Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'wzrok'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 35 results

  1. Gdy przed 300 laty John Locke w swoich Rozważaniach dotyczących rozumu ludzkiego przywołał tzw. problem Molyneux zapewne nie przypuszczał, że miną aż trzy wieki, zanim ludzkość będzie potrafiła odpowiedzieć na stawiane tam pytania. William Molyneux kazał nam się zastanowić, czy człowiek niewidomy od urodzenia, który za pomocą dotyku potrafi rozróżnić kształty, rozpoznałby je, gdyby nagle odzyskał wzrok. Piękno pytania Molyneux polega na tym, że odnosi się ono do tego, w jaki sposób w mózgu tworzą się reprezentacje. Czy różne zmysły tworzą tę samą reprezentację, czy też istnieją różne niezależne reprezentacje, z których każda jest niedostępna dla zmysłu, który jej nie stworzył" - mówi Pawan Sinha z MIT-u, współautor badań, które rozwiązały problem Molyneux. Dotychczas nie potrafiono przeprowadzić odpowiedniego eksperymentu. Musielibyśmy zaangażować doń osobę niewidomą od urodzenia, która odzyskała wzrok dopiero wówczas, gdy była na tyle dojrzała, by wziąć udział w wiarygodnych testach. Tymczasem większość uleczalnych przypadków ślepoty jest diagnozowana i leczona w niemowlęctwie. Tak jest w krajach rozwiniętych. Dlatego też Amerykanie, we współpracy ze Shroff Charity Eye Hospital z New Delhi zaczęli szukać odpowiednich kandydatów do eksperymentów w Indiach. Wśród wielu leczonych osób znaleziono czterech chłopców i jedną dziewczynę w wieku od 8 do 17 lat, u których była szansa, że dzięki operacji niemal natychmiast odzyskają wzrok. Po przeprowadzeniu zabiegów i usunięciu bandaży najpierw upewniono się, że badani rzeczywiście widzą. Pokazywano im różne klocki by sprawdzić, czy są w stanie odróżniać podobne do siebie kształty. Eksperyment pokazał, że liczba dobrych odpowiedzi wynosiła niemal 100%. Uzyskany wynik był niemal tak dobry jak wówczas, gdy badani odróżniali obiekty za pomocą samego dotyku. Wówczas przeprowadzono test sprawdzający problem Molynoux. Badanym najpierw pozwolono dotykać przedmiot, którego nie mogli zobaczyć, a następnie kazano im odróżnić go za pomocą wzroku od podobnego obiektu. Okazało się, że prawdopodobieństwo otrzymania dobrej odpowiedzi było w takim przypadku niewiele większe od całkowicie losowego odgadnięcia. Nie byli w stanie utworzyć połączenia pomiędzy tym, co dotykali, a co widzieli. Wydaje się zatem, że nie istnieje uniwersalna reprezentacja - mówi jeden z autorów badań, Yuri Ostrovsky. Wydaje się zatem, że odpowiedź na pytanie Molyneux brzmi „nie". Jednak na tym nie koniec. Jak poinformował główny autor badań, profesor Richard Held, naukowców najbardziej zainteresował fakt błyskawicznej kompensacji, która miała miejsce w mózgu badanych. Wystarczył zaledwie tydzień, by radzili sobie z opisanym zadaniem tak, jakby od zawsze widzieli. To sugeruje, że mózg jest znacznie bardziej plastyczny niż dotychczas sądzono. To stawia pod znakiem zapytania dogmat o „okresach krytycznych", który mówi nam, że jeśli np. dziecko nie będzie widziało przez pierwszy trzy, cztery lata swojego życia, to gdy później odzyska wzrok, jego umiejętności wizualne nie będą się zwiększały - mówi Sinha.
  2. Wykorzystując przezczaszkową stymulację magnetyczną (ang. transcranial magnetic stimulation, TMS), która indukuje przepływ prądu w wybranym obszarze, kanadyjsko-amerykańskiego zespół wykazał, że lekka stymulacja elektryczna kory wzrokowej wyostrza węch. Dr Christopher Pack z Montreal Neurological Institute and Hospital - The Neuro wyjaśnia, że naukowcy chcieli sprawdzić, w jaki sposób dane z obszarów dedykowanych poszczególnym zmysłom łączą się, tworząc spójny obraz świata. Szczególnie zależało nam na tym, by przetestować hipotezę, że jeden zmysł może wpływać na przetwarzanie dotyczące innego zmysłu. Podczas eksperymentów najpierw stymulowano elektrycznie korę wzrokową. Okazało się, że wspomaga to rozpoznawanie wybranego zapachu w 3-elementowym zbiorze. W takim razie wszyscy jesteśmy w jakimś stopniu synestetykami. Uczestnicy studium zajmowali się zapachami przed i po przezczaszkowej stymulacji magnetycznej. TMS stosowano zgodnie z protokołem, który wcześniej okazał się skuteczny w zakresie poprawy percepcji wzrokowej. Bazując na uzyskanych wynikach, akademicy dywagują, że wzrok może spełniać nadrzędną rolę w łączeniu danych z poszczególnych zmysłów. Hipoteza ta jest właśnie badana.
