Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' woda'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 44 results

  1. NASA poinformowała o znalezieniu wody na oświetlonej przez Słońce powierzchni Księżyca. Wodę zauważono za pomocą Stratospheric Observatory for Infrared Astronomy (SOPHIA). Odkrycie sugeruje, że woda może być obecna nie tylko w zimnych, zacienionych miejscach Srebrnego Globu. SOFIA, czyli obserwatorium umieszczone na pokładzie samolotu, wykryło molekuły wody (H2O) w Kraterze Claviusa. To jeden z największych księżycowych kraterów widocznych z Ziemi. Znajduje się on na południowej półkuli Księżyca. Już wcześniejsze obserwacje powierzchni satelity Ziemi wskazywały na istnienie tam pewnej formy wodoru, jednak nie pozwalały one na jednoznaczne stwierdzenie, czy mamy do czynienia z wodą, czy też z grupą hydroksylową (-OH). Dzięki obserwatorium SOFIA dowiadujemy się, że w Kraterze Claviusa koncentracja wody wynosi od 100 do 412 części na milion. To około 0,35 litra na każdy metr sześcienny księżycowego gruntu. Mamy dane wskazujące, że H2O, czyli po prostu woda, może być obecna na oświetlonych częściach Księżyca - mówi Paul Hertz, dyrektor Wydziału Astrofizyki w Dyrektoriacie Misji Naukowych NASA. Teraz wiemy, że woda tam jest. To odkrycie zmienia nasze rozumienie powierzchni Księżyca i każe zadać sobie pytania o obecność zasobów potrzebnych do eksploracji głębszych części kosmosu. Wody w Księżycu jest naprawdę mało. Dość wspomnieć, że na Saharze jest jej 100-krotnie więcej. Jej odkrycie w księżycowym gruncie każe też zadać sobie pytanie, w jaki sposób woda jest tworzona i jak jest w stanie przetrwać na niemal pozbawionych atmosfery ciałach niebieskich. Woda to bardzo cenny surowiec, którego obecność na Księżycu znakomicie ułatwiłaby eksplorację kosmosu. Jednak w tej chwili nie wiadomo, czy księżycową wodę da się łatwo pozyskać. Sukces obserwatorium SOFIA był możliwy dzięki dziesięcioleciom badań. Gdy w 1969 roku astronauci z misji Apollo przywieźli na Ziemię próbki księżycowego gruntu sądzono, że Srebrny Glob jest całkowicie suchy. W ciągu kolejnych dekad znaleziono lód w stale zacienionych kraterach. Kolejne misje naukowe znajdowały też wodór na oświetlonych przez Słońce fragmentach Księżyca, jednak nie udawało się jednoznacznie stwierdzić, czy występuje on w postaci H2O czy -OH. Wiedzieliśmy, że mamy do czynienia z pewnym stopniem uwodornienia. Nie wiedzieliśmy jednak, czy jest tam woda, czy bardziej coś, co przypomina środek do czyszczenia rur - mówi Casey Honniball z Univeristy of Hawaii. SOFIA wszystko zmieniła. Laboratorium latające na wysokości ponad 13.700 metrów na pokładzie zmodyfikowanego Boeinga 747 wyposażono w 106-calowy teleskop pracujący w podczerwieni. Jako że na tej wysokości teleskop znajduje się nad 99% całej pary wodnej w ziemskiej atmosferze, może uzyskać znacznie wyraźniejszy obraz niż analogiczne teleskopy na powierzchni Ziemi. Teraz SOFIA znalazła specyficzną dla molekuł wody emisję w paśmie 6,1 mikrometra. Obecnie nie wiadomo, skąd wzięła się woda na powierzchni Księżyca. Mogły ją tam zanieść mikrometeoryty. Inna możliwość to zaniesienie wodoru przez wiatr słoneczny. Wodór mógł przereagować z minerałami zawierającymi tlen, tworząc grupę hydroksylową. Następnie promieniowanie pochodzące z bombardowania Księżyca mikrometeorytami mogło zamienić grupę hydroksylową w wodę. Nie wiadomo też, jak to się stało, że woda na Księżycu wciąż się utrzymuje. Może być uwięziona w strukturach przypominających korale, które powstały w wyniku działania wysokich temperatur spowodowanych uderzeniami mikrometeorytów. W takim wypadku dość trudno byłoby ją pozyskać. Woda może być też uwięziona pomiędzy ziarnami księżycowego gruntu i chroniona w ten sposób przed odparowaniem. « powrót do artykułu
  2. Od dawna słyszymy teorię, że w przeszłości Ziemia była sucha, a wodę przyniosły z czasem bombardujące ją komety i asteroidy. Tymczasem badania opublikowane właśnie na łamach Science sugerują, że woda mogła istnieć na naszej planecie od zarania jej dziejów. Naukowcy z Centre de Recherches Pétrographiques et Géochimiques we Francji odkryli, że grupa kamiennych meteorytów o nazwie chondryty enstatytowe, zawiera na tyle dużo wodoru, by dostarczyć na Ziemię co najmniej trzykrotnie więcej wody niż jej zawartość w ziemskich oceanach. Chondryty enstatytowe mają skład taki, jak obiekty z wewnętrznych części Układu Słonecznego, zatem taki, z jakiego powstała Ziemia. Nasze odkrycie pokazuje, że materiał, z jakiego powstała Ziemia mógł w znacznym stopniu dostarczyć jej wodę. Materiały zawierające wodór były obecne w wewnętrznych częściach Układu Słonecznego w czasie, gdy formowały się planety skaliste. Nawet jeśli temperatura była wówczas zbyt wysoka, by woda występowała w stanie ciekłym, mówi główny autor badań, Laurette Piani. Najnowsze odkrycie to spore zaskoczenie, gdyż zawsze sądzono, że materiał, z którego powstała Ziemia, był suchy. Pochodził bowiem z wewnętrznych obszarów formującego się Układu Słonecznego, gdzie temperatury nie pozwalały na kondensację wody. Chondryty enstatytowe pokazują, że woda nie musiała dotrzeć na naszą planetę z krańców Układu. Są rzadkie, stanowią jedynie 2% meteorytów znajdowanych na Ziemi. Jednak ich podobny do Ziemi skład izotopowy wskazuje, że jest z takiego właśnie materiału powstała planeta. Mają bowiem podobne izotopy tlenu, tytanu, wapnia, wodoru i azotu co Ziemia. Jeśli chondryty enstatynowe tworzyły Ziemię – z ich skład izotopowy na to wskazuje – to oznacza, że miały one w sobie tyle wody, by wyjaśnić jej pochodzenie na naszej planecie. To niesamowite, ekscytuje się współautor badań, Lionel Vacher. Badania wykazały też, że znaczna część azotu obecnego w ziemskiej atmosferze może pochodzi z chondrytów enstatynowych. Mamy do dyspozycji niewiele chondrytów estatynowych, które nie zostały zmienione przez asteroidę, której były częścią, ani przez Ziemię. Bardzo ostrożnie dobraliśmy chondryty do naszych badań i zastosowaliśmy specjalne techniki analityczne, by upewnić się, że to, co znajdziemy, nie pochodzi z Ziemi, mówi uczony. Badania wody w meteorytach zostały przeprowadzone za pomocą spektrometrii mas i spektrometrii mas jonów wtórnych. Założono, że chondryty enstatynowe uformowały się blisko Słońca. Były więc powszechnie uznawane za suche i prawdopodobnie z tego powodu nie przeprowadzono ich dokładnych badań pod kątem obecności wodoru, mówi Piani. « powrót do artykułu
  3. Prywatna chińska firma Origin Space ma zamiar wystrzelić swojego pierwszego „kosmicznego robota wydobywczego”. NEO-1, który ma wystartować w listopadzie, to niewielki 30-kilogramowy satelita, który ma wejść na orbitę heliosynchroniczną na wysokości 500 kilometrów. Urządzenie nie będzie pozyskiwało żadnych surowców, posłuży do testowania technologii. Naszym celem jest sprawdzenie różnych elementów, takich jak manewry na orbicie, symulowanie przechwytywania niewielkich obiektów, inteligentna identyfikacja i kontrola, mówi współzałożyciel Origin Space, Yu Tianhong. Origin Space powstała w 2017 roku i opisuje siebie jako pierwszą chińską firmę skoncentrowaną na pozyskiwaniu zasobów w przestrzeni kosmicznej. Gdy Pekin w 2014 roku otworzył swój przemysł kosmiczny na współpracę z przedsiębiorstwami prywatnymi, zaczęły powstawać firmy zainteresowane działaniami poza Ziemią. Szczególnie interesujące jest wydobywanie surowców, gdyż szacuje się, że przemysł górniczy wykorzystujący asteroidy może być warty biliony dolarów. Nic więc dziwnego, że przedsiębiorstwa zainteresowane kosmicznych górnictwem, angażują się w rozwój rakiet i małych satelitów. Origin Space ma ambitne plany. Już podpisało umowę z państwową DHF Satellite, w ramach której ma zostać przygotowana misja Yuanwang-1, która w 2021 roku ma wynieść na orbitę teleskop zaprojektowany do obserwowania asteroid bliskich Ziemi. Celem prac będzie tutaj zidentyfikowanie potencjalnych celów do rozpoczęcia prac wydobywczych. Z kolei pod koniec przyszłego roku lub na początku roku 2022 ma wystartować misja NEO-2, której celem będzie Księżyc. Yu Tianhong przyznaje, że plan tej misji nie jest jeszcze gotowy, jednak nie wyklucza ewentualnego lądowania na Srebrnym Globie. Wydobywanie pozaziemskich surowców stało się ponownie przedmiotem gorącej debaty po tym, jak w ubiegłym tygodniu administrator NASA Jim Bridenstine zachęcał prywatne firmy, by przywoziły próbki księżycowych skał i gruntu obiecując, że NASA je