, które tworzy tęczę. Jednak krople nie były sferami ale półsferami na płaskiej powierzchni. Okazało się, że mamy do czynienia z innym zjawiskiem. Półsfery łamią symetrię, a wklęśnięta powierzchnia sfer powoduje, że pojawia się zjawisko nieobecne w idealnych sferach – całkowite wewnętrzne odbicie (TIR). Po trafieniu do wnętrza półsfery światło może odbić się kilkukrotnie, a sposób, w jaki promienie wchodzą w interakcje podczas opuszczania półsfery decyduje o tym, czy uzyskamy kolor czy nie. Na przykład dwa promienie białego światła wchodzące i wychodzące z półsfery pod tym samym kątem mogą w jej wnętrzu odbijać się zupełnie inaczej. Jeśli jeden z nich odbije się trzy razy, będzie miał dłuższą drogę niż ten, który odbije się dwukrotnie, zatem opuści półsferę nieco później. Jeśli dojdzie do interferencji, to różnica faz spowoduje, że zobaczymy kolor, a zjawisko to będzie znacznie silniejsze w mniejszych niż w większych kroplach. Uzyskany kolor zależy też od struktury półsfer, na przykład od ich rozmiaru i krzywizn. Naukowcy stworzyli matematyczny model, pozwalający im przewidzieć, jaki kolor otrzymają w danych warunkach, a następnie przetestowali go w laboratorium. Na szalce Petriego stworzyli cały zbiór kropli o identycznych rozmiarach, a następnie oświetlili je pojedynczym promieniem białego światła. Następnie całość rejestrowali za pomocą kamery, która krążyła wokół szalki. Zaobserwowali dzięki temu jak zmieniają się kolory w miarę zmiany kąta obserwacji. W ramach innego eksperymentu stworzyli na szalce krople o różnych rozmiarach i sprawdzali, jaki ma to wpływ na kolor. Okazało się, że w miarę jak kropla była coraz większa uzyskany kolor był coraz bardziej czerwony, ale po przekroczeniu pewnej granicy wielkości kropli powracał do niebieskiego. To zjawisko, które było zgodne z modelem teoretycznym, gdyż im większa kropla tym większe przesunięcie faz promieni światła. Ponadto sprawdzono też wpływ krzywizn kropli na kolor. Różne krzywizny uzyskano umieszczając krople na mniej lub bardziej hydrofobowych podłożach. Co jednak najbardziej interesujące z punktu widzenia praktycznych zastosowań, uczeni uzyskali podobne efekty w stałym materiale. Wydrukowali krople o różnych kształtach, wielkościach i z różnego rodzaju przezroczystych polimerów, a po poddaniu ich działaniu promieni światła okazało się, że również i w ten sposób można uzyskiwać żywe kolory.   « powrót do artykułu
  13. W Science ukazał się artykuł, z którego dowiadujemy się, jak dużo światła wyemitowały wszystkie gwiazdy w całej historii obserwowalnego wszechświata. Obliczeń dokonał astrofizyk Marco Ajello i jego zespół z Clemson College of Science, którzy wykorzystali dane z Germi Gamma-ray Space Telescope. Pierwsze gwiazdy zaczęły powstawać kilkaset milionów lat po powstaniu wszechświata. Obecnie istnieje około 2 bilionów galaktyk i biliony bilionów gwiazd. Dane z teleskopu Fermi pozwoliły nam na zmierzenie całego światła gwiazd, jakie zostało wyemitowane w dziejach wszechświata, mówi Ajello. Z wyliczeń wynika, że dotychczas gwiazdy wyemitowały 4x1084 fotonów. Warto też zauważyć, że pomimo tej olbrzymiej liczby fotonów, to całe światło, jakie dociera do Ziemi – z wyjątkiem światła ze Słońca i naszej galaktyki – jest niezwykle słabe. Odpowiada ono światłu z 60-watowej żarówki, jakie w zupełnej ciemności dotarłoby