  3. Po zakończeniu badań na makakach czubatych naukowcy uważają, że na nasze zachowanie i rozwój bardziej niż rodzina wpływają przyjaciele. Psycholodzy z Uniwersytetu w Portsmouth śledzili podążanie za czyimś spojrzeniem, które stanowi kluczowy wskaźnik rozwoju społecznego, ponieważ pozwala zebrać informacje o środowisku (gdzie znajduje się coś ciekawego, np. pożywienie, lub groźnego) i leży u podłoża zdolności rozumienia, co czują i o czym myślą inni. Małpy podążały za spojrzeniem wszystkich, bez względu na to, czy był to przyjaciel, krewny czy dominujący członek grupy, ale w przypadku przyjaciół prędkość spoglądania w tym samym kierunku była o wiele większa. Bazując na uzyskanych wynikach, dr Bridget Waller i doktorant Jerome Micheletta uważają, że u naczelnych przyjaźń odgrywa decydującą rolę w kształtowaniu postrzegania świata oraz sposobów radzenia sobie z wyzwaniami. Nasze odkrycia rzucają nieco światła na ewolucję przyjaźni i jej związki z poznaniem oraz komunikacją, czego dotąd nie badano. Micheletta uważa, że podobny wpływ przyjaciół na podążanie za spojrzeniem występuje u innych naczelnych, w tym ludzi. Podążanie za spojrzeniem nie jest reakcją automatyczną i zależy od sytuacji i relacji między zwierzętami. Zaobserwowane je u wielu gatunków: szympansów, kóz, delfinów, żółwi, kawek i, oczywiście, ludzi. Brytyjczycy wykazali, że to, jak szybko wyłapywane są subtelne zmiany w ruchach czyichś oczu i jaki jest kierunek naśladownictwa (kto śledzi czyj wzrok), nie jest wcale dziełem przypadku. [...] Na podążanie za spojrzeniem silnie wpływa stopień zaprzyjaźnienia makaków. Czemu makaki szybciej reagują na przyjaciela niż na jakiegokolwiek innego członka grupy? Być może dlatego, że informacje pozyskane za jego pośrednictwem są bardziej odpowiednie i użyteczne dla podążającego za spojrzeniem. [...] Poza tym znalezienie zasobów, np. pokarmu, jest bardziej prawdopodobne, jeśli współzawodnictwo podlega ograniczeniu [a tak właśnie jest, gdy spędza się czas z przyjacielem]. Będąc z kimś bliskim, małpa mniej obawia się społecznych zdarzeń, ponieważ np. podczas konfliktu można się wzajemnie wspierać, co sprzyja budowaniu jedności i stabilności.
  4. Gatunki żywiące się mięsem bądź krwią innych zwierząt wykorzystują do namierzenia ofiary doskonale rozwinięte zmysły. Nietoperze bazują np. na echolokacji, a węże na widzeniu w podczerwieni. Co ciekawe, pijawki lekarskie korzystają z aż dwóch zmysłów (dotyku i wzroku), w dodatku preferowana metoda polowania zmienia się z wiekiem. Młode pijawki żywią się krwią ryb i płazów, natomiast starsze osobniki wolą bardziej odżywczą krew ssaków. Wiedząc, że pasożyty zmieniają źródło krwi, biolodzy z California Institute of Technology (Caltech) zastanawiali się, czy zaczynają je także namierzać w inny sposób. Okazało się, że tak. By stwierdzić, do jakiego stopnia pijawki lekarskie polegają na włoskach czuciowych na ciele, które wykrywają ruchy wody wywołane przez ofiarę i na oczach, wychwytujących cienie fali spiętrzonej przez drugie zwierzę, Amerykanie przeprowadzili całą serię eksperymentów. W akwarium znajdowały się młode i dorosłe pijawki. Naukowcy monitorowali reakcje na fale mechaniczne, ich cienie oraz kombinację tych bodźców. Pijawki w różnym wieku reagowały podobnie, gdy działano tylko jednym rodzajem bodźca. Kiedy jednak pojawiały się i fale, i cienie, dorosłe pasożyty odpowiadały wyłącznie na fale. Biolodzy stwierdzili, że poszczególne zmysły nie zmieniły się podczas rozwoju, by pomóc w rozpoznawaniu różnych typów ofiar. Rozwinęła się za to zdolność integrowania wskazówek wzrokowo-dotykowych. W miarę dojrzewania zwierzęta zaczynają zwracać większą uwagę na jeden ze zmysłów [dotyk] - wyjaśnia główna autorka studium Cynthia Harley. W przyszłości zamierza ona zbadać przetwarzanie informacji na poziomie behawioralnym i komórkowym u dorosłych pijawek.
  5. Z najnowszego numeru pisma Ophtalmology dowiadujemy się, że codzienne zażywanie aspiryny, która zmniejsza ryzyko chorób serca, ma niepokojący skutek uboczny. Prowadzi ono bowiem do zwiększenia prawdopodobieństwa degeneracji plamki żółtej. A właśnie jej degeneracja jest w USA najczęstszą przyczyną utraty wzroku u osób powyżej 60. roku życia. Ta choroba, związana ze starzeniem się, prowadzi do śmierci komórek w plamce żółtej. Naukowcy z Holandii, pracujący pod kierunkiem doktora Paulusa de Jonga, przejrzeli dane medyczne dotyczące 4700 osób powyżej 65. roku życia. Odkryli, że 839 osób codziennie zażywało aspirynę. Spośród nich 36 osób cierpiało na wysiękowe (mokre) zwyrodnienie plamki żółtej. Ten rodzaj schorzenia jest znacznie bardziej niebezpieczny od postaci suchej, gdyż dochodzi w nim do nieprawidłowej angiogenezy (proces tworzenia naczyń krwionośnych), wskutek czego w przebiegu choroby pojawiają się blizny. Mokre zwyrodnienie plamki żółtej wystąpiło zatem u ponad 4 osób na 100. U osób niezażywających codziennie aspiryny schorzenie to pojawiało się w 2 przypadkach na 100. Naukowcy zauważyli również, że aspiryna jest związana tylko z występowaniem mokrego zwyrodnienia, nie ma natomiast wpływu na suchą formę choroby. Badacze podkreślają, że aspiryna nie prowadzi do utraty wzroku, jednak w jakiś nieznany jeszcze sposób podwaja ryzyko wystąpienia mokrej postaci zwyrodnienia plamki żółtej. Zauważają również, że u osób cierpiących na schorzenia układu sercowo-naczyniowego, korzyści z codziennego przyjmowania aspiryny są większe, niż ryzyko wystąpienia problemów ze wzrokiem.