odkupi. Jednak przed kosmicznym górnictwem wciąż wiele przeszkód. Od kwestii związanych z odpowiednimi technologiami, poprzez całą logistykę prac górniczych i transportu, aż po odpowiedź na banalne pytanie kto – oprócz NASA – byłby skłonny kupować te surowce. Wiele słyszeliśmy o wodzie na Księżycu, mówi Brian Weeden, jeden z dyrektorów Secure World Foundation. Jednak gdy porozmawia się z jakimkolwiek naukowcem zajmującym się tym tematem, okazuje się, że nie wiadomo, jaki skład chemiczny ma ta woda ani z jakimi trudnościami będzie wiązało się jej pozyskanie oraz przygotowanie z niej użytecznego produktu. Takie same, a nawet większe, problemy dotyczą prac górniczych na asteroidach. Na Ziemi mamy wielkie kopalnie, potężne maszyny, fabryki i huty, które przetwarzają minerały na użyteczne produkty. Jak wiele z tych rzeczy będziemy potrzebowali w kosmosie i jak je tam wybudujemy?, stwierdza Weeden. Obecnie jedynymi potencjalnymi klientami są państwowe agendy kosmiczne, które mają plany związane z Księżycem. One mogą być zainteresowane księżycowymi regolitami do wznoszenia konstrukcji i wodą, do wytwarzania paliwa i celów spożywczych. Jednak poza skromną ubiegłotygodniową deklaracją NASA nie obserwujemy żadnego zainteresowania za strony rządów kupowaniem takich materiałów, dodaje. Chińczycy z Origin Space nie są pierwszymi, którzy próbują szczęścia na nieistniejącym rynku kosmicznego górnictwa. W 2009 roku powstała amerykańska firma Planetary Resources, która doświadczyła problemów z finansowaniem i została przejęta przez ConsenSys. Z kolei w styczniu 2019 roku również amerykańska Deep Space Industries też zmieniła właściciela i obecnie zajmuje się rozwojem małych satelitów. Więcej szczęścia mają na razie Japończycy z ispace. Udało im się pozyskać 28 milionów dolarów i budują pierwszą serię księżycowych lądowników. « powrót do artykułu
  4. Lodowce szelfowe mogą zniknąć błyskawicznie, czasami wystarczą minuty lub godziny, by się rozpadły. Proces ten jest napędzany przez wodę, która wdziera się w pęknięcia lodowca. Wiele z lodowców szelfowych znajduje się bezpośrednio przy wybrzeżach Antarktyki i stanowią fizyczną barierę zapobiegającą spływaniu ludowców z lądu do oceanu. Autorzy najnowszych badań, opublikowanych właśnie w Nature, twierdzą, że od 50 do 70 procent antarktycznych lodowców szelfowych jest zagrożonych rozpadem z powodu globalnego ocieplenia. Odkryliśmy, że tempo topnienia jest ważne, ale równie ważne jest to, gdzie to topnienie zachodzi mówi główna autorka najnowszych badań, Ching-Yao Lai z Columbia University. Największą zagadką jest to, kiedy lodowiec może się rozpaść, dodaje Christine Dow z kanadyjskiego University of Waterloo, która nie była zaangażowana w najnowsze badania. Niektóre z lodowców szelfowych pływają na otwartych wodach i nie mają wpływu na to, co dzieje się z lodowcami na lądzie. Jednak lodowce szelfowe znajdujące się np. w zatokach stanowią fizyczną barierę, która spowalnia spływanie do oceanu lodowców z lądu. W takim przypadku na lodowce szelfowe działają potężne siły. Z jednej strony są one poddawane naciskowi ze strony lodu spływającego z lądu, z drugiej strony napierają na ląd, z trzeciej zaś są rozciągane, gdy przemieszczają się na wodzie. W wyniku tych procesów na lodowcach szelfowych pojawiają się liczne pęknięcia. Jeśli nad taki lodowiec napłynie ciepłe powietrze i lodowiec zacznie się topić, pojawi się woda, która będzie wdzierała się w pęknięcia. Może ona błyskawicznie doprowadzić do rozpadu lodowca szelfowego. A w takim wypadku znika bariera między oceanem a lodowcem na lądzie, więc lodowiec może przyspieszyć spływanie do oceanu. Naukowcy spekulują, że ofiarą takiego procesu pękania i wdzierania się wody padł lodowiec szelfowy Larsen B, który w 2002 roku w ciągu zaledwie kilku tygodni stracił 3250 km2 powierzchni. Lai i jej zespół chcieli wiedzieć, które z lodowców szelfowych są najbardziej narażone na rozpad. Opracowali więc model maszynowego uczenia się, który był trenowany na zdjęciach lodowców z przeszłości. Celem treningu było nauczenie algorytmu rozpoznawania cech charakterystycznych prowadzących do rozpadu lodowców. Algorytm uczono na podstawie zdjęć satelitarnych lodowców szelfowych Larsen C i Jerzego VI. Następnie algorytm zaimplementowano do zdjęć całej Antarktyki. Na tej podstawie zidentyfikowali te pęknięcia, które – po uwzględnieniu nacisku wywieranego przez masy lodu oraz ruchy lodowca na wodzie – z największym prawdopodobieństwem będą się powiększały. Teraz uczonych czeka odpowiedź na pytanie, kiedy może dojść do rozpadu poszczególnych lodowców szelfowych. W tym celu naukowcy będą musieli połączyć swój model z modelami klimatycznymi oraz modelami opisującym spływanie lodowców z lądu. Na razie grupa Lai nie jest w stanie zakreślić ram czasowych, w których może dojść do masowego rozpadania się lodowców szelfowych. Jednak inna grupa naukowa już w 2015 roku stwierdziła, że stanie się to w perspektywie najbliższych dekad. « powrót do artykułu
  5. W pobliżu łaźni w Tzippori National Park w Izraelu znaleziono głowę gargulca sprzed około 1800 lat. Hellenistyczna rzeźba, importowana prawdopodobnie z terenu dzisiejszej Turcji, jest dokładnie takim obiektem, przed jakim wiernych ostrzegali rabini. Babiloński Talmud w traktacie Avodah Zarah zabraniał picia wody z tego typu gargulców. Odnośnie figur z ludzką twarzą (partzufot), z których w miastach wypływa woda, np. w fontannach, wierny nie może zbliżać ust do ust tych figur i z nich pić, gdyż wygląda to tak, jakby całował idola, czytamy w traktacie. Zabytek został znaleziony podczas spaceru przez jednego z mieszkańców Tzippori. W przeszłości po upadku Jerozolimy miasto to było stolicą Galilei i siedzibą Sanhedrynu. Znaleziona właśnie rzeźba wykonana została z wysokiej jakości marmuru i przedstawia głowę lwa z cechami ludzkiej twarzy. Średnica zabytku wynosi 15 centymetrów, głębokość to 12,5 centymetra, a wylot, którym wypływała woda mierzy zaledwie 2 centymetry. Co interesujące, na rzeźbie zachowały się resztki tynku, co wskazuje, że po tym, jak przestała służyć jako gargulec była używana w innym celu lub też została pokryta tynkiem z powodów religijnych. Nie można wykluczyć, że tynk nałożyli muzułmanie, by zakryć twarz rzeźby. Prawdopodobnie zabytek zdobił fontannę, do której trafiała woda z miejscowego akweduktu zasilanego źródłami z gór w pobliżu Nazaretu. Doktor Yossi Bordovich zauważa, że podobne zabytki znajdowano już w innych miejscach. « powrót do artykułu
  6. Historia rozprzestrzeniania się ludzi po kuli ziemskiej wciąż jest pełna tajemnic, niejasności, sprzecznych interpretacji, niepełnych danych. Jerome E. Dobson z Kansas University oraz Giorgio Spada i Gaia Galassi z Uniwersytetu w Urbino postanowili pomóc archeologom i antropologom w określeniu miejsc, w których należy szukać nieznanych dotychczas śladów bytności człowieka. Skupili się przy tym na „globalnych przewężeniach”, kluczowych punktach dla migracji. Globalne przewężenia to istotne węzły w sieciach geograficznych i polityczne punkty styku, które są obecnie kontrolowane przez państwa. Dzisiaj są one miejscami wciąż nawracających konfliktów, czytamy w artykule Global Choke Points May Link Sea Level and Human Settlement at the Last Glacial Maximum opublikowanym na łamach Geographical Review. Dobson, Spada i Galassi wybrali dziewięć takich punktów i postanowili sprawdzić, jak wyglądały one przed około 20 000 lat w szczycie ostatniego zlodowacenia. Te punkty to Cieśnina Beringa, Przesmyk Panamski, Bosfor i Dardanele, Gibraltar, cieśniny Sycylijska i Mesyńska, Przesmyk Sueski, Bab al Mandab, Cieśnina Malakka oraz Cieśnina Ormuz. Uczeni sprawdzali, w jaki sposób wyglądały one w czasie, gdy znacznie więcej wody niż obecnie było związanej w postaci lodu. Podczas maksimum ostatniego zlodowacenia poziom oceanów był o 125 metrów niż obecnie. Po zakończeniu epoki lodowej pod wodą znalazły się obszary o łącznej powierzchni Ameryki Południowej", mówi profesor Dobson, emerytowany prezes Amerykańskiego Towarzystwa Geograficznego. Na terenach tych, obecnie znajdujących się dziesiątki metrów pod wodą, mogły np. znajdować się osady i porty. Pamiętajmy, że już 11 000 lat temu ludzie wznieśli monumentalne kamienne Göbekli Tepe. A dowodem na to, że ludzie byli zdolni do odbywania dalekich podróży morskich niech będzie chociażby zasiedlenie Australii, które mogło mieć miejsce już 65 000 lat temu. Wydaje się, że neandertalczycy