do nas z odległości około 4 kilometrów. Dzieje się tak ze względu na olbrzymi rozmiar wszechświata. Fermi Gamma-ray Space Telescope został wystrzelony w czerwcu 2008 roku. Obserwuje on promieniowanie gamma i jego interakcję z pozagalaktycznym promieniowaniem tła (EBL). EBL to rodzaj mgły złożonej z całego ultrafioletowego, podczerwonego i widzialnego światła emitowanego przez gwiazdy i sąsiadujący z nimi pył. Profesor Ajello i jego koledzy przeanalizowali dane z 739 emitujących promieniowanie gamma blazarów zebrane przez Fermi w ciągu 9 lat. Fotony promieniowania gamma wędrujące przez mgłę EBL są z dużym prawdopodobieństwem absorbowane. Mierząc, jak wiele fotonów zostało zaabsorbowanych, byliśmy w stanie zmierzyć, jak gruba jest mgła i zmierzyć, jako funkcję w czasie, jak wiele światła się w niej znajduje, mówi Ajello. Wykorzystując blazary znajdujące się w różnej odległości od nas zmierzyliśmy całkowite światło w różnych odcinkach czasu. Zmierzyliśmy całkowite światło dla każdej z epok: miliard lat temu, dwa miliardy lat temu i tak dalej i tak dalej, aż do czasu uformowania się pierwszych gwiazd. To pozwoliło nam zrekonstruować całkowite EBL i określić historię formowania się gwiazd w sposób bardziej efektywny, niż robiono to dotychczas", dodaje współpracownik Ajello, Vaidehi Paliya. « powrót do artykułu
  14. Badacze z Japonii opracowali kamizelkę ze źródłami światła, która pozwala zdalnie kontrolować przemieszczanie się psów. Jak wyjaśniają pomysłodawcy, bazuje ona na zamiłowaniu czworonogów do gonienia za światłem. Dzięki temu można ominąć przeszkody i doprowadzić psa do konkretnego celu bez użycia inwazyjnej technologii. Na nagraniu zamieszczonym na YouTube'ie widać pudla ubranego w kamizelkę z latarkami, które świecą na ziemię w kierunku, gdzie pies powinien pójść. Naukowcy z Tohoku University wyjaśniają, że w kamizelce znajduje się też kamera, która zapewnia człowiekowi widok z perspektywy psa. Film przedstawia, jak podążając za światłem, pudel przechodzi między biurkami i dociera do wybranego przez operatora punktu A. Japończycy zaznaczają, że takie podejście może pomóc w zwiększeniu skuteczności psów pracujących w trudnych środowiskach. Dodają, że choć psy poszukujące/ratownicze potrafią się przecisnąć przez wąskie przestrzenie i dotrzeć tam, gdzie nie dostanie się ich opiekun, trudno nimi wtedy pokierować. W takiej sytuacji pomógłby właśnie prosty system świetlny.   « powrót do artykułu
  15. Niezwykłe połączenie gwiazd neutronowych, o którego odkryciu informowaliśmy w zeszłym roku, wyrzuciło strumień materiału, który wydawał się poruszać z prędkością... 4-krotnie większą od prędkości światła, informują autorzy najnowszych badań. To „wydawał się” jest tutaj kluczowym stwierdzeniem. Nadświetlna prędkość materiału była iluzją, spowodowaną bardzo szybkim poruszaniem się strumienia oraz faktem, że pędził niemal prosto w naszym kierunku. Na podstawie naszych analiz stwierdzamy, że strumień był prawdopodobnie bardzo wąski, co najwyżej miał 5 stopni szerokości, i był odchylony od kierunku Ziemi jedynie o 20 stopni, mówi współautor badań Adam Deller z australijskiego Swinburne University of Technology. Jak wynika z obliczeń, do pojawienia się złudzenia prędkości nadświetlnej konieczne było, by materiał poruszał się z prędkością przekraczającą 97% prędkości światła, dodaje