  6. Lot na Marsa może być niebezpieczny dla zdrowia astronautów. Amerykańska Akademia Oftalmologii ostrzega, że długotrwały pobyt w przestrzeni kosmicznej może skończyć się utratą wzroku. Z badań opublikowanych na łamach pisma Opthalmology dowiadujemy się, że 60% astronautów, którzy brali udział w długotrwałych misjach - trwających około 6 miesięcy - miało później problemy ze wzrokiem. Podobne kłopoty spotkały 27% astronautów, którzy przebywali w przestrzeni kosmicznej krótko. U niektórych problemy utrzymywały się przez wiele lat, u innych wzrok szybko powracał do normy. Na potrzeby raportu szczegółowo zbadano 7 astronautów i przeprowadzono wywiady z 300 kolejnymi. NASA już zwróciła uwagę na pogorszenie się widzenia w kosmosie i na Międzynarodową Stację Kosmiczną wysłano dziesiątki par okularów. Naukowcy uważają, że przyczyną kłopotów ze wzrokiem jest najprawdopodobniej brak grawitacji. Przyczynia się on też do innych objawów znanych pod nazwą Syndromu adaptacji do przestrzeni kosmicznej (Space Adaptation Syndrome), takich jak wymioty, nudności i utrata orientacji w przestrzeni. Przyczyną tych objawów jest przemieszczanie się płynów ustrojowych, przede wszystkim płynu mózgowo-rdzeniowego, który wędruje w stronę głowy i wywiera ucisk na mózg i oczy. Załogowa misja na Marsa może potrwać trzy lata, co stwarza poważne niebezpieczeństwo utraty wzroku przez astronautów.
  7. Badacze z Uniwersytetu Południowej Kalifornii odkryli, że gdy patrzymy na jakiś obiekt, nasz mózg przetwarza jego wygląd, a jednocześnie odświeża informacje, jak to jest, gdy się tego dotyka. Związek między wzrokiem a dotykiem jest tak silny, że analizując dane pochodzące wyłącznie z części mózgu zawiadującej dotykiem, komputer mógł wskazać, na co człowiek patrzył. Wyniki dotyczących interakcji zmysłów i pamięci dociekań zespołu Hanny i Antonia Damasio ukazały się we wrześniowym numerze pisma Cerebral Cortex. Naukowcy poprosili grupę osób o obejrzenie 5 filmików wideo. Przedstawiały one dłonie dotykające różnych obiektów. Za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) zbadano obszar mózgu związany z przetwarzaniem wrażeń dotykowych. Gdy uzyskane w ten sposób dane przeanalizowano z wykorzystaniem specjalnego oprogramowania, tylko na tej podstawie komputer był w stanie wskazać, który z klipów był oglądany. Jak wyjaśnia główny autor opisywanego studium Kaspar Meyer, wyobrażając sobie dotyk zimnego metalu i ciepłego zwierzęcego futra, większość z nas dosłownie odczuwa te wrażenia za pomocą dotyku umysłu. To samo działo się z naszymi badanymi, kiedy pokazywaliśmy im nagrania wideo rąk dotykających przedmiotów. Nasze badania pokazują, że czucie dzięki dotykowi umysłu aktywuje te same rejony mózgu, co rzeczywisty dotyk. Dzieje się tak, gdyż mózg przechowuje wspomnienia wrażeń czuciowych i odtwarza je pod wpływem odpowiadającego im obrazu.
  8. Po 55 latach lekarze z New York Eye and Ear Infirmary przywrócili pacjentowi wzrok w oku uderzonym w dzieciństwie kamieniem. Doszło wtedy do odwarstwienia siatkówki i innych powikłań (Journal of Medical Case Reports). W wieku 23 lat choremu usunięto zaćmę, dzięki czemu przez jakiś czas widział światło. Gdy ostatnio zgłosił się do szpitala, uskarżał się na ból. Zdiagnozowano u niego krwawienie do komory przedniej oka, jaskrę neowaskularyzacyjną (która rozwija się, gdy dochodzi do nadmiernego rozrostu naczyń krwionośnych w tęczówce; ponieważ zaburza to przepływ płynów w oku, następuje wzrost ciśnienia), wysokie ciśnienie śródgałkowe oraz odwarstwienie siatkówki. Okuliści rozpoczęli postępowanie od ustabilizowania ciśnienia w oku. Potem zajęli się jaskrą. Uciekli się do leczenia przeciwciałami monoklonalnymi. Szybko okazało się, że choć nikt tego nie oczekiwał, pacjent odzyskał widzenie światła. Po operacji przyłożenia siatkówki ustalono, że jest on w stanie policzyć palce z odległości 5 metrów. Po roku pacjent przeszedł jeszcze jedną operację siatkówki, ponieważ tworzące się blizny powodowały ponowne odwarstwienie jej fragmentów. Dr Olusola Olawoye podkreśla, że po jakimś czasie w odwarstwionej siatkówce dochodzi do zmian degeneracyjnych, dlatego odzyskanie wzroku po przyłożeniu jej po tylu latach jest ewenementem i najprawdopodobniej pierwszym tego typu przypadkiem na świecie. Amerykanie cieszą się nie tylko ze względu na swojego pacjenta. Wierzą, że dzięki badaniom nad podobnymi do komórek macierzystych komórkami progenitorowymi siatkówki możliwe będą przywracające wzrok przeszczepy.