transportowali morzem narzędzia z lądu na Wyspy Jońskie. Skoro tak, nie można wykluczyć, że tysiące lat później handel morski był jeszcze bardziej rozwinięty. Uczony od dawna postuluje przeprowadzenie badań terenów utraconych na rzecz oceanów i sądzi, że dobrym początkiem będzie zbadanie „globalnych przewężeń”. Przypomina, że nie tak dawno niemal nie doszło do konfliktu zbrojnego pomiędzy USA a Iranem na tle żeglugi w cieśninie Ormuz. Popatrzmy na Kanał Sueski i rolę, jaką odegrał on w czasie Kryzysu Sueskiego w 1956 i wojny sześciodniowej w 1967 roku. Globalne przewężenia, szczególnie cieśniny, to punkty zapalne, mówi uczony. Jeden z największych sporów dotyczących ludzkich migracji jest ten o pojawienie się człowieka w obu Amerykach. Tymczasem badania Dobsona, Spady i Galassi doprowadziły do pojawienia się całkowicie nowej hipotezy dotyczącej drogi migracji z Syberii do Ameryki Północnej. Odkryli oni bowiem liczne nieznane dotychczas wyspy, które mogły pomóc ludziom w przedostaniu się do Ameryki. Obecnie w Cieśninie Beringa istnieje tylko kilka wysp. Jednak podczas maksimum ostatniego zlodowacenia było ich całe mnóstwo. Zaczęły pojawiać się już 30 000lat temu, a ludzie prawdopodobnie żyli na Syberii przed 30-40 tysiącami lat. Wyspy tej zaczęły pojawiać się od zachodu na wschód, a potem zatonęły od zachodu na wschód. Pierwsze z tych wysp były na tyle blisko lądu, że mieszkańcy Syberii mogli widzieć je z brzegu. Ludzi mogło do nich ciągnąć. A gdy już się tam dostali, okazało się, że widać kolejne wyspy i kolejne. Więc ludzie przemieszczali się coraz dalej. A potem, gdy wyspy zaczęło zalewać, musieli przechodzić na następne wyspy i w końcu zostali zmuszeni do przejścia na nowy kontynent, stwierdza Dobson. Podobne drogi mogły istnieć na Morzu Śródziemnym. Przesmyk Sueski, znajdujący się pomiędzy Morzem Śródziemnym a Morzem Czerwonym był trzykrotnie dłuższy niż przed zbudowaniem Kanału Sueskiego. Suchą stopą można było wówczas przejść całą dzisiejszą Zatokę Sueską. Była to najkrótsza droga pomiędzy Morzem Czerwonym a Śródziemnym. Po ustąpieniu zlodowacenia, gdy poziom mórz i oceanów się podniósł drogę tą zastąpiła trasa zachodnia od Foul Bay do I katarakty i wzdłuż Nilu do Morza Śródziemnego. Niektóre części Foul Bay mogły być zdatne do osadnictwa nawet 7000 lat temu, zaledwie na 2300 lat przed zbudowaniem przez Egipcjan ich pierwszej wielkiej struktury, piramidy Dżosera, czytamy w artykule. Drugą taką drogą w basenie Morza Śródziemnego była trasa przez Bosfor i Dardanele. Obecnie mamy tam 300 kilometrów morza, jednak w szczycie zlodowacenia był to przeważnie suchy ląd, którego 1/3 powierzchni zajmowało głębokie jezioro znajdujące się obecnie pod Morzem Marmara. Obecnie, zdaniem badaczy, należy tam szukać śladów zatopionych siedlisk ludzkich, które mogły istnieć na zachód od obecnego ujścia Dardaneli oraz na wschodnich i zachodnich krańcach Morza Marmara. Warto też bliżej przyjrzeć się cieśninom Sycylijskiej i Messyńskiej. Podczas maksimum zlodowacenia Morze Śródziemne niemal zostało przeciętne na pół. Obie cieśniny mają obecnie około 150 kilometrów szerokości, wówczas było to nieco ponad 50 kilometrów. W tym czasie istniało tam wiele zatopionych obecnie wysp i nadbrzeżnych równin. A wszystko w okolicy znanej z wczesnego osadnictwa. Niedawno na głębokości 40 metrów znaleziono tam rzeźbiony monolit, wskazujący, że ludzie mieszkali tam przed 10 000 lat. Naukowcy przyjrzeli się też Przesmykowi Panamskiemu i stwierdzili, że w czasie maksymalnego zasięgu zlodowacenia miał on 180 kilometrów szerokości. Od tamtego czasu ocean zabrał w tym miejscu około 100 kilometrów lądu. Ludzie przemieszczający się pomiędzy kontynentami mogli przechodzić i osiedlać się w miejscach, które obecnie znajdują się pod wodą. Jeśli zaś chodzi o Gibraltar, to jego obecna szerokość, 14 kilometrów, była podobna do tej sprzed tysięcy lat, wynoszącej 10 kilometrów. Możliwość przebycia Cieśniny była więc podobna do dzisiejszej. Z wyjątkiem ewentualnej zmiany w prędkości prądów morskich. Zarówno Morze Czerwone jak i Bab al Mandab, cieśnina łączącą je z Oceanem Indyjskim, bardzo silnie reagują na zmiany poziomu oceanów. W czasie maksymalnego zlodowacenia głębokość tej cieśniny wynosiła około 7 metrów, a szerokość od 3 do 5 kilometrów, zatem znacznie mniej niż obecne 25 kilometrów. Nie miało to jednak znaczenia dla możliwości jej przebycia, z wyjątkiem różnicy w prędkości prądów. Zupełnie inaczej wyglądała sytuacja w Cieśninie Ormuz. Przed 20 000 laty wraz z całą Zatoką Perską stanowiła suchy ląd, przez który płynęły Eufrat i Tygrys. Cały transport towarów i ludzi mógł odbywać się po lądzie lub rzekami. Podobnie wyglądała Cieśnina Malakka. Obecnie na swoim wschodnim krańcu ma ona nie więcej niż 30 metrów głębokości, a w wielu miejscach pomiędzy wyspami głębokość nie przekracza 3 metrów. Przez tysiące lat po i przed maksimum zlodowacenia, był to ląd, który można było przebyć suchą stopą. Wszystkie tereny pomiędzy Azją, Borneo, Jawą i Sumatrą łączył ląd. Masa lądowa była tak rozległa, że najkrótsza droga morska pomiędzy Tajwanem a Sri Lanką liczyła sobie ponad 9000 kilometrów, dzisiaj jest to mniej niż 6000 kilometrów. Zmiany poziomu oceanów drastycznie zmieniły siedem z dziewięciu badanych przez nas globalnych przewężeń i wpłynęły na regionalne oraz globalne możliwości transportowe. Podczas maksimum zlodowacenia potencjał transportu drogą morską był znacznie mniejszy niż obecnie, co oznaczało obecność większych mas lądowych i możliwość dotarcia po lądzie do większych obszarów. Jedynie dwa globalne przewężenia – Gibraltar i Bab al Mandab – niemal się nie zmieniły. Podsumowując, Gibraltar, Cieśnina Sycylijska i Bab al Mandab były otwartymi drogami morskimi, a cieśniny Beringa, Ormuz i Malakka były suchym lądem. Z kolei Przesmyk Panamski i Przesmyk Sueski były znacznie szersze niż obecnie, czytamy w podsumowaniu pracy. « powrót do artykułu
  7. Sinice z pustyni Atakama, która jest jednym z najsuchszych obszarów na świecie, ekstrahują wodę z minerałów. Dzięki temu mogą przetrwać w tym surowym środowisku. Wyniki badań amerykańskiego zespołu ukazały się w piśmie PNAS. Naukowcy od dawna podejrzewali, że mikroorganizmy mogą umieć ekstrahować wodę z minerałów, ale po raz pierwszy udało się to zademonstrować - podkreśla prof. Jocelyne DiRuggiero z Uniwersytetu Johnsa Hopkinsa. Ekipa z Uniwersytetu Johnsa Hopkinsa oraz Uniwersytetu Kalifornijskiego w Irvine oraz Riverside skupiła się na sinicach Chroococcidiopsis, które występują na pustyniach na całym świecie, i na gipsie - uwodnionym siarczanie wapnia. Kolonizujące mikroorganizmy bytują pod cienką warstwą minerału, która chroni je przed skrajnymi temperaturami panującymi na pustyni Atakama, a także przed silnym wiatrem i palącym słońcem. DiRuggiero wybrała się na pustynię, by pobrać próbki gipsu. Zabrała je do laboratorium, pocięła na mniejsze fragmenty, w których można było znaleźć mikroorganizmy i przesłała je do analizy materiałowej do prof. Davida Kisailusa. Okazało się, że sinice ekstrahują wodę i wywołują przemianę fazową gipsu do anhydrytu (bezwodnego siarczanu wapnia). W kolejnym etapie badań Amerykanie pozwolili sinicom kolonizować próbki gipsu 1) w obecności wody (co miało oddawać środowisko o dużej wilgotności) i 2) w sytuacji jej braku. Stwierdzono, że w obecności wilgoci gips nie ulegał przemianie do anhydrytu. Sinice nie potrzebowały wody z minerału, bo pozyskiwały ją z otoczenia. Kiedy jednak są poddawane stresowi, nie mają wyboru i muszą ekstrahować wodę z gipsu, wywołując przemianę fazową minerału - opowiada Kisailus. Za pomocą metod mikroskopowo-spektroskopowych akademicy ustalili, że sinice wwiercają się w minerał jak mali górnicy; tworzy się biofilm zawierający kwasy organiczne. Wei Huang zauważył, że sinice wykorzystywały kwasy, by penetrować minerał w określonych kierunkach krystalograficznych - tylko wzdłuż płaszczyzn, gdzie łatwiej dostać się do wody. Czy to oznacza, że na Marsie [który przypomina pustynię Atakama] istnieje życie? Nie umiemy powiedzieć, ale uzyskane wyniki dają nam pojęcie, jak sprytne mogą być mikroorganizmy - podkreśla DiRuggiero. « powrót do artykułu