uczony. Deller wraz z zespołem, kierowanym przez Kunala Mooleya z National Radio Astronomy Observatory i California Institute of Technology, wykorzystali liczne radioteleskopy, do zbadania historycznego połączenia się gwiazd neutronowych, znanego jako GW 170817. Historycznego, gdyż po raz pierwszy udało się bezpośrednio zaobserwować fale grawitacyjne oraz emisję światła pochodzące ze zderzenia takich gwiazd. Oznaczenie pochodzi od słów „fale grawitacyjne” (gravitational waves - GW) oraz od daty obserwacji, czyli 17 sierpnia 2017 roku. Początkowo strumień materii wszedł w interakcje ze szczątkami gwiazd i utworzył się kokon, który poruszał się wolniej niż strumień. W końcu strumień wyrwał się z kokona do przestrzeni międzygwiezdnej. Uważamy, że kokon dominował w emisji w zakresie fal radiowych przez około 60 dni od zderzenia, a później emisja była zdominowana przez strumień, mówi Ore Gottlieb, teoretyk z Uniwersytetu w Tel Awiwie. Po 155 dniach od połączenia gwiazd wydawało się, że strumień przebył 2 lata świetlne, przemieszczając się z prędkością 4-krotnie większą od prędkości światła. Było to jednak złudzenie. « powrót do artykułu
  16. W miarę wzrostu globalnego ocieplenia i w obliczu braku chęci redukcji gazów cieplarnianych, naukowcy coraz częściej biorą pod uwagę geoinżynierię. Jednak manipulowanie klimatem planety może przynieść nieoczekiwane, niekorzystne skutki. Zanim ktokolwiek tego spróbuje, musimy zbadać, jakie będą tego konsekwencje. Musimy dowiedzieć się, w co się możemy wpakować", mówi profesor Solomon Hsiang z University of California, Berkeley. Hsiang i jego zespół chcą zbadać, jakie skutki może przynieść celowe rozpylanie w atmosferze miniaturowych cząstek, które odbijałyby część promieniowania słonecznego. Zespół Hsianga skupił się tutaj na wpływie takich działań na produkcję rolniczą. Coraz więcej badań pokazuje, że rosnąca temperatura zaczyna wywierać tak niekorzystny wpływ na rośliny, iż można obawiać się o wielkość plonów. Powstrzymanie ocieplenia poprzez rozpylenie związków, mogących powstrzymać wzrost temperatury może powstrzymać spadek plonów i zapewnić ludzkości dostateczną ilość pożywienia. Ponadto niewykluczone, że rośliny wolą rozproszone światło, a takie zapewniłoby rozpylenie w atmosferze chroniących Ziemię cząstek. Jednocześnie jednak na powierzchnię naszej planety trafiałoby mniej światła, a to mogłoby negatywnie odbić się na plonach. Nie wiadomo, który z elementów przeważy i jaki wpływ na rolnictwo miałyby działania geoinżynieryjne tego typu. Hsiang i jego zespół postanowili więc bliżej przyjrzeć się dwóm dużym erupcjom wulkanicznym, wybuchowi Mount Pinatubo na Filipinach z 1991 roku oraz eksplozji meksykańskiego El Chichon z 1982 roku. Podczas obu erupcji do atmosfery przedostały się miliony ton dwutlenku siarki, gazu, który tworzy w atmosferze aerozole blokujące dopływ promieni słonecznych. Wiadomo, że po eksplozji Mt. Pinatubo średnie temperatury na Ziemi spadły na dwa lata o około 0,5 stopnia Celsjusza. Naukowcy wykorzystali dane satelitarne dotyczące obu erupcji oraz informacje o zbiorach kukurydzy, soi, ryżu i pszenicy ze 105 krajów z lat 1979–2009. Jako, że chcieli dowiedzieć się, jak przesłonięcie światła słonecznego wpłynęło na plony, pod uwagę wzięli też, w celu wyeliminowania tych czynników, inne zjawiska, jak np. wielkość