Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' teleskop'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 6 results

  1. NCBJ koordynuje polski udział w największym w dotychczasowej historii przedsięwzięciu astronomii obserwacyjnej. W polu widzenia teleskopu budowanego w Chile znajdzie się jednorazowo obszar 40-krotnie większy od tarczy Księżyca. Obserwacje zaplanowane na 10 lat dostarczą m.in. danych o obiektach zmiennych. Naukowcy z NCBJ działający w ramach zespołu ASTROdust już dziś przygotowują algorytmy, które wzbogacą zestaw informacji pozyskanych z obserwacji. We współczesnej astrofizyce i kosmologii obserwacyjnej bardzo istotną rolę pełnią duże przeglądy nieba. Największym obecnie tego typu przeglądem w zakresie optycznym jest SDSS (ang. Sloan Digital Sky Survey), pokrywający ok. 35% całej sfery niebieskiej i obejmujący głównie Wszechświat lokalny. Dalej – czy też głębiej, jak mówią astronomowie – z pokryciem wynoszącym ~1/3 obszaru obejmowanego przez SDSS, sięga powstający obecnie DES (ang. Dark Energy Survey). Przeglądy te mają jednak podstawową wadę – są statyczne, pokazują obiekty w jednym momencie obserwacji. Nie ujmują one wielu informacji o obiektach zmiennych, których Wszechświat jest pełen – kwazarach, gwiazdach, asteroidach. Lukę w obserwacjach zmiennego Wszechświata ma wypełnić nowy międzynarodowy projekt Legacy Survey of Space and Time (LSST), realizowany w budowanym właśnie Obserwatorium Very Rubin (Vera Rubin Observatory) w Chile. Przegląd, do którego obserwacje mają się rozpocząć już w 2024 roku, przez 10 lat co trzy dni będzie skanował obszar 18 000 stopni kwadratowych południowego nieba. Dzięki temu stanie się nie tylko najgłębszym istniejącym katalogiem, ale też stworzy unikalny film pokazujący, jak będzie zmieniało się niebo w tym okresie. Żaden przegląd nie zawiera wszystkich informacji, jakich potrzebujemy, żeby w pełni zrozumieć obserwowane obiekty. LSST będzie tzw. przeglądem fotometrycznym, dostarczającym obrazu nieba w sześciu filtrach optycznych. Jeśli będziemy potrzebowali dodatkowych informacji – np. widm spektroskopowych albo danych zebranych w podczerwieni - będziemy musieli poszukać ich gdzie indziej albo prowadzić dodatkowe obserwacje. Warto jednak wiedzieć z góry, w jakich sytuacjach takie dodatkowe dane będą niezbędne. Badacze z Narodowego Centrum Badań Jądrowych, pod kierunkiem doktoranta Gabriele'a Riccio i jego promotorki prof. Katarzyny Małek, we współpracy z naukowcami z innych międzynarodowych ośrodków postawili sobie pytanie: jak dobrze możemy zmierzyć fizyczne własności galaktyk, korzystając wyłącznie z danych LSST i jak możemy ten pomiar poprawić? W tym celu naukowcy stworzyli symulowany katalog najbardziej typowych galaktyk we Wszechświecie - galaktyk aktywnych gwiazdotwórczo, obserwowanych w przedziale przesunięcia ku czerwieni 0 < z < 2,5 (czyli aż do 11 mld lat świetlnych od nas), tak jak będzie widział je LSST. Symulacje oparto o prawdziwe dane 50 000 galaktyk, zaobserwowanych w ramach przeglądu HELP (ang. Herschel Extragalactic Legacy Project). Dane HELP, zawierające pomiary galaktyk w szerokim zakresie widma od ultrafioletu, przez optykę, do dalekiej podczerwieni, pozwalają mierzyć własności fizyczne galaktyk bardzo dokładnie. Pytanie brzmi: na ile będzie to możliwe, jeśli będziemy mieli do dyspozycji wyłącznie dane LSST? Badacze skupili się na takich