  8. Po raz pierwszy udokumentowano, że podczas deszczu koale zlizują wodę spływającą po pniu drzewa. Choć są zwierzętami ikonami, nadal mają swoje tajemnice. Zastanawiano się, na przykład, skąd biorą wodę; czy pozyskują ją w całości z pożywienia, czy też co pewien czas schodzą z drzewa, żeby się napić. W artykule opublikowanym w piśmie Ethology opisano, jak Phascolarctos cinereus spijają wodę spływającą po gładkich pniach drzew podczas lub krótko po deszczu. Przez długi czas myśleliśmy, że koale nie muszą zbyt dużo pić, bo większość potrzebnej do przeżycia wody zdobywają z liśćmi eukaliptusa. Teraz jednak zauważyliśmy, że zlizują wodę z pni. To zdecydowanie zmienia nasz ogląd sytuacji - opowiada dr Valentina Mella z Uniwersytetu w Sydney. Potrzebne są dalsze badania, które pokażą, kiedy i dlaczego koale z różnych regionów potrzebują dostępu do wolnej wody - takiej, która nie występuje w liściach, ale jako ciecz, czyli np. w postaci deszczówki czy wody w rzece lub bajorku - i w których populacjach konieczna byłaby suplementacja. Ten typ zachowania - zlizywanie wody z pni - oznacza, że koale muszą doświadczać regularnych opadów i że [w dobie zmiany klimatu] mogą mieć problemy [...] - podkreśla dr Mella. Wiemy, że drzewa zaspokajają wszystkie podstawowe potrzeby koali - zapewniają im jedzenie, schronienie i pozwalają odpocząć. To badanie pokazuje, że dzięki drzewom P. cinereus mają również dostęp do wolnej wody. [Jak widać], drzewa są konieczne dla ochrony tego gatunku. Każdego dnia koale zjadają ok. 510 g świeżych liści eukaliptusa. Zawarta w nich wilgoć miała odpowiadać ~3/4 dziennego spożycia wody (zarówno latem, jak i zimą). Koale przystosowały się do australijskiego klimatu; chodzi m.in. o zdolność do zagęszczania moczu, a także o ograniczoną utratę wody podczas oddychania i przez skórę (w porównaniu do innych ssaków zbliżonej wielkości). W niewoli obserwowano pijące koale, ale zachowanie to uznawano za nietypowe i przypisywano ciężkiemu stresowi cieplnemu albo chorobie. Ludzie opowiadali też o dzikich osobnikach, które latem przy temperaturach przekraczających 40°C piły z wodopojów. Wspomina się też o P. cinereus, które podczas suszy lub po pożarach zbliżały się do ludzi, by uzyskać dostęp do wolnej wody (w butelkach, ogrodach czy basenach). Zachowanie to także uznawano za nietypowe. W ramach najnowszego studium dr Mella polegała na obserwacjach poczynionych przez naukowców amatorów oraz niezależnych ekologów w latach 2006-19 w You Yangs Regional Park w stanie Wiktoria oraz w Liverpool Plains w Nowej Południowej Walii. Zaobserwowano 44 przypadki, kiedy koale zlizywały wodę z pnia w czasie lub bezpośrednio po deszczu w You Yangs Regional Park. Pozostałe 2 przypadki stwierdzono między Gunnedah a Mullaley w Liverpool Plains. W jednym przypadku była to samica z młodym, która piła bez przeszkód przez 15 min, w drugim - dorosły samiec, który spijał wodę w stałym tempie aż przez 34 min. Dotąd przeoczono to zachowanie [...], ponieważ koale są zwierzętami nocnymi, a dodatkowo rzadko obserwowano je podczas ulewnego deszczu. Nasze spostrzeżenia są zapewne tylko ułamkiem wszystkich przypadków picia, jakie normalnie mają miejsce na drzewach podczas opadów. Koale widywano podczas lizania gałęzi i pni w różnych warunkach, także wtedy, gdy woda była dostępna w zbiornikach. To sugeruje, że nie jest to zachowanie będące wynikiem stresu cieplnego i że zapewne wchodzi ono w skład ich naturalnego repertuaru behawioralnego.   « powrót do artykułu
  9. Badacze z Uniwersytetu Johnsa Hopkinsa odkryli, że na każdy 1 punkt procentowy zwiększenia powierzchni zabetonowanych – jak drogi, parkingi, budynki i inna infrastruktura – przypada 3,3-procentowe zwiększenie intensywności powodzi. Oznacza to, że jeśli w basenie danej rzeki zabetonowaną powierzchnię zwiększymy o 10%, to średnio przepływ wody w czasie zwiększy się tam o 33%. W ostatnim czasie doszło do znaczne zwiększenia intensywności powodzi w takich miastach jak Houston czy Ellicott City. Chcieliśmy lepiej zrozumieć, jak urbanizacja wpływa na zwiększenie przepływu wód powodziowych, mówi Annalise Blum z Johns Hopkins University i American Association for the Advancement of Science. Poprzednie badania tego typu wykorzystywały mniejsze zestawy danych, dotyczących pojedynczych cieków wodnych lub niewielkich grup cieków w określonym przedziale czasowym. Nie można było ich przełożyć na skalę całego kraju. Ponadto trudno było na ich podstawie wyizolować przyczynę i skutek, gdyż nie kontrolowano w nich efektywnie wpływu takich czynników jak klimat, zapory wodne czy sposób wykorzystywania terenu. Trudno było więc podać konkretne wartości pokazujące, w jaki sposób nieprzepuszczalna powierzchnia wpływa na powodzie. Blum we współpracy z profesorem Paulem Ferraro wykorzystali modele matematyczne, które rzadko są używane do badania powodzi. W badaniach środowiska naturalnego trudno jest oddzielić przyczynę od skutku. Na szczęście w ciągu ostatnich dekad na polu ekonomii i biostatystyki opracowano metody, które pozwalają na ich odróżnienie. Zastosowaliśmy te metody do badań hydrologicznych, w nadziei, że przyczyni się to do postępu w tej dziedzinie wiedzy i da planistom oraz polityko nowe narzędzia pomocne podczas rozwoju miast, stwierdza Ferrero. Naukowcy wykorzystali dane US Geological Survey z okresu 1974–2012, które dotyczyły ponad 2000 cieków wodnych. Dane zawierały informacje o przepływie wody. Informacje takie poddano analizie, w której uwzględniono też zmiany w obszarze powierzchni nieprzepuszczalnych w basenie każdego z cieków. Z analizy wynika, że wielkość powodzi, rozumiana jako maksymalny przepływ wody, zwiększa się o 3,3 punktu procentowego dla każdego wzrostu obszaru powierzchni nieprzepuszczalnych o 1 pp. "W związku z olbrzymią coroczną zmiennością przepływu wody trudno jest wydzielić skutki urbanizacji. Nam się to udało dzięki zastosowaniu olbrzymich zestawów danych zbieranych zarówno w czasie jak i w przestrzeni", wyjaśnia Blum. « powrót do artykułu
  10. Przed 3,2 miliardami lat Ziemia mogła być wodnym światem. Tak przynajmniej wynika z badań, których wyniki opublikowano w Nature Geoscience. Badania wykonane przez naukowców z University of Colorado Boulder pomogą lepiej zrozumieć, w jaki sposób i gdzie na Ziemi pojawiły się po raz pierwszy organizmy jednokomórkowe, uważa profesor Boswell Wing. Wing i Benjamin Johnson prowadzili badania skał w miejscu znanym jako Panorama w północno-zachodniej części australijskiego Outbacku. Dzisiaj to porośnięte krzakami wzgórza poprzecinane dolinami wyschniętych rzek. To dziwne miejsce, mówi Johnson. Jednak można tam badać liczące 3,2 miliarda lat skały, które w przeszłości stanowiły dno oceanu. W regionie Panorama geolodzy mieli wyjątkową okazję zbadania składu chemicznego wody oceanicznej sprzed miliardów lat. Oczywiście samej wody tam nie ma, ale są skały, które wchodziły w interakcje z tą wodą i noszą ślady tej interakcji, dodaje uczony. To tak, jakby analizować ziarna kawy, by dowiedzieć się czegoś o wodzie, z którą miały styczność, wyjaśnia. Naukowców szczególnie interesowały izotopy tlenu. Cięższy tlen-18 i lżejszy tlen-16. Uczeni odkryli, że przed 3,2 miliardami lat woda morska musiała mieć inny skład niż obecnie. Było w niej minimalnie więcej tlenu-18. To niewielka różnica, ale bardzo znacząca dla naszego zrozumienia przeszłości Ziemi. Wing wyjaśnia, że obecnie lądy pokryte są glebami bogatymi w iły, które niczym odkurzacz wyciągają z wody 18O. Naukowcy wysunęli więc hipotezę, która mówi, że najbardziej prawdopodobnym wyjaśnieniem nadmiaru tlenu-18 w dawnym oceanie jest przyjęcie, że wówczas nie było wielkich pokrytych bogatymi glebami mas lądowych, które wyciągałyby izotop z oceanu. Co, oczywiście, nie oznacza, że w ogóle nie było suchego lądu. Mogły istnieć niewielkie mikrokontynenty. Uważamy jednak, że nie istniały wielkie formacje na globalną skalę, z jakimi mamy do czynienia obecnie, mówi Wing. To oczywiście rodzi pytanie, kiedy rozpoczęły się ruchy tektoniczne, które ostatecznie utworzyły Ziemię, jaką znamy obecnie. Wing i Johnson nie potrafią na nie odpowiedzieć. Już jednak planują badania młodszych formacji skalnych rozsianych od Arizony po RPA. Spróbują zidentyfikować moment, w którym na Ziemi pojawiły się pierwsze duże obszary suchego lądu. « powrót do artykułu