opadów. Okazało się, że erupcja Mt. Pinatubo z pewnością zmniejszyła plony płodów rolnych. Zjawisko takie jest znacznie mniej widoczne w przypadku wybuch El Chichon, jednak erupcja ta jest znacznie słabiej poznana, co mogło wpłynąć na ostateczny wynik badań grupy Hsianga. Naukowcy wyliczyli, że wskutek wybuchu Mount Pinatubo światowe zbiory kukurydzy zmniejszyły się o 9%, a plony soi, ryżu i pszenicy spadły o 5%. Tak duże spadki były zaskoczeniem. Uczeni spodziewali się bowiem, że rozproszone światło będzie korzystne dla roślin. Wyniki analizy zastosowano do modeli klimatycznych i obliczono, jak mogą wyglądać przyszłe zbiory z geoinżynierią i bez niej. Okazało się, że wszelkie potencjalne korzyści z geoinżynierii są niweczone przez mniejszą dostępność światła. Geoinżynieria nie przynosi rolnictwu szkody, ale też mu nie pomaga. Dotychczas wielu sądziło, że jeśli zastosujemy geoinżynierię i nie dopuścimy dzięki niej do wzrostu temperatury, to rolnictwo na tym skorzysta, gdyż plony nie będą spadać z powodu gorąca. Jednak, jak się okazało, zmieni się tylko przyczyna spadku. Nie zmniejszą się one z powodu gorąca, ale z powodu mniejszej dostępności światła. Część naukowców przestrzega jednak przed wyciąganiem pochopnych wniosków, argumentując, że mamy zbyt mało danych, by cokolwiek jednoznacznie stwierdzać. Geoinżynieeria zmieni klimat w zupełnie inny sposób niż czynią to erupcje wulkanów, mówi David Keith, profesor fizyki z Harvard University. Po pierwsze geoinżynieria byłaby związana z ciągłym wypuszczaniem aerozoli do atmosfery. Wybuch wulkanu to jednokrotne gwałtowne wydarzenie. Przez to inna byłaby dynamika schładzania planety i inny wpływ geoinżynierii na klimat i różne jego aspekty, jak opady. Z kolei profesor klimatologii Alan Robock z Rutgers University zauważa, że rolnictwo i stosowane przezeń rozwiązania, ciągle się zmieniają, w zależności od sytuacji. Nie wiadomo, czy moglibyśmy stosować dzisiejsze rozwiązania gdy zaczniemy zajmować się geoinżynierią. « powrót do artykułu
  17. Nie jest tajemnicą, że niebieskie światło uszkadza siatkówkę. Nasze eksperymenty pozwoliły odpowiedzieć na pytanie, jak ten proces przebiega i mamy nadzieję, że przyczynią się one do powstania terapii spowalniających uszkodzenie oczu, mówi profesor Ajith Karunarathne z Uniwersytetu w Toledo. Zwyrodnienie plamki żółtej, nieodwracalna choroba, która prowadzi do znaczącej utraty wzroku, rozpoczyna się zwykle w szóstej lub siódmej dekadzie życia. Jest ono spowodowane śmiercią fotoreceptorów. Fotoreceptory do prawidłowego działania potrzebują molekuły o nazwie retinal, która wychwytuje światło i rozpoczyna całą kaskadę sygnałową prowadzącą do mózgu. Żeby widzieć potrzebujemy ciągłych dostaw retinalu. Fotoreceptory są bez niego bezużyteczne. Retinal jest zaś produkowany w oku, wyjaśnia Karunarathne. Zespół z Toledo odkrył, że niebieskie światło, z którym stykamy się przede wszystkim patrząc w ekrany i monitory, ale które jest też emitowane przez słońce, rozpoczyna reakcję tworzącą toksyczne molekuły w fotoreceptorach. Jeśli na retinal padnie niebieskie światło, molekuła ta się rozpada i powstają toksyny, które zabijają fotoreceptory, stwierdza Kasun Ratnayake, doktorant z laboratorium Karunarathne. Fotoreceptory nie ulegają regeneracji. Gdy zginą, nic ich nie zastąpi. Rozpad retinalu jest