  9. Naukowcy z Uniwersytetu w Glasgow i Uniwersyteckiego College'u Londyńskiego zauważyli, że można wzmocnić postrzeganie konkretnych bodźców wzrokowych w natłoku innych bodźców, stosując rytmiczną przezczaszkową stymulację magnetyczną (ang. rhythmic transcranial magnetic stimulation, rTMS) o odpowiednio dobranej częstotliwości. Specjaliści wyszli od tego, że wszystkie procesy mózgowe, w tym widzenie, słyszenie czy pamięć, bazują na sygnałach elektrycznych (falach) o określonej częstotliwości. Wcześniejsze badanie z wykorzystaniem magnetoencefalografii (ang. magnetoencephalography, MEG) pozwoliło ustalić częstotliwość sygnałów elektrycznych w ramach percepcji wzrokowej. Dzięki temu Brytyjczycy mogli obecnie generować wzorce rTMS o tej samej częstotliwości. Wizualnie często dużo się dzieje, ale tylko niektóre z tych współzawodniczących zdarzeń zostaną dostrzeżone, ponieważ priorytet nadają im np. oczekiwania. Wyobraź sobie, że wchodzisz w tłum ludzi na przyjęciu, szukając przyjaciela. Prawdopodobnie nie zauważysz wszystkich pojedynczych osób, ale rozpoznasz przyjaciela. Nadal nie wiadomo, jak mózg wybiera takie informacje. Wykazaliśmy, że rTMS może się stać bardzo przydatnym narzędziem do przeprowadzania interwencji o specyficznej częstotliwości w zakresie percepcji i działania mózgu [wspomagając np. leczenie bezsenności lub pamięć] – podkreśla dr Vincenzo Romei z Wellcome Trust Centre for Neuroimaging na UCL. W eksperymencie wzięło udział 12 ochotników. Patrzyli oni na ekran komputera, na którym wyświetlano dużą literę: H, S lub D. Każda duża litera składała się z wielu mniejszych: H, S lub D. Na poziomach globalnym i lokalnym mieliśmy więc do czynienia ze współzawodniczącymi informacjami. Ludzi proszono o zidentyfikowanie litery dużej bądź małych tworzących dużą, a w tym czasie przechodzili rTMS. Okazało się, że rTMS z częstotliwością fal beta (20 herców), przykładane do prawego płata ciemieniowego, czyli obszaru odpowiadającego za selekcję wzrokową, wspomagało identyfikację mniejszej litery. Stymulowanie z częstotliwością fal theta (5 herców) wzmacniało zaś globalne przetwarzanie wzrokowe.
  10. Ludzie widzą lepiej, gdy eksperymentalnie wytworzy się w nich takie nastawienie. Wg psychologów, oczekiwania naprawdę zwiększają ostrość widzenia, a nie zwiększają czujność czy motywację do koncentrowania się na obiektach (Psychological Science). Ellen Langer i zespół z Uniwersytetu Harvarda wykazali, że jak dowodziło wielu naukowców, percepcja wzrokowa nie polega wyłącznie na przekazywaniu danych między oczami a korą. Do tego dokładają się bowiem oparte na doświadczeniu założenia. Podczas eksperymentu 20 mężczyznom i kobietom pokazywano literowe tablice okulistyczne. Gdy zastosowano odwróconą matrycę (na dole znajdowało się największe "E"), ochotnicy trafnie odczytywali więcej znaków z dwóch najmniejszych linii niż wtedy, gdy przyglądali się tradycyjnym tablicom. Wszyscy badani mieli dobry wzrok. Langer uważa, że przedstawione wyniki odzwierciedlają ludzkie oczekiwania. Na podstawie wcześniejszego doświadczenia z tablicami okulistycznymi wolontariusze oczekiwali, że litery z góry są łatwe do odcyfrowania, a zadanie staje się coraz trudniejsze w miarę przesuwania się w dół. W przypadku osób, które sądziły, że będą w stanie poprawić swój wzrok przez ćwiczenie, odnotowywano większą poprawę widzenia przy odwróconej matrycy niż w odniesieniu do ochotników zakładających, że taka poprawa nie jest możliwa. Dotyczyło to jednak wyłącznie przedostatniej linii drobnych liter. Obie grupy wypadły tak samo dobrze, odczytując najmniejsze znaki. W drugim eksperymencie wzięło udział 63 kadetów Korpusu Szkoleniowego Oficerów Rezerwy. Badanie wzroku ujawniło, że ich widzenie mieściło się w granicach od poniżej przeciętnej do wyśmienitego. Naukowiec powiedział 22 kadetom, by na symulatorze wcielili się w rolę pilota myśliwca. Zadanie polegało na koncentrowaniu się na literach widniejących na czterech skrzydłach zbliżającej się maszyny. Na każdym ze skrzydeł umieszczono jedną literę z 4 dolnych linii tablicy okulistycznej. Kolejnej grupie 20 kadetów powiedziano, że będą wypatrywać symboli podczas udawanego lotu w zepsutym symulatorze. Następnym 10 osobom kazano przed zajęciem miejsca za sterami napisać list motywacyjny. Pozostali w ogóle nie stykali się z symulatorem, ale wykonywali ćwiczenia wzrokowe, które wg zapewnień eksperymentatorów, mogły poprawić widzenie przed badaniem. Okazało się, że wzrok poprawił się znacznie u 9 z 22 kadetów latających w symulatorze i u żadnego z udających latanie, poza tym polepszył się u dwóch badanych z 11 wykonujących ćwiczenia na oczy i u jednego przedstawiciela grupy piszącej listy motywacyjne. Ludzie z wirtualnego myśliwca osiągnęli o tyle lepsze od reszty wyniki, gdyż wcielili się w rolę pilota, który z założenia powinien się legitymować doskonałym wzrokiem. Przeprowadzony na wstępie wywiad zresztą to potwierdzał. Zadając pytania, psycholodzy ustalili, że kadeci przypisywali pilotom myśliwca tę właśnie cechę. Piloci z symulatorów, którzy widzieli gorzej od przeciętnej, doświadczyli największej poprawy osiąganych wyników. Naukowcy uważają, że stało się tak, ponieważ mieli oni największe pole do popisu. Langer wyjaśnia, że programy poprawiające widzenie działają na zasadzie primingu, czyli zwiększenia prawdopodobieństwa wykorzystania przez człowieka danej kategorii poznawczej poprzez wcześniejsze wystawienie go na działanie bodźca zaliczanego do tej kategorii.