  11. Od lat słyszymy, że ocieplenie klimatu czy topnienie lodowców zagrażają źródłom wody od których uzależniony jest byt miliardów ludzi. Indyjskie Narodowe Biuro Statystyki Kryminalnej (NCRB) poinformowało właśnie o znacznym wzroście liczby przestępstw związanych z konfliktami o wodę. Dochodzi do sporów, drobnych przestępstw, fizycznych starć i morderstw. W roku 2018 liczba takich przestępstw była niemal 2-krotnie większa niż rok wcześniej. Najwięcej sporów o wodę miało miejsce w stanach Maharashtra i Bihar, które w ostatnich latach zmagają się z ciężką suszą. Z najnowszego raportu NCRB wynika, że w 2018 roku zanotowano 838 przestępstw tego typu. Rok wcześniej były to 432 przestępstwa. W sporach o wodę życie straciły 93 osoby. Eksperci mówią, że spory toczą się pomiędzy społecznościami, wsiami i kastami. Gdy zmniejsza się dostępność wody, zaostrzają się konflikty, obejmują one całe społeczności, spierają się miasta z wsiami. Sytuacja w niektórych stanach była bardzo zła w 2018 roku, mówi Himanshu Thakkar, koordynator South Asia Network on Dams, Rivers and People. Częścią problemu jest złe zarządzanie zasobami. Indie maksymalnie eksploatują zasoby wód podziemnych. W kraju tym spod ziemi pobiera się tyle wody, co łącznie w USA i Chinach. Złe zarządzanie powoduje, że poziom wód gruntowych błyskawicznie spada. W 2018 roku opublikowano raport, z którego wynika, że jeśli nic się nie zmieni, to 21 miast, w tym Delhi, Bengaluru, Chennai i Hyderabad już w 2020 roku wyczerpie całe zapasy wód podziemnych, co bezpośrednio dotknie 100 milionów ludzi. W tym samym raporcie czytamy, że do roku 2030 zapotrzebowanie Indii na wodę będzie 2-krotnie większe niż zapewniają jej dostępne źródła. Setki milionów ludzi będą miały problem z dostępem do wody, a jej brak może przełożyć się na stratę 6% PKB. Z danych Banku Światowego dowiadujemy się, że dochodzi do szybkiego spadku odnawialnych zasobów wody pitnej w przeliczeniu na mieszkańca Ziemi. Jeszcze w 1960 roku na każdego człowieka przypadało 13 364 metry sześcienne odnawialnych zasobów wody pitnej. W roku 2014 było to już 5 932 m3. UNESCO szacuje, że w rozwijających się krajach Azji, Afryki i Ameryki Południowej przeciętne zużycie wody na głowę mieszkańca wynosi 50–100 litrów dziennie. W krajach rozwiniętych jest to około 10-krotnie więcej. Krajami o największych odnawialnych zasobach wody pitnej w przeliczeniu na mieszkańca są (dane dla roku 2017): Islandia (507 463 m3), Gujana (348 374 m3), Surinam (175 719 m3), Kongo (157 148 m3), Papua Nowa Gwinea (97 079 m3), Bhutan (96 582 m3), Gabon (81 975 m3), Kanada (79 238 m3), Norwegia (74 081 m3) oraz Wyspy Salomona (79 123 m3). W Indiach jest to 1427 m3. Polska znajduje się dopiero na 133. pozycji na świecie, a nasze zasoby na mieszkańca wynoszą 1585 m3. Pocieszający jest fakt, że wzrosły one z 1579 m3 w roku 2012 i jesteśmy jednym z niewielu krajów, gdzie zanotowano wzrost tych zasobów. Jednak w Europie mniej wody do dyspozycji mają tylko mieszkańcy Czech, Danii i Cypru. « powrót do artykułu
  12. Przedstawiciele Biebrzańskiego Parku Narodowego alarmują, że wysychają tamtejsze bagna i mokradła. Brakuje milionów metrów sześciennych wody, mówią. To skutek zmian klimatycznych. Specjaliści obawiają się, że Biebrzę mogą opuścić ptaki. Brak opadów i coraz wyższa temperatura powodują, że w polskich rzekach jest coraz mniej wody. Grozi nam susza. Spadki poziomu wód można zaobserwować też w rzekach na nizinach. Mariusz Siłakowski, wicedyrektor Biebrzańskiego Parku Narodowego mówi, że problemem są nierównomierne opady. Raz są ulewne deszcze, potem bywają bardzo długie sezony bez wody, czy śniegu, co teraz widzimy, powiedział dziennikarzom TVN. W gruncie jest obecnie nawet o 50 cm wody mniej niż w latach poprzednich. Jeśli sytuacja się nie zmieni, to bagna mogą przestać być bagnami. Biorąc pod uwagę wielkość obszaru, brakuje nam milionów metrów sześciennych wody, które normalnie tutaj zalegały i powodowały, że mieliśmy do czynienia rzeczywiście z bagnami, wyjaśnia Siłakowski. Sytuacja jest coraz poważniejsza. Od 2-3 lat krajobraz Parku gwałtownie się zmienia. Nie ma już wielkich wiosennych rozlewisk. Jeśli taka sytuacja będzie się powtarzała, zmieni się szata roślinna, a za nią pójdą zmiany w świecie zwierząt. Mogą znikać torfowiska, w których miejsce pojawią się łaki. Znad Biebrzy odlecą ptaki. Przede wszystkim siewkowate, jak bataliony, rydzyki, dublety i inne, które lubią warunki wodne. Oprócz ptaków brodzących charakterystycznym zwierzęciem Parku jest łoś, który jedynie tutaj przetrwał II wojnę światową. Park to dom dla wilków, bielika, orła przedniego i wielu innych objętych ochroną gatunków zwierząt i roślin. « powrót do artykułu
  13. Państwa wykorzystujące elektrownie atomowe są przygotowane na długotrwałe składowanie odpadów. Jedną z najważniejszych zasad bezpiecznego składowania takich odpadów jest niedopuszczenie do kontaktu z wodą. Jednak, jak się okazuje, współczesne metody przechowywania mogą... ułatwiać skażenie, jeśli już dojdzie do kontaktu z wodą. Wiadomo, że odpady z elektrowni atomowych trzeba przechowywać przez setki lat. Jeśli w tym czasie dostanie się do nich woda, istnieje ryzyko skażenia wód gruntowych radioaktywnymi izotopami i rozprzestrzenienie zanieczyszczeń daleko poza miejsce składowania odpadów. Aby temu zapobiec odpady zatapia się w obojętnym chemicznie nierozpuszczalnym szkle, a samo szkło umieszcza się w beczkach ze stali nierdzewnej, które izolują całość od otoczenia. Testy wykazały, że każde z tych rozwiązań świetnie się sprawdza. Przynajmniej w teorii. Grupa naukowców z Pacific Northwest National Laboratory, Pennsylvania State University, Ohio State University, Rensselaer Polytechnic Institute oraz francuskiej Komisji Energii Atomowej i Alternatywnych Źródeł Energii, stwierdziła, że jeśli woda w jakiś sposób dostanie się do beczki, to na styk stali i szkła będzie działał jak katalizator przyspieszający degradację obu materiałów i uwalnianie odpadów do środowiska. Naukowcy skupili się na zbadaniu scenariusza, w którym woda przedostaje się do beczek. Takiej sytuacji nie można wykluczyć. Nie wiemy bowiem, jak w ciągu setek lat zmieni się otoczenie, w którym przechowywane są odpady. Nie potrafimy przewidzieć, jak zmiany we wzorcach odpadów wpłyną na krążenie wód gruntowych. Zatem nawet tam, gdzie obecnie jest sucho i gdzie składuje się z beczki z odpadami, w przyszłości może pojawić się woda. Zatem, jak stwierdzili specjaliści, należy tak przechowywać odpady z elektrowni atomowych, by pozostawały one bezpieczne nawet wówczas, gdy zostaną narażone na kontakt z wodą. Dotychczasowe testy wykazywały, że zarówno stal nierdzewna jak i szkło są długoterminowo stabilne przy kontakcie z wodą. Jednak teraz eksperci testowali, co się stanie, jeśli szkło i stal mają ze sobą kontakt, a pomiędzy nie dostanie się woda. Okazało się, że na styku obu materiałów zachodzą inne reakcje chemiczne niż na powierzchni każdego z nich z osobna. Przy długoterminowym kontakcie z wodą tak czy inaczej dochodzi do rozpuszczenia materiału. Na styku stali i szkła lokalna koncentracja takich rozpuszczonych materiałów może być wysoka, co tworzy nowe środowisko chemiczne, przyspieszając korozję. Materiały zaczynają ze sobą reagować w znacznie szybszym tempie niż ma to miejsce normalnie. Pojawia się zjawisko korozji szczelinowej, podczas której zwiększa się lokalna kwasowość, co sprzyja przyspieszeniu korozji stali. Naukowcy postanowili sprawdzić swoje przewidywania w praktyce. Zetknęli ze sobą szkło i stal nierdzewną, dodali do tego roztwór chlorku sodu. Całość była przez 30 dni trzymana w temperaturze 90 stopni Celsjusza. Później oba materiały zbadano za pomocą mikroskopu. Okazało się, że z części szkła całkowicie zostały wypłukane metale. To typowe zjawisko wymywania metali ze szkła w kwaśnym środowisku. W pobliżu miejsca prowadzenia eksperymentu zanotowano znaczące zwiększenie ilości żelaza, co pokazuje, że również stal zaczęła się rozpuszczać. Naukowcy uważają, że dodatkowo reaktywność, a co za tym idzie degradacja materiałów, jest zwiększana przez chrom, który w dużych ilościach (m.in. 11%) wchodzi w skład stali nierdzewnej. Badania samej stali wykazały, że w wyniku reakcji pokryła się też warstwą aluminium, sodu i innych metali. To wskazuje, że część rozpuszczonego materiału osadziła się na stali. Taka warstwa może z czasem zmniejszyć reaktywność i zmniejszyć tempo korozji stali, jednak potrzebne są dłużej trwające eksperymenty, by to potwierdzić. « powrót do artykułu