parametrach, jak całkowita masa gwiazdowa, masa pyłu, całkowita jasność galaktyki w podczerwieni czy tempo powstawania gwiazd w galaktyce. Parametry wyznaczone z symulowanych obserwacji porównano z parametrami wyznaczonymi na podstawie danych obserwacyjnych z katalogu HELP. Okazało się, że podstawowe parametry charakteryzujące część gwiazdową galaktyki, takie jak masa gwiazdowa, będziemy mierzyć bardzo dokładnie. Natomiast wartości parametrów związanych z zapyleniem galaktyki, czyli na przykład tłumienie pyłu czy tempo powstawania nowych gwiazd w otoczeniu chmur pyłowych, wyznaczone wyłącznie na podstawie danych LSST, będą przeszacowane. Co gorsza, stopień przeszacowania zależy od odległości galaktyki od nas. Nie jest to całkiem zaskakujące, bo zarówno procesy gwiazdotwórcze w galaktykach, jak i powiązaną z nimi emisję pyłu najlepiej obserwować w podczerwieni, który to zakres nie będzie dostępny dla LSST. Wiedząc jednak, jakiego błędu się spodziewać, naukowcy byli w stanie zaproponować poprawki, jakie trzeba będzie stosować w pracy z rzeczywistymi danymi LSST. Zespół ASTROdust, pod kierownictwem prof. Katarzyny Małek, wraz z międzynarodowymi współpracownikami z Francji i Chile rozpoczął prace nad zaimplementowaniem tych poprawek w ogólnodostępnych narzędziach umożliwiających modelowanie galaktyk. Praca ta, dotycząca użycia masy gwiazdowej jako wskazówki niezbędnej do wyznaczenia wartości tłumienia pyłu w ultrafioletowym zakresie widma galaktyki, pomoże w poprawnym opisie podstawowych parametrów fizycznych analizowanych galaktyk. Badania zespołu ASTROdust to tylko jedna z wielu aktywności naukowców z polskich instytucji, które planowane są w ramach polskiego udziału w Obserwatorium Very Rubin i projekcie LSST. Obecnie w skład polskiego konsorcjum LSST wchodzą: NCBJ jako jednostka koordynująca, UJ, UMK, UW, CAMK PAN oraz CFT PAN. W ramach polskiego wkładu własnego planowana jest m.in. budowa lokalnego centrum danych w Polsce - mówi prof. Agnieszka Pollo kierująca Zakładem Astrofizyki NCBJ i jednocześnie projektem polskiego konsorcjum LSST. Grupa zainteresowanych w Polsce ciągle rośnie, a lista afiliowanych naukowców liczy kilkadziesiąt osób. Wszyscy jesteśmy podekscytowani projektem i nie możemy się doczekać tych petabajtów danych oraz badań i licznych publikacji na ich podstawie. To dane, jakich jeszcze nie było, więc i szansa na zupełnie nowe, nieoczekiwane odkrycia. Ale będą też i wyzwania logistyczne: jak radzić sobie z ogromnymi zbiorami danych? Jak adaptować do nich metody uczenia maszynowego? A wreszcie - jak pokazała omawiana wyżej praca Riccio et al. (2021) - dane LSST same w sobie nie zawsze wystarczą. LSST będzie kluczowym elementem układanki wielu zestawów danych – wyjaśnia dr hab. Katarzyna Małek z Zakładu Astrofizyki NCBJ. Co prawda dane pozyskane w ramach LSST będą bardzo dokładne i bardzo szczegółowe, jednak nadal będą to tylko optyczne dane fotometryczne. Będziemy musieli je uzupełniać danymi z innych obserwatoriów - na przykład pozyskanymi przy pomocy teleskopów Europejskiego Obserwatorium Południowego (ESO), wystrzelonego 25 grudnia 2021 roku Teleskopu Jamesa Webba (JWST) albo teleskopu SALT (ang. Southern African Large Telescope), na którym polscy astronomowie mają prawo do 10% czasu obserwacyjnego. Dlatego staramy się teraz dobrze zaplanować nasze miejsce w tej układance. Badania astronomiczne i astrofizyczne