  11. Kiedy się zgubimy, naprawdę chodzimy w kółko, nie jest to więc jeden z tzw. mitów miejskich czy chwytów filmowych. Naukowcy z Instytutu Biologicznej Cybernetyki Maxa Plancka w Tybindze dokładnie zbadali trasy ludzi błądzących po pustyni oraz gęstym lesie i zaproponowali wyjaśnienie zaobserwowanego zjawiska (Current Biology). Niemcy przyglądali się trajektorii marszu ludzi, którzy przez kilka godzin przechadzali się po Saharze w Tunezji lub po lesie Bienwald w Niemczech. Naukowcy posłużyli się GPS-em i nagrywali trasy przemieszczania się badanych. Okazało się, że uczestnicy eksperymentu potrafili iść na wprost tylko wtedy, gdy widzieli słońce bądź księżyc. Jeśli jednak znikały one, zasłonięte przez chmury, wszyscy zaczynali krążyć po swoich śladach, nawet nie zdając sobie z tego sprawy. Jedno z wyjaśnień tego zjawiska, jakie przedstawiano w przeszłości, jest takie, że ludzie mają jedną nogę dłuższą lub mocniejszą od drugiej, co skutkuje systematycznym odchyleniem w określonym kierunku. Chcąc przetestować to wyjaśnienie, poinstruowaliśmy ochotników, by starali się iść prosto z zawiązanymi oczami. W ten sposób wyeliminowaliśmy wpływ wzroku. Większość badanych chodziła w kółko, często zataczając bardzo niewielkie kręgi (o średnicy mniejszej niż 20 m) – opowiada Jan Souman. Jedno się jednak nie zgadzało. Rzadko kiedy kręgi zataczano stale w tym samym kierunku i dlatego jedna i ta sama osoba raz zakręcała w lewo, a raz w prawo. Chodzenie w kółko nie może być zatem wynikiem różnic w długości lub sile nogi. To raczej efekt niepewności, gdzie to "przed siebie" w ogóle jest. Z czasem niewielkie, przypadkowe błędy w sygnałach zmysłowych wskazujących na kierunek ruchu się sumują, przez co to, co człowiek uznaje za marsz przed siebie, odchyla się od rzeczywistego na wprost – tłumaczy Souman. Marc Ernst dodaje, że nawet gdy ludzie sądzą, że idą prosto, nie zawsze mogą ufać swojej percepcji. Aby naprawdę przemieszczać się na wprost, potrzebne są dodatkowe (bardziej rozumowe) strategie. W otoczeniu muszą się znajdować punkty orientacyjne, np. skały, słońce czy charakterystyczne drzewo. W przyszłości Niemcy zamierzają sprawdzić, jak są wykorzystywane różne wskazówki. Posłużą się rzeczywistością wirtualną, w tym dookolną bieżnią – tzw. cyberdywanem. Zadanie badanych będzie polegało na znalezieniu drogi przez cyfrowy las. Ponieważ nie opuszczą laboratorium, łatwo będzie kontrolować dostępne informacje.
  12. Jak pomóc osobom niewidomym postrzegać otaczający je świat? Pomysłów było dotychczas wiele, lecz rozwiązanie zaproponowane przez amerykańską firmę Wicab wydaje się wyjątkowo interesujące. Opracowane przez jej pracowników urządzenie rejestruje obraz otoczenia i przekazuje go... na język. To mózg jest tym, dzięki czemu widzisz, a nie oczy, opisuje podstawową zasadę działania wynalazku Erik Weihenmeyer, jeden z jego użytkowników. Rzeczywiście, jego mózg nauczył się analizować wrażenia dotykowe w sposób zarezerwowany zwykle dla bodźców wzrokowych. Co prawda rozdzielczość postrzeganego obrazu nie jest zbyt wielka i wynosi 400 punktów, lecz dla osoby niewidomej jest to nieoceniona pomoc. Urządzenie, obecnie znajdujące się w fazie testów, składa się z trzech zasadniczych elementów. Pierwszym jest zestaw kamer rejestrujących obraz z otoczenia. Drugi to niewielki komputer, przetwarzający zebrane informacje do postaci impulsów elektrycznych. Wytworzony w ten sposób sygnał jest następnie przekazywany do trzeciego elementu, którym jest "lizak" zaopatrzony w matrycę elektrod. Układa się go na języku, a każda z elektrod działa w sposób podobny do pojedynczego piksela na wyświetlaczu, drażniąc użytkownika w sposób przypominający uwalnianie się gazu z szampana. Choć odbieranie obrazów za pomocą języka może się wydawać trudne, autorzy urządzenia twierdzą, że nauka jego obsługi zajmuje od 2 do 10 godzin. Oczywiście można się jednak spodziewać, że z czasem zarówno jakość "widzianych" obrazów oraz umiejętność dostosowania do nich własnych zachowań będą ulegały poprawie. O tym, jak wielki potencjał tkwi w prototypie autorstwa firmy Wicab, przekona chyba każdego poniższy film:
  13. Wszystko wskazuje na to, że amerykańscy urzędnicy złagodzili nieco swoje negatywne stanowisko wobec terapii genowej. Ledwie wczoraj informowaliśmy o skutecznym leczeniu jednej z chorób płuc za pomocą zmodyfikowanych genetycznie wirusów, a już dziś na łamach serwisu EurekAlert! pojawiło się doniesienie o wynikach badań nad podobną formą leczenia w ciężkim schorzeniu siatkówki oka. W eksperymencie wzięło udział troje pacjentów w wieku 22, 24 oraz 25 lat cierpiących na tzw. wrodzoną ślepotę Lebera. Przyczyną ich choroby jest mutacja w genie RPE65, kodującym białko odpowiadzialne za regenerację cząsteczek witaminy A przetwarzanych przez siatkówkę oka w procesie widzenia. Bez aktywności tej proteiny aktywna forma witaminy A jest błyskawicznie zużywana, co prowadzi do utraty wzroku. W celu wyleczenia choroby badacze, kierowani przez dr. Tomasa Alemana z University of Pennsylvania, stworzyli specjalnego wirusa, którego genom zawierał prawidłową kopię genu kodującego RPE65. Tak przygotowany nośnik DNA wszczepiono każdemu z pacjentów pod siatkówkę jednego z oczu. Jak się okazało, terapia zakończyła się niemałym sukcesem. Częściowa zdolność widzenia (oczywiście tylko w jednym oku) została przywrócona już po kilku tygodniach, zaś efekty leczenia utrzymują się do dziś, tzn. przez ponad rok od podania leczniczego wirusa. Poprawa kondycji u jednej z pacjentek była tak dobra, że od pewnego czasu jest ona w stanie korzystać z zegarka z wyświetlaczem. Nabycia nowej umiejętności kobieta nie zawdzięcza jednak poprawianiu się czułości siatkówki (ta pozostaje na niemal stałym poziomie od 11 miesięcy). Wszystko wskazuje więc na to, że jej oko potrzebowało czasu, by ponownie "nauczyć się" odbierania bodźców z otoczenia. Jest z pewnością zbyt wcześnie, by mówić o zwycięstwie zwolenników terapii genowej w walce o dopuszczenie tej formy leczenia do powszechnego użycia. Powodzenie najnowszych eksperymentów może jednak oznaczać początek przełomu w tej dziedzinie.
  14. Czy uszkodzenia siatkówki związane ze zwyrodnieniem plamki żółtej, związanym z wiekiem schorzeniem objawiającym się znacznym pogorszeniem wzroku, mogą być odwracalne? Zdaniem badaczy z University of Florida nie jest to wykluczone, ponieważ udało im się opracować metodę pozwalającą na odtworzenie obumierającej siatkówki dzięki komórkom macierzystym wyizolowanym z krwi. Technika, której szczegóły opisano w czasopiśmie Molecular Therapy, polega na wykorzystaniu komórek macierzystych pobranych z krwi dojrzałych myszy i zmodyfikowaniu ich w taki sposób, by zróżnicowały się w komórki siatkówki oka. Tak przygotowane komórki, znajdujące się na etapie "gotowości" do transformacji, lecz jeszcze nieprzekształcone, wszczepiono z powrotem do krwi, skąd same dotarły do narządu wzroku i osiedliły się w nim. Przemianę komórek macierzystych w elementy nabłonka barwnikowego siatkówki udało się osiągnąć na dwa sposoby. W pierwszym podejściu badacze zmodyfikowali genom komórek tak, by przeszły one oczekiwaną transformację. Następnie, po zidentyfikowaniu biochemicznego podłoża tego procesu, udało się zastymulować różnicowanie niemodyfikowanych genetycznie komórek macierzystych dzięki odpowiedniej kombinacji związków chemicznych. Ostatecznym testem procedury opracowanej przez badaczy z Florydy były badania na zwierzętach. Komórki uzyskane dzięki nowej metodzie wszczepiono myszom z całkowicie uszkodzoną siatkówką. Po 28 dniach od zabiegu zaobserwowano, że funkcja elektryczna siatkówki, tzn. jej zdolność do wytwarzania impulsów nerwowych w reakcji na światło, jest taka sama, jak u zwierząt zdrowych. Pomysł badaczy z Florydy rodzi wielkie nadzieje na stworzenie terapii skutecznie odwracającej efekty zwyrodnienia plamki żółtej. W samej Polsce najcięższą postać choroby, zagrażającą całkowitą utratą wzroku, stwierdza się rocznie aż u 20 tys. osób. Jest to najczęstsza przyczyna utraty wzroku u osób po 65. roku życia.
  15. Szafran może zapobiec utracie wzroku w starszym wieku, a nawet nieco polepszyć widzenie. Silvia Bisti z University of L'Aquila twierdzi, że ta droga przyprawa oddziałuje na geny kontrolujące działanie fotoreceptorów oka. Szafran nie tylko zapobiega uszkodzeniu receptorów, ale może także spowolnić, a nawet odwrócić szkody poczynione przez związane z wiekiem zwyrodnienie plamki żółtej (ang. age-related macular degeneration, AMD). AMD pojawia się wtedy, gdy komórki plamki żółtej (części siatkówki odpowiedzialnej za widzenie centralne) ulegają w miarę upływu czasu degeneracji. Związane z wiekiem zwyrodnienie plamki żółtej jest najczęstszą przyczyną utraty wzroku wśród starszych osób żyjących w krajach rozwiniętych. Włosi przeprowadzili w Rzymie testy kliniczne. Dzięki temu stwierdzili, że szafran nie jest zwykłym przeciwutleniaczem. Wydaje się np. wpływać na geny regulujące zawartość kwasów tłuszczowych w błonie komórkowej, co znacznie wzmacnia komórki oka. Po drugie, na modelu zwierzęcym wykazaliśmy, że dieta uwzględniająca szafran chroni oko przed uszkodzeniem przez jaskrawe światło. Wg Włochów, przyprawa sprawdza się nie tylko w przypadku zwyrodnienia plamki żółtej, ale także przy uwarunkowanej genetycznie retinopatii barwnikowej (łac. retinitis pigmentosa). Stosując ją, udawało się spowolnić utratę wzroku.