  14. Pierwszą na świecie protonową diodę LED, która działa dzięki emisji światła w środowisku wodnym stworzył kierowany przez prof. Jerzego Langera zespół naukowców z Wydziału Chemii Uniwersytetu im. Adama Mickiewicza w Poznaniu – poinformowało PAP biuro prasowe uczelni. Trwałe i energooszczędne diody LED znalazły powszechne zastosowanie jako źródła światła. Znane dotychczas diody świecące są zbudowane z półprzewodników i emitują promieniowanie w zakresie podczerwieni, światła widzialnego czy ultrafioletu w wyniku przepływu elektronów. Natomiast dioda protonowa, którą opracował zespół poznańskich naukowców świeci dzięki przepływowi protonów i działa w środowisku wodnym. Możliwość konstrukcji protonowej diody LED wynika z naszych wcześniejszych badań nad przewodnictwem elektrycznym układów protonowych, w tym z protonowym złączem p-n – mówi prof. Jerzy Langer.  Protonowa dioda LED jest pełnym analogiem tradycyjnej diody elektronowej ze złączem p-n, gdzie rolę elektronów pełnią protony H+, a "dziur" grupy hydroksylowe –OH. Materiałem aktywnym, w którym zachodzi proces rekombinacji nośników ładunku (H+ i –OH) oraz emisja światła jest woda - półprzewodnik protonowy - tłumaczy. Jak mówi, mechaniczną stabilność układu zapewniają polimery, które jednocześnie są nośnikami grup funkcyjnych (kwasowych i zasadowych), co pozwala na utworzenie protonowego złącza p-n na granicy strefy kwasowej i zasadowej. Przyłożenie napięcia w kierunku przewodzenia złącza ("plus" od strony kwasowej) powoduje przepływ prądu protonowego i emisję światła z obszaru złącza p-n. Nośniki ładunku H+ i –OH generowane są z cząsteczek wody w reakcji elektrolitycznej na elektrodach metalowych (Pt), poza obszarem złącza p-n - mówi. Prace prowadzone były częściowo w Centrum Zaawansowanych Technologii UAM. Działanie protonowej diody LED po raz pierwszy opisane zostało na stronie. « powrót do artykułu
  15. Przywódcy Aborygenów w Południowej Australii wydali polecenie zabicia 10 000 dzikich wielbłądów. Zwierzęta mają zginąć, gdyż... wypijają zbyt dużo wody. Dzisiaj rozpocznie się wielkie polowanie z powietrza. Potrwa ono 5 dni. Pojawiły się głosy, by zabijanie zwierząt uznać za działanie na rzecz ograniczenia zmian klimatycznych i by zapłacił za to budżet państwa. Likwiduje się w ten sposób zwierzęta emitujące metan. Decyzję o rzezi podjęli przywódcy Anangu Pitjantjatjara Yankunytjatjara Lands (APY). Sprzeciwiali się jej chrześcijańscy Aborygeni, dla których wielbłądy są święte, gdy mają związek z Bożym Narodzeniem. To na nich bowiem przybyli królowie, którzy odwiedzili Jezusa. Działania APY będą wspierane przez 10 Desert Project, program finansowany m.in. przez BHP Billiton Foundation oraz przez utrzymywaną z funduszy federalnych organizację Alinytjara Wilurara Natural Resources Management Board. Stanowy Departement Środowiska i Zasobów Wodnych zapewni czteromiejscowe śmigłowce ze snajperami. W niedostępnych regionach zabite zwierzęta będą pozostawiane na miejscu, jednak tam, gdzie to możliwe, ich ciała mają być palone lub grzebane. W nawiedzonej przez suszę Australii wielbłądy zaczęły stanowić poważny problem. Mieszkańcy prowincji skarżą się, że poszukujące wody zwierzęta niszczą płoty, chodzą wokół domów, próbują wypijać wodę z klimatyzacji. W 2010 roku w Australii żyło ponad milion dzikich wielbłądów. Bez działań kontrolnych ich liczba podwajała by się co 9 lat. Każde z tych zwierząt emituje rocznie tyle metanu, że jest to odpowiednik tony CO2. Milion dzikich wielbłądów, z których każdy rocznie emituje tonę CO2 to tak, jakby po drogach poruszało się dodatkowych 400 000 samochodów. Stąd też wezwania, by władze federalne płaciły za pozbywanie się wielbłądów. Nie wiadomo jednak, czy tak się stanie, gdyż emisja powodowana przez dzikie zwierzęta nie jest liczona do budżetu emisji poszczególnych krajów i do oceny stopnia redukcji emisji. « powrót do artykułu
  16. Ledwie 2 miesiące temu informowaliśmy o rekordowej powodzi w Wenecji. Tym razem miasto ma inny problem – wyjątkowo niski stan wód. Tak niski, że po wielu kanałach nie da się pływać. W pewnym momencie poziom wody był nawet 45 centymetrów poniżej poziomu morza. Niski poziom wody zdarza się w Wenecji, jednak jest to zjawisko wyjątkowe. To jednak poważny problem dla miasta. Już po listopadowej powodzi rezerwacje w hotelach spadły o kilkadziesiąt punktów procentowych. Wyschnięcie kanałów i krążące w internecie zdjęcia słynnych gondoli spoczywających w mule z pewnością nie pomogą w ponownym przyciągnięciu turystów. Powódź z listopada przyniosła olbrzymie straty. Arcybiskup Wenecji, Francesco Moraglia, poinformował, że w Bazylice Św. Marka doszło do zniszczeń w dolnej części. Kościół został bowiem zalany. Zdarzyło się to dopiero po raz 6. od 1200 lat. Powódź zabiła 2 osoby i zalała 80% miasta. Straty oceniono na ponad miliard euro. Teraz mamy do czynienia z wręcz przeciwną sytuacją. Na szczęście obecnie brak doniesień o jakichkolwiek stratach czy zniszczeniach. « powrót do artykułu
  17. Pomiędzy latem 2015 a wiosną 2016 roku między Alaską a Kalifornią ocean wyrzucił na brzeg około 62 000 martwych nurzyków zwyczajnych. Większość z nich wykazywała oznaki śmierci głodowej. Gdy naukowcy zaczęli temu przyglądać i ekstrapolowali liczbę martwych ptaków na cały obszar, stwierdzili, że we wspomnianym okresie musiało zginąć około miliona ptaków. Rodziło się więc pytanie, w jaki sposób milion ptaków mogło zginąć mniej więcej w tym samym czasie na przestrzeni 6000 kilometrów. I co było przyczyną ich śmierci, mówi John Piatt z US Geological Survey. Nurzyki ginęły już masowo w przeszłości, ale zjawisko to obserwowano tylko lokalnie i na mniejszą skalę. Tymczasem to, co zauważono w latach 2015-2016 było tym bardziej niezwykłe, że ptaki te są dobrze przystosowane do swojego środowiska. Potrafią głęboko nurkować by zdobywać ryby, będące głównym źródłem ich pożywienia. Po kilku latach badań ptaków, temperatury wody i danych z połowów Piatt i jego zespół doszli do wniosku, że nurzyki zabiła... wysoka temperatura wody i wywołana nią konkurencja ze strony innych drapieżników. Pomiędzy końcem roku 2013 a rokiem 2016 u zachodnich wybrzeży Ameryki Północnej woda miała rekordowo wysoką temperaturę. W takiej wodzie wiele zmiennocieplnych drapieżników, jak na przykład dorsz, muszą jeść więcej, by utrzymać prawidłową temperaturę ciała. Dorsze mają jednak nad nurzykami przewagę. Ptaki muszą bowiem zjeść każdego dnia pokarm o wadze odpowiadającej połowy masy ich ciała i giną po 3–5 dniach bez pożywienia. Tymczasem dorszowi wystarczy, że w ciągu dnia zje pożywienie o masie 1% masy jego ciała. Dorszom więc łatwiej się pożywić, ale gdy zjadają więcej ryb, mniej i pozostaje dla nurzyków, które są bardziej wrażliwe na niedostatki pokarmu. To jedyne logiczne wyjaśnienie śmierci tak wielu nurzyków na tak dużym obszarze w tak krótkim okresie. Tym bardziej, że Piatt wykluczył, iż śmierć ptaków spowodowały zakwity toksycznych glonów. Badania padłych ptaków wykazały bowiem, że ilość toksyn w ich organizmach jest niższa niż podczas wcześniejszych pomorów wywoływanych właśnie przez glony. Problem może stanowić to, że fale upałów i obszary gorącej wody mają pojawiać się coraz częściej. Już zresztą pojawiły się informacje wskazujące, na ponowne formowanie się gorącego bloba u zachodnich wybrzeży Ameryki Północnej. Ma on jednak znacznie mniejszy rozmiar, więc jego wpływ będzie też mniejszy. Piatt mówi, że nurzyki nie są zagrożone wyginięciem, ale populacja będzie odradzała się przez dziesięciolecia, gdyż proces ten będą spowalniały kolejne wydarzenia tego typu. « powrót do artykułu
  18. Podczas burz w południowo-zachodnich USA niektóre grzechotniki spijają krople deszczu z łusek na swoim grzbiecie. To niezwykłe zachowanie pomaga im przetrwać w pustynnym środowisku, gdzie rzadko pada. Ostatnio biolodzy ustalili, w jaki sposób nanotekstura łusek węży pomaga w wykorzystaniu własnego ciała do chwytania deszczówki. Autorzy artykułu z pisma ACS Omega podkreślają, że widuje się grzechotniki teksaskie (Crotalus atrox) z Arizony i innych części Amerykańskiego Południowego Zachodu, które wychodzą ze swoich kryjówek, by "łapać" deszcz, śnieg z deszczem i czysty śnieg. Wąż spłaszcza swoje ciało i często tworzy ciasno zwiniętą spiralę; prawdopodobnie, by zmaksymalizować powierzchnię do zbierania opadu. Gdy krople łączą się na grzbiecie, grzechotnik wysysa wodę z łusek. Gordon Schuett, Konrad Rykaczewski i inni postanowili się bliżej przyjrzeć łuskom, by stwierdzić, co sprawia, że grzechotniki tak dobrze radzą sobie z pozyskiwaniem opadu. Naukowcy porównali zwilżalność powierzchni i nanoteksturę łusek grzechotnika teksaskiego i 2 innych pustynnych węży, które nie zbierają deszczówki: Pituophis catenifer i Lampropeltis splendida. Zraszając węże wodą, zespół odkrył, że o ile na ciele grzechotnika krople zlewały się i przywierały do łusek, o tyle u pozostałych 2 gatunków tworzyły płytkie "bajorka", które często spływały z ciała zwierzęcia. Badanie łusek za pomocą skaningowego mikroskopu elektronowego pokazało, że tylko u C. atrox występują nanokanały tworzące sieć przypominającą labirynt. Grzbietowe łuski grzechotnika wspomagają zbieranie wody, zapewniając lepką, hydrofobową powierzchnię, która "przytrzymuje" krople.   « powrót do artykułu