należą do grupy badań podstawowych, które przede wszystkim poszerzają naszą wiedzę o świecie i prawach nim rządzących. Dzięki badaniom LSST spodziewamy się lepiej zrozumieć naturę materii i energii we Wszechświecie i zweryfikować podstawowe prawa fizyki" – tłumaczy profesor Pollo. "Obserwacje będą też dotyczyć naszej bezpośredniej kosmicznej okolicy - w ramach przeglądu prowadzony będzie monitoring asteroid bliskich Ziemi, co znacząco zwiększy szanse wczesnego wykrycia potencjalnie niebezpieczniej dla nas asteroidy. Od jeszcze bardziej praktycznej strony - dane zebrane przez LSST, bezprecedensowo duże i złożone, będą wymagały rozwinięcia wyrafinowanych metod i algorytmów uczenia maszynowego, które potem zapewne znajdą zastosowanie także i w narzędziach wykorzystywanych w naszym codziennym życiu. Informacje o projekcie LSST: Legacy Survey of Space and Time (LSST) to międzynarodowy projekt obserwacyjny, który będzie realizowany za pomocą teleskopu o średnicy 8,4 m w Obserwatorium Very Rubin (Vera C. Rubin Observatory), umiejscowionym 2 682 m n.p.m. na górze Cerro Pachón w Chile. Teleskop o polu widzenia ponad 9 stopni kwadratowych (obserwujący jednorazowo ok. 40 razy większy obszar nieba niż tarcza Księżyca w pełni) w ciągu 10 lat mapowania całego południowego nieba dostarczy ok. 500 petabajtów danych w formie zdjęć oraz danych liczbowych – wartości strumieni fotometrycznych. Szacuje się, że w ciągu tygodnia będzie zbierał tyle danych, ile obejmuje cały przegląd SDSS! Główne projekty realizowane w ramach LSST skupione będą na: badaniu ciemnej materii i ciemnej energii, poszukiwaniu bliskich asteroid potencjalnie zagrażających Ziemi (tzw. Near Earth Objects, NEO), badaniu zmienności obiektów kosmicznych oraz mapowaniu Drogi Mlecznej. « powrót do artykułu
  2. Wulkaniczne szczyty Hawajów, pustynia Atacama w Chile i góry Wysp Kanaryjskich to najlepsze na Ziemi miejsca do uprawiania astronomii. To tam znajdują się najbardziej zaawansowane teleskopy. Teraz nauka może zyskać kolejne takie idealne miejsce. Chińscy specjaliści poinformowali, że znajduje się ono w pobliżu miasta Lenghu w prowincji Qinghai. Wyżyna Tybetańska ma wiele zalet z punktu widzenia astronomii. Jest położona wysoko nad poziomem morza, jest tam niewielkie zanieczyszczenie sztucznym światłem i niska wilgotność. Astronomowie od wielu lat mieli nadzieję, że uda się na niej zlokalizować miejsce nadające się do prowadzenia obserwacji. Jednak warunki środowiskowe powodują, że prowadzenie zaawansowanych badań astronomicznych byłoby tam zbyt trudne lub niemożliwe. Opinie takie są tym bardziej uzasadnione, że przed kilkunastu laty prowadzono badania w Ngari, Muztagh Ata i Daocheng. Żadne z tych miejsce nie miało warunków dobrych dla astronomii. Wielu specjalistów uważa też, że przechodzące w pobliżu Lenghu burze piaskowe wykluczają ten obszar jako miejsce wybudowania wielkich teleskopów. Jednak Licai Deng i jego koledzy z Narodowych Obserwatoriów Astronomicznych Chin Chińskiej Akademii Nauk postanowili spróbować szczęścia. Od 2018 roku monitorują zachmurzenie, jasność nocnego nieba, temperaturę powietrza, wilgotność oraz siłę i kierunek wiatru wiejącego na wierzchołku C góry Saishiteng, położonego na wysokości 4200 m. n.p.m. Naukowcy stwierdzili, że podczas około 70% nocy niebo jest na tyle wolne od chmur, że można prowadzić obserwacje. Jeśli zaś chodzi o widzialność (seeing), czyli kluczowy parametr określający, w jaki stopniu turbulencje atmosfery prowadzą do rozmazywania się obrazu gwiazd, to mediana wzdłuż promienia świetlnego wynosi 0,75 sekundy kątowej, czyli 1/4800 stopnia. Mediana nocnych zmian temperatury na szczycie to 2,4 stopnia Celsjusza, a opad pary wodnej jest przeważnie nie większy niż 2 mm. Parametry na wierzchołku C Saishiteng są więc porównywalne do tak znanych miejsc prowadzenia obserwacji astronomicznych jak Manua Kea na Hawajach, Cerro Paranal w Chile czy La Palma na Wyspach Kanaryjskich. To właśnie tam znajdują się najpotężniejsze ziemskie teleskopy. Badane przez Chińczyków miejsce wydaje się mieć też kilka wyjątkowych zalet. Jedną z nich są niewielkie fluktuacje temperatury, co wskazuje na bardzo stabilne powietrze. Kolejna zaleta to fakt, że w zimie temperatura spada tam poniżej -20 stopni Celsjusza, co czyni Saishiteng świetnym miejscem dla obserwacji w podczerwieni. A niewielka ilość pary wodnej oznacza, że może być to idealne miejsce dla urządzeń działających w paśmie teraherców, za pomocą których badany jest ośrodek międzygwiezdny, co pozwala na lepsze zrozumienie pochodzenia gwiazd, galaktyk i samego wszechświata. Chiny mają spore ambicje odnośnie badań astronomicznych. Jednak Państwo Środka wyraźnie odstaje od innych. Znajduje się tam niewiele większych teleskopów, a głównym problemem jest właśnie brak dobrego miejsca do obserwacji. Dlatego też chińskie środowisko naukowe już chce rozpocząć prace nad teleskopami, które staną na Saishiteng. Uniwersytet Nauki i Technologii buduje właśnie teleskop optyczny o aperturze 2,5 metra, który ma rozpocząć pracę w 2023 roku. Pojawiły się też propozycje budowy obserwatorium słonecznego i zespołu teleskopów o nazwie Near Earth Object Hunter. Całe chińskie środowisko astronomiczne zaproponowało też rządowi w Pekinie budowę teleskopu o aperturze 12 metrów. Chińczycy mają nadzieję, że w Saishiteng w przyszłości staną międzynarodowe teleskopy. Dobre miejsca do obserwacji astronomicznych zawsze są w cenie. A ostatnio stały się jeszcze bardziej cenne, gdyż rdzenni mieszkańcy Hawajów nie chcą, by na Mauna Kea powstawały kolejne teleskopy. Nowe miejsce nie tylko przysłużyłoby się nauce, wypełniło istniejącą lukę jeśli chodzi o obserwatoria na wschodniej półkuli, ale byłoby też niezwykle ważne z punktu widzenia Chin. Pozwoliłoby ono zwiększyć współpracę Państwa Środka z międzynarodowym środowiskiem naukowym. Historia badań wierzchołka C Saishiteng pod kątem przydatności dla astronomii sięga roku 2017, kiedy to Licai Deng stwierdził, że rosnące zanieczyszczenie sztucznym światłem znacznie utrudnia mu obserwacje. Zaczął poszukiwać innego miejsca. Został wówczas zaproszony przez władze miasta Lenghu do oceny warunków na Saishiteng. Lenghu było w przeszłości 100-tysięcznym miastem, którego gospodarka opierała się na polach naftowych. Gdy jednak ropa się skończyła, pozostało kilkuset mieszkańców. Deng podpisał pięcioletni kontrakt, w ramach którego miał sprawdzić warunki panujące na górze Saishiteng, na którą nikt wcześniej się nie wspinał. Gdy uczony wraz z zespołem weszli na szczyt, okazało się, że główne obawy astronomów dotyczące tego miejsca – dotyczące burz piaskowych – są bezpodstawne. Piasek pozostał poniżej. Niebo oczyszczało się na wysokości 3800–4000 metrów. A 200 metrów wyżej, tam, gdzie można by prowadzić obserwacje, piasek