toksyczny dla wielu komórek. W ramach eksperymentów naukowcy wprowadzali retinal do komórek nowotworowych, komórek serca i neuronów. Po oświetleniu niebieskim światłem komórki te ginęły. Ani sam retinal bez światła, ani światło bez retinalu nie czyniły im krzywdy. Gdy użyliśmy światła zielonego, żółtego czy czerwonego, nic się nie działo. Toksyczność retinalu powodowana działaniem światła niebieskiego jest uniwersalna. Może zabić każdy typ komórek, mówi Karunarathne. Naukowcy odkryli, że alfa-tokoferol, forma witaminy E, który jest naturalnym przeciwutleniaczem, chroni komórki przed śmiercią. Problem jednak w tym, że z wiekiem nasz układ odpornościowy się osłabia i tracimy zdolność do obrony przed retinalem rozkładającym się pod wpływem niebieskiego światła. Dlatego też do utraty wzroku z tego powodu dochodzi na późniejszych etapach życia. Przed negatywnym wpływem niebieskiego światła możemy chronić oczy nosząc okulary z odpowiednim filtrem. Naukowcy radzą też, byśmy nie patrzyli w ciemności w ekrany smartfonów czy komputerów. Każdego roku w USA diagnozuje się ponad 2 miliony nowych przypadków degeneracji plamki żółtej. Dzięki zdobyciu większej liczby informacji na temat przyczyn i mechanizmów tego schorzenia możemy poszukać sposobów na ochronę oczu dzieci dorastających w świecie technologii, stwierdzają uczeni. « powrót do artykułu
  18. Wraz z pojawieniem się rolnictwa w Europie nastąpiła nie tylko rewolucja w kwestii pozyskiwana żywności, ale również zmiany w stosowanych źródłach światła – powiedział w rozmowie z PAP archeolog dr Krzysztof Tunia. Na terenach obecnej Polski do mniej więcej V tysiąclecia p.n.e. do rozświetlania ciemności stosowano światło z ogniska oraz zapewne, co najwyżej, żagwie, czyli pochodnie w formie drewnianych szczap. Zmiana w kwestii oświetlenia pojawiła się wraz z nadejściem z Bliskiego Wschodu do Europy znajomości rolnictwa i hodowli. Dlaczego tak się stało? Wraz z bardziej zaawansowanym systemem gospodarowania pojawiła się umiejętność wytwarzania różnorodnych naczyń ceramicznych. Wśród nich w czasie wykopalisk natrafiamy, również na terenie Polski – głównie na wybrzeżach Bałtyku – nie tylko na formy kuchenne, ale też na takie, których funkcja musiała być inna. Zapewne były prostymi lampkami - wyjaśnia archeolog z Instytutu Archeologii i Etnologii PAN dr Krzysztof Tunia. Wskazuje te w formie płytkich „wanienek” czy „łódek”. Jak dodaje, ich główną część stanowił zbiornik na substancję łatwopalną. Światło uzyskiwano dzięki zapaleniu zatopionego w niej knota roślinnego. Zdaniem rozmówcy PAP „najjaśniej” na przełomie mezolitu i neolitu zrobiło się w strefie nadbałtyckiej, m.in. w północnej części obecnej Polski, gdzie archeolodzy znajdują szczególnie wiele naczynek o funkcji lampek. Im dalej w głąb kontynentu europejskiego, tym znalezisk źródeł światła jest zdecydowanie mniej. Tam nadal dominowały – jego zdaniem – łuczywa. Te nie zachowują się z reguły do naszych czasów i archeolodzy nie natrafiają na nie w czasie wykopalisk. Część ceramicznych lampek używanych w Środkowej Europie prawdopodobnie była podwieszana za pomocą sznurków – świadczy o tym wygląd tych przedmiotów: są to sześciany o krawędziach o długości kilku centymetrów z zagłębieniem pośrodku i czterema otworkami w narożnikach. Inne wykonano w formie figurek byków, także zaopatrzonych w