  19. Potrząsanie głową w celu pozbycia się wody, która nalała się do ucha, może prowadzić do... uszkodzenia mózgu. Do takich wniosków doszli naukowcy z Cornell University i Virginia Tech, którzy zbadali przyspieszenie potrzebne do wyrzucenia wody z kanału słuchowego. O wynikach swoich badań poinformowali podczas odbywającego się właśnie 72. Dorocznego Spotkania Wydziału Dynamiki Płynów Amerykańskiego Towarzystwa Fizycznego. W opublikowanym abstrakcie pracy czytamy: jeden z końców zamkniętej szklanej hydrofobowej tuby o różnej średnicy został użyty jako uproszczony model kanału słuchowego. Tuba została umieszczona na strunie i symulowaliśmy potrząsanie głowy. Badania wykazały, że krytyczne przyspieszenie potrzebne do pozbycia się wody zależy w dużej mierze od ilości wody i jej pozycji w kanale. Stwierdziliśmy, że krytyczne przyspieszenie dochodzi do 10g, co może spowodować poważne uszkodzenie ludzkiego mózgu. Krytyczne przyspieszenie jest znacznie wyższe w tubach o małym przekroju, co oznacza, że pozbycie się wody z ucha poprzez potrząsanie jest trudniejsze dla dzieci niż dla dorosłych. To właśnie w przypadku dzieci do wytrząśnięcia wody potrzebne jest przyspieszenie nawet 10-krotnie przekraczające przyspieszenie ziemskie. Na potrzeby badań naukowcy wykorzystali druk 3D za pomocą którego stworzyli model ludzkiego kanału słuchowego opierając się przy tym na danych z tomografu komputerowego. Szklany model został pokryty od wewnątrz krzemowodorem, który dobrze symuluje stopień hydrofobowości jaki panuje wewnątrz ludzkiego ucha. Z naszych eksperymentów oraz modelu teoretycznego wynika, że jednym z czynników decydujących o wypłynięciu płynu z ucha jest jego napięcie powierzchniowe, mówi Baskota. Zamiast więc potrząsać głową można do ucha wprowadzić coś, co obniży napięcie powierzchniowe. Prawdopodobnie wpuszczenie kilku kropli płynu u niższym napięciu powierzchniowym niż woda, takiego jak alkohol czy ocet, pozwoli zmniejszyć napięcie powierzchniowe i spowoduje wypłynięcie wody z ucha, stwierdził Baskota. « powrót do artykułu
  20. NASA planuje powrót człowieka na Księżyc, który ma stać się ważnym etapem załogowej misji na Marsa. Wciąż nierozwiązane pozostaje jednak pytanie, gdzie na Czerwonej Planecie powinni lądować ludzie. W podjęciu decyzji może pomóc najnowszy artykuł z Geophysical Research Letters, którego autorzy dostarczyli mapę zamarzniętej wody na Marsie znajdującej się nawet 2,5 centymetra pod powierzchnią planety. Dostępność wody będzie kluczowym elementem dla wybrania miejsca lądowania misji załogowej. Posłuży ona astronautom zarówno do picia, jak i do wyprodukowania paliwa. NASA chce bowiem tak przygotować misję, by po wylądowaniu możliwe było korzystanie z zasobów planety. W ich badaniu biorą udział satelity okrążające Marsa. Sylvain Piqueux z Jet Propulsion Laboratory, autor wspomnianego na wstępie artykułu, wykorzystał dane z Mars Reconnaissance Orbitera (MRO) i Mars Odyssey, by znaleźć wodę, która jest łatwo dostępna. Nie potrzebujesz koparki by dostać się do tej wody. Wystarczy szpadel. Cały czas zbieramy dane na temat pokrywy lodowej Marsa, szukając najlepszych miejsc do lądowania misji załogowej, mówi Piqueux. Na Marsie woda w stanie ciekłym nie może się utrzymać. Niskie ciśnienie powoduje, że lód wystawiony bezpośrednio na oddziaływanie czynników zewnętrznych szybko odparowuje. Lód na Czerwonej Planecie występuje na średnich wysokościach, w pobliżu biegunów. Piqueux postanowił poszukać takich złóż, do których astronauci mogą łatwo się dostać. Wykorzystał w tym celu instrumenty badające temperatury i połączył te dane z ze zdjęciami kraterów po uderzeniach meteorytów oraz danymi z radaru wskazującymi na obecność lodu. Dzięki temu udało mu się określić głębokość, na jakiej występuje lód. Niewiele miejsc na Marsie nadaje się do lądowania misji załogowej. Dlatego też naukowcy skupiają się na średnich szerokościach półkuli północnej i południowej, gdzie jest znacznie cieplej niż na biegunach. Preferowana jest półkula północna, której tereny są położone niżej, zatem mamy tam grubszą warstwę atmosfery do wyhamowania lądującego pojazdu. Naukowców szczególnie interesuje równina Arkadia na półkuli północnej. Na stworzonej przez Piqueuxa mapie widzimy kilka kolorów. Te chłodne, niebieski i purpurowy, wskazują na lód znajdujący się nie więcej niż 30 centymetrów pod powierzchnią. Kolory ciepłe to lód ukryty głębiej, co najmniej 60 centymetrów pod powierzchnią. Z kolei kolor czarny to miejsce, gdzie zdecydowanie nic nie powinno lądować. Pojazd mógłby bowiem zatonąć tam w pyle. Piqueux chce teraz rozpocząć długoterminowe obserwacje marsjańskiego lodu. Uczony ma zamar sprawdzić, jak jego ilość i dostępność zmienia się wraz z porami roku. Im dłużej badamy lód, tym więcej się dowiadujemy. Całoroczne obserwacje prowadzone przez różne pojazdy przez wiele lat pozwolą odkryć nam jego nowe zasoby, mówi Leslie Tamppari, odpowiedzialna za stronę naukową misji MRO. « powrót do artykułu
  21. Życie ponad miliarda osób w Azji uzależnione jest od monsunów, które są głównym źródłem wody. Azjatycki monsun jest ściśle powiązany z globalnym przepływem powietrza z tropików. Tymczasem naukowcy z Lawrence Berkeley National Laboratory (Berkeley Lab) informuję, że w miarę ocieplania się klimatu dojdzie do zmiany rozkładu monsunów i w niektórych miejscach dostawy wody będą mniejsze. Badacze z Berkeley Lab, Wenhou Zhou i Da Yang oraz Shang-Ping Xie ze Scirpps Institution of Oceanography, wykorzystali modele klimatyczne do zbadania komórki Hadleya. To część wielkoskalowej cyrkulacji atmosferycznej. To właśnie komórka Hadleya umożliwia bezpośredni transport ciepła z równika do zwrotników. Komórka Hadleya składa się z dwóch części. Wilgotnego gorącego powietrza, która unosi się ze strefy równikowej, powodując wielkie opady w czasie monsunów, oraz suchego gorącego powietrza, które obniża się w strefach zwrotnikowych. W wyniku tego wieją pasaty, od wieków wykorzystywane przez żeglarzy, i mamy suche strefy subtropikalne. Z najnowszych badań wynika, że w miarę ocieplania się klimatu sucha i gorąca część subtropikalna komórki Hadleya będzie rozszerzała się w kierunku biegunów, a część wilgotna będzie kurczyła się w kierunku równika. Na potrzeby swoich badań naukowcy przyjęli najbardziej pesymistyczny scenariusz rozwoju sytuacji opisany przez IPCC. Wcześniejsze badania wykazywały zwykle, że komórka Hadleya będzie się rozszerzała w kierunku biegunów. Wykazaliśmy jednak, że w miesiącach letnich sytuacja będzie inna. W związku z ocieplaniem się strefy równikowej w czerwcu i lipcu komórka będzie się kurczyła w kierunku równika, mówi Zhou. To będzie miało olbrzymi wpływ na Azję Wschodnią, gdzie właśnie w miesiącach letnich notuje się obecnie największe opady. Monsun jest ważnym źródłem wody dla Azji Wschodniej i olbrzymiej części Chin. Jeśli się on zmieni lub przemieści, to będzie miało to olbrzymi wpływ na codzienne życie mieszkańców tych terenów, stwierdził Yang. Uczeni zauważają, że na razie na podstawie obserwacji nie można stwierdzić, czy uzyskane przez nich wyniki są prawidłowe. Obserwacje monsunów z ostatnich 30 lat sugerują bowiem, że ich zachowanie jest zdeterminowane naturalną zmiennością. Wpływ ocieplenia klimatu na monsuny jeszcze się nie ujawnił. Innymi słowy, dopiero w przyszłości zobaczymy wpływ zmian klimatu na monsuny, dodaje Yang. « powrót do artykułu