nie stanowił problemu. "Nikt nie mógł tego wiedzieć bez wdrapania się na szczyt", stwierdził uczony. Deng i jego koledzy dziesiątki razy wspinali się na szczyt, wnosząc tam sprzęt. Miejscowe władze wynajęły śmigłowiec, by im pomóc i rozpoczęły budowę drogi, która po 18 miesiącach dotarła do wierzchołka C. Deng przeniósł tam swój teleskop, a władze wprowadziły już zakaz zanieczyszczania sztucznym światłem obszaru 18 000 kilometrów kwadratowych wokół wierzchołka. Licai Deng i jego zespół opublikowali wyniki swoich badań na łamach Nature. « powrót do artykułu
  3. Teleskopy umieszczone na wysoko latających balonach stratosferycznych prowadzą obserwacje, jakich z Ziemi wykonać nie sposób. Jednak konieczność zabrania dużych systemów chłodzących ogranicza ilość sprzętu naukowego, jaki mogą zabrać balony. Naukowcy  NASA opracowali właśnie technologię pozwalającą na znaczne zmniejszenie wagi takich systemów. Została ona przetestowana podczas misji Balloon-Borne Cryogenic Testbed (BOBCAT). Wiele interesujących obiektów znajdujących się w przestrzeni kosmicznej – jak odległe galaktyki czy chmury gazu i pyłu, z którego powstają gwiazdy oraz układy planetarne – emituje promieniowanie podczerwone. Jednak atmosfera Ziemi blokuje większość takiego promieniowania, przez co obiekty te trudno jest badać z powierzchni planety. Teleskopy można wysyłać w przestrzeń kosmiczną, jednak jest to niezwykle kosztowne przedsięwzięcie. Bardzo dobrą i znacznie tańszą alternatywą są więc teleskopy wynoszone przez balony. Lustra takich teleskopów podróżujących w balonie mogłyby mieć nawet 5 metrów średnicy, czyli tyle co średnica pokoju w mieszkaniu. To jednak poważne wyzwanie, gdyż zarówno lustro jak i reszta teleskopu muszą być schłodzone do temperatur bliskich zeru absolutnemu. Jeśli ich się nie schłodzi, ich własne ciepło może zakłócać uzyskany obraz. To efekt podobny do prześwietlenia zdjęcia, wyjaśnia lider zespołu badawczego, Alan Kogut. Ciekły hel z łatwością chłodzi teleskop, ale żeby tego dokonać, musimy wsadzić urządzenie do gigantycznego termosu zwanego dewarem. Termos wielkości pokoju ważyłby wiele ton, a to przekracza możliwości największych balonów, dodaje Kogut. Waga dewara wynika z faktu, że musi on mieć wystarczająco grube ściany, by wytrzymały różnicę ciśnień próżni pomiędzy ściankami termosu a ciśnieniem na poziomie morza. Kogut i jego koledzy stwierdzili jednak, że tak naprawdę dewary mogłyby być znacznie lżejsze, gdyż pracują na wysokości 40 km, gdzie ciśnienie wynosi zaledwie 0,3% ciśnienia na poziomie morza. Dewary opracowane na potrzeby misji BOBCAT składają się z części wewnętrznej zawierającej chłodziwo otoczonej przez część zewnętrzną. Pomiędzy obiema częściami jest próżnia. To standardowa architektura termosu. Jednak dewary Koguta i jego kolegów są niezwykłe, gdyż ich wykonane ze stali nierdzewnej ścianki mają zaledwie 0,5 mm grubości. Są więc niewiele grubsze niż ścianki standardowej puszki do napojów. Urządzenie Koguta może być wystrzeliwane w temperaturze pokojowej. Jest wyposażone w zintegrowane zawory, przez który powietrze ciągle ucieka w miarę wznoszenia się urządzenia. Wyeliminowano w ten sposób problem pojawiania się dużej różnicy ciśnień. Gdy balon osiągnie wysokość 40 km. zawory są zamykane. Dopiero wówczas ze specjalnych zbiorników do termosu jest pompowany ciekły hel lub azot. Zbiorniki mają standardową