zagłębienie na grzbiecie oraz otworki. Takie znaleziska pochodzą z terenów na południe od Karpat, być może zostaną znalezione i na +naszych+ terenach – mówi dr Tunia. Jak dodaje, w południowej Polsce odkryto dotąd bardzo nieliczne formy ceramiczne w kształcie dwustożkowatych, niewielkich naczyń, zaopatrzonych w służące do zawieszania otworki. Nie można wykluczyć, iż i one służyły za lampki – uważa dr Tunia. Podstawowym problemem był dostęp do substancji łatwopalnych. Tylko nad morzem występowała odpowiednio duża ilość dostępnego surowca do produkcji materiału palnego stosowanego w lampkach - był to tłuszcz pozyskiwany ze zwierząt morskich. Im dalej na południe od Bałtyku tym częściej stosowano pochodnie. Sądzę, iż łuczyw w zasadzie nie owijano, ani niczym ich nie smarowano, korzystając z naturalnych żywic zawartych w surowcu drewnianym – uważa dr Tunia. Archeolodzy, podobnie jak detektywi, znajdują pośrednie dowody na użycie pochodni w pradziejach. Na przykład w czasie wykopalisk w kopalni krzemienia pasiastego, użytkowanej już w okresie neolitu w Krzemionkach Opatowskich, natknęli się na węgle drzewne. Są to najprawdopodobniej pozostałości wypalonych łuczyw lub palonych tam ognisk. Choć raczej ta pierwsza możliwość jest bardziej prawdopodobna, ponieważ ognisko konsumowałoby zbyt dużo tlenu potrzebnego do oddychania górnikom. Ogniska palono raczej w pobliżu den pionowych szybów, gdzie odpalano kolejne pochodnie niezbędne do rozświetlenia ciemności w szybie wydobywczym – uważają archeolodzy. Świadectwem wykorzystania łuczyw mają być też widoczne na ścianach kopalni kreski wykonane węglem drzewnym. Dr Tunia uważa, że są to ślady po utrąceniu zwęglonej końcówki pochodni przez otarcie jej o ścianę celem uzyskania większego płomienia. Jak opowiada archeolog od okresu neolitu wśród mieszkańców Europy widać co prawda stopniowo chęć rozświetlenia ciemności, ale życie ówczesnych regulował naturalny rytm dnia. Oświetlenie było z reguły potrzebne tam, gdzie światło słoneczne po prostu nie docierało nigdy - we wspomnianych już kopalniach, jaskiniach, albo... chatach. W domostwach w miejscu palenisk, ognisk powstawały coraz bardziej zaawansowane piece wykonane z gliny. Mniej kopciły, dłużej trzymały ciepło, ale były kiepskim źródłem światła. Egipskie ciemności pogłębiał fakt, że ówczesne domostwa nie miały zbyt wielu otworów. Wydaje mi się, iż główną funkcją chaty było zapewnienie schronu i ogrzania dla jej mieszkańców, a aspekt oświetlenia wnętrza – szczególnie przez otwory w ścianach, czyli okna i drzwi – był rzeczą wtórną. Zresztą przez te otwory uciekało z wewnątrz cenne ciepło - uważa Tunia. Sztuczne światło, nawet w ograniczonym zakresie było potrzebne o każdej porze dnia, na przykład w celu przygotowania posiłku. Do naszych czasów zachowują się co najwyżej zarysy pradziejowych domostw i ich fundamenty, albo wręcz część podziemna. Stąd próba ich rekonstrukcji jest bardzo trudna. Najczęściej jest podejmowana w oparciu o analogie etnograficzne. A tu najczęściej widać, że w społecznościach, które nadal żyją poza głównym nurtem cywilizacji chaty są ciemne, bez otworów okiennych, zadymione, ale dające schronienie i ciepłotę. Miałem okazję takie zaobserwować na przykład w społecznościach andyjskich – dodaje archeolog. W ocenie dr. Tuni postęp w badaniach nad pradziejowym oświetleniem mogłyby przynieść analizy specjalistyczne domniemanych lampek ceramicznych. Pod takim kątem do tej pory ich nie analizowano. Będzie to zatem kolejny krok do poznania ważnego aspektu życia naszych przodków – kończy naukowiec. « powrót do artykułu