  22. NASA poinformowała, że zanim na Księżyc trafią ludzie, wyśle tam misję, której celem będzie znalezienie źródeł wody dla astronautów. O misji VIPER (Volatiles Investigating Polar Exploration Rover) poinformowano w ostatni piątek, podczas Międzynarodowego Kongresu Astronautycznego. NASA chce, by łazik wylądował na Srebrnym Globie do grudnia 2022 roku. Misja VIPER miałaby potrwać 100 dni. W tym czasie łazik ma przejechać kilkanaście kilometrów poszukując śladów wody. Przeprowadzone przez niego badania pozwolą zdecydować, gdzie będą lądowli astronauci pracujący w ramach programu Artemis. VIPER zostanie wyposażony w cztery instrumeny do poszukiwania wody. Najważniejszy będzie Neutron Spectrometer System, który ma wykrywać wilgoć pod powierzchnią Srebrnego Globu. Następnie wiertło TRIDENT pobierze próbki, a dwa kolejne instrumenty je przeanalizują. VIPER będzie pobierał i analizował próbkiz różnych miejsc, co pozwoli stworzyć mapę obszaru, na którym z największym prawdopodobieństwem występuje woda. Woda na Księżycu będzie kluczowym elementem długotrwałej obecności ludzi na Srebrnym Globie. Potrzebna ona będzie nie tylko do picia, ale również do produkcji paliwa dla rakiet, które w przyszłości zawiozą człowieka na Marsa. Lód został znaleziony na południowym biegunie Księżyca już przed 10 laty. Tamten region jest więc przedmiotem szczególnego zainteresowania. Nie tylko zresztą NASA. We wrześniu Indie próbowały wysłać tam swój pierwszy księżycowy łazik. Niestety urządzenie rozbiło się podczas lądowania. « powrót do artykułu
  23. Australijsko-amerykański zespół naukowy odkrył mechanizm regeneracji molekuł wody na powierzchni asteroid. Nie można wykluczyć, że wyniki badań będzie można przełożyć na inne ciała niebieskie, jak np. księżyce. W artykule opublikowanym na łamach Nature Astronomy czytamy: na powierzchni asteroid znajdowano spektroskopowe sygnatury wody i rodników hydroksylowych. Jako, że okres istnienia lodu na odsłoniętych powierzchniach asteroid z pasa wewnętrznego wynosi od 104 do 106 lat, musi istnieć mechanizm zastępowania wody w obliczu braku niedawnych procesów jej wypływania na powierzchnię. Wciąż jednak nie udało się go opisać. W poniższym artykule przedstawiamy eksperymenty laboratoryjne, w czasie których próbki meteorytu Murchinson były wystawiane na działanie wysoko energetycznych elektronów i światła lasera, co symulowało, elektrony wtórne generowane przez wiatr słoneczny, promieniowanie kosmiczne oraz uderzenia mikrometeorytów w asteroidę. Odkryliśmy, że działanie jednego tyko czynnika jest niewystarczające i do regeneracji wody przy niskich temperaturach potrzebne są oba czynniki. Sądzimy, że dwa główne mechanizmy powstawania wody na powierzchni asteroid to utlenianie związków organicznych w niskiej temperaturze i dehydracja minerałów. Głównym autorem badań jest doktor Katarina Milijkovic ze Space Science and Technology Centre Curtin University, a w skład jej zespołu wchodzili uczeni z University of Hawai'i oraz California State University San Marcos. « powrót do artykułu
  24. Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmers obalili teorię mówiącą, że obie nici DNA są utrzymywane przez wiązania atomów wodoru. Okazuje się, że kluczem są siły hydrofobowe, nie atomy wodoru. Odkrycie to może mieć duże znaczenie dla medycyny i innych nauk biologicznych. Helisa DNA składa się z dwóch nici zawierających molekuły cukru i grupy fosforanowe. Pomiędzy obiema nićmi znajdują się zasady azotowe zawierające atomy wodoru. Dotychczas sądzono, że to wiązania atomów wodoru utrzymują razem obie nici. Jednak uczeni z Chalmers wykazali właśnie, że kluczem do utrzymania razem nici jest hydrofobowe wnętrze molekuł zanurzonych w środowisku składającym się głównie z wody. Zatem mamy tutaj hydrofilowe otoczenie i hydrofobowe molekuły odpychające otaczającą je wodę. Gdy hydrofobowe molekuły znajdują się w hydrofilowym środowisku, grupują się razem, by zmniejszyć swoją ekspozycję na wodę. Z kolei wiązania wodorowe, które dotychczas postrzegano jako elementy utrzymujące w całości podwójną helisę DNA, wydają się mieć więcej wspólnego z sortowaniem par bazowych, zatem z łączniem się helisy w odpowiedniej kolejności. Komórki chcą chronić swoje DNA i nie chcą wystawiać ich na środowisko hydrofobowe, które może zawierać szkodliwe molekuły. Jednocześnie jednak DNA musi się otwierać, by było użyteczne. Sądzimy, że przez większość czasu komórki utrzymują DNA w środowisku wodny, ale gdy chcą coś z DNA zrobić, na przykład je odczytać, skopiować czy naprawić, wystawiają DNA na środowisko hydrofobowe, mówi Bobo Feng, jeden z autorów badań. Gdy na przykład dochodzi do reprodukcji, pary bazowe odłączają się i nić DNA się otwiera. Enzymy kopiują obie strony helisy, tworząc nową nić. Gdy dochodzi do naprawy uszkodzonego DNA, uszkodzone części są wystawiane na działanie hydrofobowego środowiska i zastępowane. Środowisko takie tworzone jest przez proteinę będącą katalizatorem zmiany. Zrozumienie tej proteiny może pomóc w opracowaniu wielu leków czy nawet w metodach leczenia nowotworów. U bakterii za naprawę DNA odpowiada proteina RecA. U ludzi z kolei proteina Rad51 naprawia zmutowane DNA, które może prowadzić do rozwoju nowotworu. Aby zrozumieć nowotwory, musimy zrozumieć, jak naprawiane jest DNA. Aby z kolei to zrozumieć, musimy zrozumieć samo DNA. Dotychczas go nie rozumieliśmy, gdyż sądziliśmy, że helisa jest utrzymywana przez wiązania atomów wodoru. Teraz wykazaliśmy, że chodzi tutaj o siły hydrofobowe. Wykazaliśmy też, że w środowisku hydrofobowym DNA zachowuje się zupełnie inaczej. To pomoże nam zrozumieć DNA i proces jego naprawy. Nigdy wcześniej nikt nie umieszczał DNA w środowisku hydrofobowym i go tam nie badał, zatem nie jest zaskakujące, że nikt tego wcześniej nie zauważył, dodaje Bobo Feng. Szwedzcy uczeni umieścili DNA w hydrofobowym (w znaczeniu bardzo zredukowanej koncentracji wody) roztworze poli(tlenku etylenu) i krok po kroku zmieniali hydrofilowe środowisko DNA w środowisko hydrofobowe. Chcieli w ten sposób sprawdzić, czy istnieje granica, poza którą DNA traci swoją strukturę. Okazało się, że helisa zaczęła się rozwijać na granicy środowiska hydrofilowego i hydrofobowego. Bliższa analiza wykazała, że gdy pary bazowe – wskutek oddziaływania czynników zewnętrznych – oddzielają się od siebie, wnika pomiędzy nie woda. Jako jednak, że wnętrze DNA powinno być suche, obie nici zaczynają przylegać do siebie, wypychając wodę. Problem ten nie istnieje w środowisku hydrofobowym, zatem tam pary bazowe pozostają oddzielone. « powrót do artykułu
  25. W atmosferze planety krążącej wokół czerwonego karła odkryto parę wodną. K2-18 b to skalista superziemia znajdująca się w ekosferze swojej gwiazdy. Najprawdopodobniej panują na niej temperatury podobne do ziemskich, zatem woda może istnieć też na powierzchni planety, co czyni ją jednym  najbardziej obiecujących celów przyszłych badań naukowych. To jedyna planeta poza Układem Słonecznym, o której wiemy, że panuje na niej temperatura pozwalająca na istnienie wody w stanie ciekłym, która ma atmosferę i wodę. To – jak dotychczas – najlepszy kandydat, na którym może istnieć życie, mówi główny autor badań, Angelos Tsiaras z University College London. Planeta K2-18 b znajduje się w odległości 110 lat świetlnych od Ziemi, w Gwiazdozbiorze Lwa. Krąży ona wokół niewielkiego czerwonego karła o masie zaledwie 1/3 masy Słońca. Jak mówią naukowcy, gwiazda jest zadziwiająco spokojna. Planeta okrąża gwiazdę w ciągu 33 ziemskich dni. Znajduje się bowiem 2-krotnie bliżej niej niż Merkury Słońca. Biorąc pod uwagę fakt, że gwiazda ta jest znacznie chłodniejsza niż Słońce, planeta otrzymuje tyle samo promieniowania, co Ziemia. Z naszych obliczeń wynika, że panują na niej temperatury podobne do ziemskich, wyjaśnia Tsiaras. Uczeni wyliczyli, że rozpiętość temperatur na K2-18 b wynosi od -73 do 47 stopni Celsjusza. Dla porównania, zarejestrowana rozpiętość temperatur na Ziemi to od -84 do 49 stopni Celsjusza. K2-18 b ma średnicę około 2-krotnie większą od średnicy Ziemi i jest od niej około 8-krotnie bardziej masywna. To oznacza, że jest planetą skalistą, a jako, że ma atmosferę z parą wodną oraz odpowiednie temperatury, woda powinna być również na jej powierzchni. Jednak astronomowie nie mogą być tego pewni. Badania prowadzili bowiem za pomocą Teleskopu Hubble'a, który nie może zbyt szczegółowo określać składu atmosfer egzoplanet. Przez to nie mogą być pewni, ile wody znajduje się w atmosferze. Obecnie jej ilość określono na od 0,01 do 50 procent. Aby się tego dokładnie dowiedzieć, będziemy musieli poczekać, aż w przestrzeń kosmiczną trafią teleskopy kolejnej generacji: Teleskop Kosmiczny Jamesa Webba (JWST), który ma zostać wystrzelony w 2021 roku czy Atmospheric Remote-sensing Infrared Exoplanet Large survey (ARIEL). Nad tym drugim pracuje Europejska Agencja Kosmiczna, a teleskop ma rozpocząć pracę w drugiej połowie przyszłej dekady. « powrót do artykułu
×
×
  • Create New...