konstrukcję, są niewielkie i niezbyt ciężkie. Kogut i jego zespół rozpoczęli testy swojego urządzenia w sierpniu 2019 roku, wysyłając balon z 827-kilogramowym ładunkiem. Test miał dwa cele. Po pierwsze miał udowodnić, że płyny kriogeniczne (14 litrów ciekłego azotu i 268 litrów ciekłego helu) można rzeczywiście przepompowywać na docelowej wysokości. Po drugie zaś, naukowcy chcieli sprawdzić, jak wiele energii cieplnej przeniknie do dewara w czasie tej operacji. Okazało się, że do termosu trafiło około 2,7 wata, czyli więcej niż 1–2 watów uzyskanych dla tego samego dewara w idealnych warunkach laboratoryjnych. Teraz naukowcy przygotowują kolejny test. Wykorzystają z nim lżejszy dewar o takiej samej wielkości i sprawdzą, czy uzyskane wyniki się potwierdzą. « powrót do artykułu
  4. Aparat, który zostanie umieszczony na teleskopie Vera C. Rubin Observatory, wykonał pierwsze testowe fotografie, ustalając tym samym nowy światowy rekord rozdzielczości pojedynczego zdjęcia. W czasie testów urządzenie wielkości SUV-a wykonało fotografie o rozdzielczości 3200 megapikseli. To rozdzielczość tak duża, że pozwala na zarejestrowanie piłeczki golfowej z odległości 25 kilometrów. Próby aparatu zostały przeprowadzone w SLAC National Accelerator Laboratory, gdzie urządzenie jest budowane. Nie fotografowano podczas nich odległych piłeczek golfowych, a bliżej położone przedmioty, jak np. powierzchnię brokuła. Wykonanie tych zdjęć to duże osiągnięcie. Mamy bardzo wyśrubowaną specyfikację i naprawdę z każdego milimetra kwadratowego wycisnęliśmy wszystko, co możliwe, zwiększając w ten sposób możliwości badawcze, mówi Aaron Roodman, który jest odpowiedzialny za złożenie i przetestowanie aparatu. Płaszczyzna ogniskowa aparatu ma szerokość 60 centymetrów i składa się ze 189 czujników CCD o rozdzielczości 16 megapikseli każdy. CCD wraz z towarzyszącą im elektroniką zostały połączone w grupy po 9 CCD w każdej. Powstało w ten sposób 21 modułów, które wraz z 4 dodatkowymi modułami, które służą pozycjonowaniu aparatu, umieszczono na podstawie. Każdy z takich modułów kosztował około 3 milionów dolarów. Każdy z pikseli ma szerokość około 10 mikrometrów, a całość jest niezwykle płaska. Nierówności na całej płaszczyźnie ogniskowej nie przekraczają 1/10 grubości ludzkiego włosa. Dzięki tak małym pikselom i tak płaskiej powierzchni, możliwe jest wykonywanie zdjęć w niezwykle wysokiej rozdzielczości. W połączeniu z możliwościami lustra teleskopu Vera C. Rubin Observatory pozwoli na rejestrowanie obiektów, które są 100 milionów razy mniej jasne, niż minimalna jasność wymagana, by zauważyło je ludzkie oko. To właśnie te możliwości sprawiają, że środowisko naukowe z niecierpliwością czeka na uruchomienie nowego obserwatorium. W ciągu 10 lat aparat wykona zdjęcia około 20 miliardów galaktyk. To zwiększy naszą wiedzę o ewolucji galaktyk, pozwoli na bardzo precyzyjne przetestowanie modeli ciemnej materii i ciemnej energii. To obserwatorium będzie niezwykłym miejscem, gdzie można będzie badać zarówno nasz Układ Słoneczny, jak i obiekty znajdujące się na skraju obserwowalnego wszechświata, mówi Steven Ritz z University of California, który jest głównym naukowcem projektu aparatu.   « powrót do artykułu