  19. Naukowcy pracujący przy instrumentach LIGO i VIRGO potwierdzili odkrycie, o którym informowaliśmy w sierpniu – po raz pierwszy udało się bezpośrednio zaobserwować fale grawitacyjne oraz emisję światła pochodzące ze zderzenia gwiazd neutronowych. Gdy wspomniane gwiazdy krążyły wokół siebie doszło do emisji fal grawitacyjnych, które obserwowano przez około 100 sekund. Gdy gwiazdy się zderzyły, rozbłysk światła był widziany z Ziemi po około 2 sekundach od zarejestrowania fal grawitacyjnych. W ciągu dni i tygodni następujących po zderzeniu obserwowano inne rodzaje emisji, w tym emisję w zakresach ultrafioletu, podczerwieni, światło widzialne, fale radiowe i promieniowanie rentgenowskie. Obserwacje zderzenia gwiazd neutronowych były też niepowtarzalną okazją do przeprowadzenia wielu badań. Na przykład dzięki teleskopom Gemini Obserwatory, Hubble'a i European Very Large Telescope naukowcy dowiedzieli się, że podczas kolizji doszło do syntezy wielu materiałów, w tym złota i platyny. To z kolei pozwoliło na rozwiązanie zagadki pochodzenia pierwiastków cięższych od żelaza. Możliwość obserwowania rzadkiego wydarzenia zmieniającego nasze rozumienie działania wszechświata jest niezwykle ekscytująca. Dzięki temu wielu specjalistów mogło w końcu osiągnąć postawione sobie cele badawcze i jednocześnie obserwować zjawisko zarówno w formie tradycyjnej jak i fal grawitacyjnych, mówi France A. Cordova, dyrektor National Science Foundation. Sygnał grawitacyjny GW170817 wykryto po raz pierwszy 17 sierpnia bieżącego roku. Zauważono go w bliźniaczych detektorach LIGO umiejscowionych w Hanford w stanie Waszyngton i Livingston w Luizjanie. Informacje z detektora Virgo z okolic PIzy pozwoliły na ściślejsze określenie źródła sygnału. Mniej więcej w tym samym czasie gdy sygnał został wykryty w jednym z detektorów LIGO teleskop kosmiczny Fermi zarejestrował rozbłysk gamma. Analizy przeprowadzone przy użyciu oprogramowania LIGO-Virgo wykazały, że jest mało prawdopodobne, by sygnały pochodziły z różnych źródeł. Kolejna analiza pokazała, że i drugi z detektorów LIGO zarejestrował wspomniany sygnał. O zjawisku poinformowano ośrodki naukowe na całym świecie, dzięki czemu można było skierować teleskopy w odpowiednie miejsce. Dane z LIGO pokazały, że w odległości około 130 milionów lat świetlnych od Ziemi znajdują się dwa krążące wokół siebie obiekty. Masę obu obiektów oszacowano na 1,1-1,6 masy Słońca, co wskazywało, że nie są to czarne dziury, a gwiazdy neutronowe. To było niezwykle cenne odkrycie, gdyż wcześniej rejestrowano wyłącznie fale grawitacyjne pochodzące z czarnych dziur. Taki sygnał trwa ułamki sekund. Tymczasem sygnał z gwiazd neutronowych nie tylko rejestrowano przez 100 sekund, ale też był on obecny we wszystkich częstotliwościach pracy LIGO. Przeprowadzone przez nas analizy wykazały, że błędny sygnał o takiej sile może się zdarzyć rzadziej niż raz na 80 000 lat, mówi Laura Cadonati, profesor fizyki na Georgia Tech. To odkrycie otwiera nowe możliwości przed astrofizyką. Zostanie ono zapamiętane jako jedno z najintensywniej badanych zjawisk