  16. Komputerowe gry akcji nie tylko nie niszczą wzroku, ale także poprawiają czułość oka na kontrast (ang. contrast sensitivity). Można więc powiedzieć, że stanowią swego rodzaju trening. Czułość na kontrast to zdolność do dostrzegania zmian w odcieniach szarości, przeciwstawionych zunifikowanemu tłu. Jest ona nieodzowna przy wielu codziennych czynnościach, np. czytaniu. Uważa się, że z wiekiem ulega upośledzeniu. Czułość oka na kontrast jest zmienna i zależy od częstotliwości przestrzennej elementów obrazu. Wcześniej nie przypuszczano, że jest to zdolność, którą można poprawić przez trening. Korygowano to na poziomie optyki oka. By uzyskać lepszą czułość na kontrasty, stosowano okulary lub przeprowadzano zabieg laserowy. Tymczasem okazuje się, że nawet bez tej korekcji da się pomóc mózgowi lepiej wykorzystywać informacje docierające z siatkówki – wyjaśnia prof. Daphne Bavelier z University of Rochester. Bavelier i zespół przeprowadzili dwa eksperymenty. Porównano czułość na kontrast u miłośników bardzo dynamicznych strzelanin FPS oraz zwolenników wolniejszych gier akcji. Okazało się, że ci pierwsi byli o 50% lepsi w wykrywaniu zmian kontrastu. Ponieważ dzięki temu odkryciu badacze nadal nie potrafili rozstrzygnąć, czy umiejętności zmieniły się pod wpływem gry, czy też wybór rodzaju gry był podyktowany wyjściowymi uzdolnieniami jednostek, przeprowadzono drugi z eksperymentów. Dwie grupy osób, które wybierały gry inne niż strzelanki, przeszły 50-godzinny trening. Członkowie pierwszej musieli się zmierzyć z Call of Duty, a drugiej z grą obfitującą we wrażenia wzrokowe, ale właściwie pozbawioną akcji. Okazało się, że w pierwszej odnotowano 43-proc. poprawę w zakresie czułości na kontrast, w drugiej nic się nie zmieniło. Amerykanie utrzymują, że korzystne efekty utrzymują się przez długi czas.
  17. Jaką funkcję, oprócz przechowywania materiału genetycznego, może pełnić jądro komórkowe? Zdaniem niemiecko-angielskiego zespołu badaczy, u zwierząt prowadzących nocny tryb życia pełni ono funkcję... soczewki. O odkryciu informuje prestiżowe czasopismo Cell. Swoje wnioski autorzy opierają na badaniu architektury jądra komórkowego, czyli rozłożenia różnych fragmentów nici DNA w jego wnętrzu. Materiał genetyczny nie jest bowiem jednorodny - składa się on z silnie zbitej i nieaktywnej heterochromatyny oraz z euchromatyny, czyli fragmentów DNA o znacznie niższym stopniu zagęszczenia, do których z łatwością mogą przyłączać się enzymy odpowiedzialne za ekspresję genów. W typowej niedzielącej się komórce euchromatyna zlokalizowana jest w centrum jądra komórkowego, zaś jego peryferie są zajęte przez heterochromatynę. Sytuacja wygląda jednak zupełnie inaczej w pręcikach, czyli komórkach wyspecjalizowanych w wykrywaniu światła o minimalnym natężeniu, u ssaków prowadzących nocny tryb życia. Ich DNA jest zorganizowane w sposób dokładnie odwrotny, tzn. heterochromatyna znajduje się u nich w pobliżu centrum jądra komórkowego, zaś odcinki o luźniejszej strukturze znajdują się na jego obrzeżach. Jak się okazuje, nie jest to zjawisko przypadkowe. Dzięki badaniu właściwości optycznych jąder komórkowych zauważono, że w pręcikach u zwierząt nocnych skupiają one światło, pozwalając w ten sposób na zwiększenie czułości oka. W oczywisty sposób wspomaga to widzenie w nocy, gdy ilość światła docierającego do narządu wzroku jest minimalna. Co ciekawe, badanie na myszach wykazało, iż charakterystyczna architektura jądra komórkowego nie jest widoczna od urodzenia, lecz rozwija się dopiero po kilku tygodniach życia. Wiele wskazuje także na to, że cecha ta pojawiła się w toku ewolucji co najmniej kilkakrotnie i nie jest efektem pojedynczej zmiany, "dziedziczonej" przez kolejne gatunki preferujące nocny tryb życia. Jak przyznają autorzy odkrycia, prezentowana przez nich hipoteza była z początku wyśmiewana przez kolegów. Z czasem udało się jednak udowodnić, że nietypowe rozłożenie DNA ma swój cel. Okazuje się więc, że odwaga jest prawdziwą cnotą także dla naukowców.