  5. Naukowcy z Uniwersytetu Ben-Guriona oraz Instytutu Weizmanna poinformowali o opracowaniu techniki podsłuchu z... drgań żarówki znajdującej się w pokoju, w której prowadzona jest rozmowa. Wywołane dźwiękiem zmiany ciśnienia powietrza na powierzchni wiszącej żarówki powodują jej niewielkie drgania, które można wykorzystać do podsłuchu w czasie rzeczywistym, stwierdzili naukowcy. Metoda została opisana w najnowszym numerze Science i zostanie zaprezentowana podczas wirtualnej konferencji Black Hat USA 2020, która odbędzie się w sierpniu. Podobne metody podsłuchu były już opisywane. Jednak wiele takich metod albo nie działa w czasie rzeczywistym, albo nie jest pasywnych, co oznacza, że konieczne jest wykorzystanie np. światła lasera, które może nas zdradzić. Metoda „lamphone” jest i pasywna i działa w czasie rzeczywistym. Ben Nassi i jego koledzy prowadzili swoje eksperymenty za pomocą teleskopów (o średnicach luster 10, 20 i 35 centymetrów), które umieścili w odległości 25 metrów od „podsłuchiwanej” żarówki. W zestawie do podsłuchu znalazł się jeszcze elektrooptyczny czujnik Thorlabs PDA100A2, a celem była 12-watowa żarówka LED. Żarówka wibrowała w reakcji na dźwięki w pomieszczeniu. Wibracje te znajdowały swoje odzwierciedlenie w zmianach sygnału świetlnego rejestrowanego przez czujnik umieszczony przy okularze teleskopu. Zbierane sygnały zmieniane są z analogowych na cyfrowe, a następnie przetwarzane przez oprogramowanie odfiltrowujące szumy. Jest ono wspomagane przez Google Cloud Speech API rozpoznające ludzką mowę oraz aplikacje takie jak Shazam czy SoundHound, których zadaniem jest rozpoznawanie utworów muzycznych. Podczas swoich eksperymentów naukowcy byli w stanie zebrać różne dźwięki w podsłuchiwanego pomieszczenia, w tym rozpoznać piosenki Let it Be Beatlesów czy Clocks Coldplay oraz przemówienie prezydenta Trumpa We will make America great again. Autorzy nowej techniki podsłuchu mówią, że sprawdzi się ona na odległość większą niż 25 metrów. Należy użyć większego teleskopu lub innego konwertera analogowo-cyfrowego. Przeciwdziałać podsłuchowi można przyciemniając światło, gdyż metoda ta tym słabiej działa im mniej światła przechwytuje czujnik, lub używając cięższej żarówki, która mniej drga pod wpływem dźwięku. Zaprezentowany przez Izraelczyków sposób podsłuchu ma sporo ograniczeń. Przede wszystkim teleskop musi widzieć bezpośrednio światło emitowane z żarówki. Można więc zgasić światło czy zaciągnąć kotary. Jednak mimo tych niedoskonałości powyższa praca pokazuje, że z jednej strony warto rozważyć możliwość wykorzystania różnych źródeł światła w technikach podsłuchowych, z drugiej zaś warto zastanowić się, w jaki sposób można przed takim podsłuchem się chronić. « powrót do artykułu
  6. W październiku ubiegłego roku informowaliśmy, że Dziewiąta Planeta, hipotetyczny nieznany dotychczas obiekt wchodzący w skład Układu Słonecznego, może nie być planetą. Astronomowie Jakub Scholtz z Durham University i James Unwin z University of Illinois at Chicago zaproponowali hipotezę mówiącą, że to... pierwotna czarna dziura. Teraz Edward Witten z Princeton University zauważa, że takiego obiektu nie można by wykryć za pomocą teleskopów, jednak stwierdza, że można by go zauważyć wysyłając w kierunku jego domniemanego położenia setki lub tysiące niewielkich sond. Propozycja Wittena to modyfikacja projektu Breakthrough Starshot. Jak pisaliśmy, autorzy tego projektu proponują wysłanie do Alfa Centauri pojazdu napędzanego żaglem słonecznym. Pojazd taki zostałyby rozpędzony za pomocą światła lasera do