astrofizycznych w dziejach, dodaje uczona. Odkrycie rozwiązało kilka zagadek, na przykład pozwoliło stwierdzić, że krótkotrwałe rozbłyski gamma rzeczywiście mają związek z łączeniem się gwiazd neutronowych, ale pojawiły się też nowe pytania. Na przykład źródło rozbłysku gamma znajdowało się wyjątkowo blisko Ziemi, jednak sam rozbłysk był zadziwiająco słaby jak na tę odległość. Naukowcy już pracują nad modelami wyjaśniającymi, dlaczego tak się stało. Mimo, że amerykański LIGO jako pierwszy odkrył sygnał, to europejski Virgo odegrał kluczową rolę w badaniach. Jego orientacja względem źródła sygnału w momencie jego zarejestrowania dostarczyła danych, które po połączeniu z danymi z LIGO pozwoliły na precyzyjne zlokalizowanie źródła sygnału. To najdokładniej zlokalizowane ze wszystkich dotychczas odkrytych źródeł fal grawitacyjnych. Tak duża precyzja położenia źródła pozwoliła na przeprowadzenie wielu przełomowych badań, stwierdził Jo van den Brand z Narodowego Holenderskiego Instytutu Fizyki Subatomowej, rzecznik projektu Virgo. To wspaniały przykład efektywności pracy zespołowej, pokazujący jak ważna jest koordynacja i współpraca naukowa, dodaje dyrektor Federico Ferrini z European Gravitational Observatory. Przed mniej więcej 130 milionami lat dwie gwiazdy neutronowe krążyły wokół siebie w odległości około 300 kilometrów, a im bliżej siebie były, tym większą miały prędkość. Gwiazdy zaburzały czasoprzestrzeń, emitując fale grawitacyjne. W momencie zderzenia połączyły się w jeden ultragęsty obiekt emitując promieniowanie gamma. Teraz pomiary fal grawitacyjnych i promieniowania gamma potwierdziły ogólną teorię względności, która przewiduje, że fale grawitacyjne powinny poruszać się z prędkością światła. Przez najbliższe tygodnie i miesiące teleskopy z całego świata będą obserwowały i badały to, co pozostało ze zderzenia obu gwiazd. Gdy planowaliśmy LIGO pod koniec lat 80. ubiegłego wieku, wiedzieliśmy, że będziemy potrzebowali całej międzynarodowej sieci obserwatoriów fal grawitacyjnych, w tym obserwatoriów znajdujących się w Europie. Dopiero taka sieć pozwoli na zlokalizowanie źródła fal grawitacyjnych, dzięki czemu można je będzie obserwować za pomocą teleskopów optycznych. Teraz możemy potwierdzić, że sieć obserwatoriów wspaniale działa i wraz z teleskopami optycznymi zapowiada nową erę w astronomii. A będzie jeszcze lepiej, gdyż planowane są obserwatoria w Indiach i Japonii, mówi Fred Raab, odpowiedzialny w LIGO za obserwacje. LIGO zostało sfinansowane przez amerykańską Narodową Fundację Nauki (NSF), a zarządzają nim specjaliści z California Institute of Technology i MIT. Rozbudowa detektora do Advanced LIGO została również sfinansowana przez NSF, ale zyskała też wsparcie finansowe ze niemieckiego Towarzystwa im. Maxa Plancka, brytyjskiego Science and Technology Facilities Council oraz Australian Research Council. W pracach LIGO Scientific Collaboration bierze udział ponad 1200 naukowców z około 100 instytucji z całego świata. Z kolei w prace Virgo zaangażowanych jest ponad 280 naukowców z 20 europejskich instytucji badawczych m.in. z Francji, Włoch, Holandii, Węgier, Polski i Hiszpanii. Detektor Virgo znajduje się w Pizie w European Gravitational Observatory, które jest finansowane ze środków francuskich, włoskich i holenderskich. « powrót do artykułu
×
×
  • Create New...