prędkości 20% prędkości światła i dotarłby do Alfa Centauri w ciągu 20 lat. Witten oblicza zaś, że wykorzystując podobny system można by wysłać w podróż większy pojazd – o wadze około 100 gramów – dzięki czemu nie byłaby potrzebna tak wielka miniaturyzacja jak w Breakthrough Starshot. Pojazd taki, poruszając się z prędkością 0,001 (300 km/s) c mógłby w ciągu 10 lat przebyć odległość 500 jednostek astronomicznych. Wysyłając całą flotę w stronę, gdzie powinna znajdować się hipotetyczna czarna dziura krążąca w Układzie Słonecznym może zdarzyć się tak, że kilka z tych sond przeleci w odległości nie większej niż kilkadziesiąt jednostek astronomicznych. Oddziaływanie dziury spowodowałoby, że sondy by przyspieszyły. Jeśli wysyłałyby one regularne sygnały na Ziemię, oddziaływanie grawitacyjne czarnej dziury spowodowałyby wydłużenie interwału pomiędzy impulsami. Witten oblicza, że do wykrycia w ten sposób czarnej dziury potrzeba by było sygnałów, których opóźnienie lub przyspieszenie byłoby mniejsze niż 10-5 sekundy na rok. Taką dokładność można bez przeszkód uzyskać za pomocą współczesnych zegarów atomowych. Jednak trudno wyobrazić sobie umieszczenie zegara atomowego w pojeździe ważącym zaledwie 100 gramów. Witten przyznaje, że jego propozycja jest bardziej teoretyczna niż praktyczna. Nie wiem, ani czy taki pomysł da się zrealizować, ani czy – gdyby było to możliwe to realizacji – jest to najlepszy sposób. Na artykuł Wittena zareagowali Scott Lawrence i Zeeve Rogoszinski z University of Maryland, którzy zaproponowali rozwiązanie bez potrzeby używania zegarów atomowych. Ich zdaniem obecność czarnaj dziury można by stwierdzić wykrywając zaburzenia trajektorii ruchu sond wywołane przez jej oddziaływanie grawitacyjne. W przeciwieństwie do pomysłu Wittena, gdzie różnice w sygnałach są powodowane przyspieszeniem próbników w pobliżu czarnej dziury, pomysł Lawrence'a i Rogoszinskiego ma i tę zaletę, że zaburzenia orbity próbników kumulowałyby się przez wiele lat. Co po latach sondy zboczyłyby z toru lotu o 1000 kilometrów. Co prawda znajdowałyby się wówczas w odległości 500 j.a. od Ziemi, jednak – jak wyliczają naukowcy – zaburzenia trajektorii można by wykryć za pomocą interferometrii bazowej wykorzystującej wysokie częstotliwości radiowe. Tutaj jednak pojawiaj się inny problem techniczny. Sondy musiałyby albo emitować taki sygnał, albo przynajmniej go odbijać. Jednak być może obie propozycje należy wyrzucić do kosza. Jak bowiem zauważają w swojej pracy Theim Haong z Koreańskiego Instytutu Astronomii i Badań Kosmosu oraz Abraham Loez z Uniwersytetu Harvarda, autorzy dwóch wspomnianych pomysłów potraktowali sondy jako obiekty podlegające jedynie grawitacji. Tymczasem opory i oddziaływania elektromagnetyczne w nierównomiernie rozłożonej materii międzygwiezdnej również wpływałyby na trajektorię i prędkość sond, przykrywając wszelki wpływ czarnej dziury. Mike Brown z Caltechu, który wraz z Konstantinem Batyginem wysunęli hipotezę o istnieniu Dziewiątej Planety mówi, że podobają mu się te propozycje. Jednak uważam, że nie ma żadnych podstaw, by sądzić, że Dziewiąta Planeta jest w rzeczywistości czarną dziurą. Wciąż jej szukamy. Jeśli nie znajdziemy jej za pomocą obecnie dostępnych narzędzi, co myślę, że szybko zostanie ona zauważona dzięki Vera C Rubin Observatory. Nie wiem jednak, kiedy to nastąpi. « powrót do artykułu
×
×
  • Create New...