  18. W iluzji wodospadu przyglądanie się przez jakiś czas spadającej wodzie powoduje, że po przeniesieniu wzroku na nieruchomy obiekt widzimy jego przemieszczanie się w kierunku przeciwnym do wody. Badacze z MIT-u wykazali, że ujemny powidok pierwszego ruchu występuje nie tylko w przypadku wzroku, ale również dotyku. Co więcej, zmysły te wydają się ze sobą powiązane. Percepcja wzrokowa ruchu wywołuje zatem charakterystyczne "powidoki" ruchowe, a stymulacja dotykowa prawdziwe powidoki ujemne. Mamy zatem do czynienia z pokrywaniem się sieci neuronalnych odpowiadających za przetwarzanie tego rodzaju bodźców – uważa Christopher Moore. Na to, jak coś postrzegamy lub czujemy, może oddziaływać bodziec należący do innej modalności zmysłowej. Podczas eksperymentu 8 ochotników patrzyło na ekran komputera, po którym w górę lub w dół przesuwały się poziome pasy. Trwało to 10 sekund. W tym czasie czubek palca wskazującego prawej dłoni należało trzymać na położonym za monitorem stymulatorze. Miał on powierzchnię centymetra kwadratowego, a na jego powierzchni umieszczono 60 wibrujących bolców. Został zaprojektowany przez Qi Wanga z Georgia Institute of Technology i Vincenta Haywarda z Uniwersytetu Piotra i Marii Curie. Kiedy pasy znikały, w stymulatorze wibrował pojedynczy rząd bolców. Chociaż nic się nie zmieniało i drgał ciągle ten sam rząd "wypustek", wszyscy badani wspominali o ruchu w kierunku przeciwnym do kierunku przemieszczania się pasów. Podczas badania wpływu dotyku na wzrok sąsiadujące ze sobą rzędy bolców wibrowały w szybkich cyklach, naśladując przesuwanie się przedmiotów po opuszkach palców. Po 10 sekundach takiego masażu na ekranie wyświetlano statyczny układ poziomych pasów. I znów ludziom wydawało się, że pasy przesuwają się w kierunku przeciwnym niż bolce stymulujące skórę. Jak wyjaśnia Talia Konkle, kiedyś sądzono, że powidoki stanowią przejaw zmęczenia neuronów, tymczasem one nie są zmęczone, ale starają się na bieżąco przystosowywać mózg do zmieniającego się czuciowo otoczenia. Ostatnio wykazano, że pole V5 kory wzrokowej, obszar odpowiadający za ogólne postrzeganie ruchu w polu widzenia oraz jego kierunku, może także analizować ruch wykrywany za pomocą dotyku. Zespół Moore'a zamierza sprawdzić, czy tak jest rzeczywiście.
  19. Chyba każdy z nas zmienia nieco swoje zachowanie, gdy wie, że jest obserwowany. Dotychczas uważano, że umiejętnością tą są obdarzone bardzo nieliczne gatunki ssaków, lecz okazuje się, że podobnie zachowują się także kawki (Corvus monedula), ptaki z rodziny krukowatych. Wygląda na to, że kawki dostrzegają rolę oka w percepcji wizualnej [u innych osobników - przyp. red.] lub przynajmniej są wyczulone na sposób, w jaki zorientowane są ludzkie oczy, ocenia pracująca na Uniwersytecie Cambridge dr Auguste von Bayern, szefowa zespołu prowadzącego studium. Dzięki doświadczeniu badacze z Cambridge wykazali, że zwierzęta wyraźnie zwlekały z rozpoczęciem posiłku, gdy karmiąca je osoba kierowała na nie swój wzrok. Podobnego zachowania nie obserwowano, gdy człowiek znajdował się w pobliżu, lecz patrzył w inną stronę. Co ciekawe, przedstawiciele C. monedula zachowywali się różnie w zależności od stopnia zaznajomienia z karmiącą je osobą. Jeżeli smakołyki były podawane przez znanego im opiekuna, zabierały się za posiłek znacznie chętniej, lecz wyraźnie opóźniały konsumpcję, gdy karmiła je osoba obca. Co więcej, w kontaktach ze "starym znajomym" zwierzęta reagowały także na proste formy komunikacji, takie jak zmiany sposobu patrzenia lub wskazywanie palcem, gdy pokarm został uprzednio ukryty. Jak podkreśla dr von Bayern, nawet psy, zwane najlepszymi przyjaciółmi człowieka, ani szympansy, znane ze swojej inteligencji, nie wykazywały zachowań podobnych do tych zaobserwowanych u kawek. Do większości zwierząt trafiają bowiem wyłącznie mniej subtelne sygnały, takie jak ruchy całego ciała lub przynajmniej głowy. Być może nie doceniliśmy możliwości psychologicznych ptaków, uważa autorka. Jej zdaniem wyczulenie na komunikację nie powinno zaskakiwać. Kawki, podobnie jak wiele innych ptaków, tworzą pary na całe życie i muszą ściśle współpracować ze swoimi partnerami, co wymaga skutecznego sposobu komunikacji oraz wyczulenia na punkt widzenia partnera.
  20. Badacze z Instytutu i Muzeum Historii Nauki we Florencji zamierzają ekshumować ciało XVII-wiecznego fizyka i astronoma Galileusza. W 1637 roku ostatecznie stracił on wzrok, a Włosi zamierzają dociec, co było tego przyczyną. W tym celu wyekstrahują DNA i sprawdzą, na jaką chorobę zapadł słynny zwolennik heliocentrycznej teorii Mikołaja Kopernika. Galileusz samodzielnie skonstruował i w 1609 roku jako pierwszy zastosował lunetę w obserwacji astronomicznej. W tym samym roku odkrył góry na Księżycu, a w 1610 cztery satelity Jowisza, fazy Wenus oraz plamy słoneczne. To on zauważył, że Słońce obraca się wokół osi. Jeśli dzięki DNA dowiemy się, w jaki sposób choroba zniekształcała jego widzenie, może to być jedno z najważniejszych odkryć w historii nauki. Będziemy w stanie wyjaśnić popełniane przez niego charakterystyczne błędy: czemu np. opisał Saturna jako planetę z bocznymi uszami, a nie jako obiekt otoczony pierścieniami – opowiada Paolo Galluzzi, szef Instytutu. Chcąc sprawdzić, co dokładnie widział Galileo Galilei, włoscy naukowcy wykonali dokładną replikę XVII-wiecznej lunety. Na załatwienie odpowiednich pozwoleń i analizę DNA potrzeba będzie ok. roku, a realizacja projektu pochłonie 300 tys. euro.
  21. Pręciki w naszych oczach, oprócz umożliwiania nam widzenia w półmroku, pełnią jeszcze jedną, zaskakującą funkcję. Okazuje się, że ich osobnym zadaniem jest udział w odżywianiu drugiego typu komórek światłoczułych, czyli czopków. Odkrycia dokonano dzięki badaniom nad retinitis pigmentosa - nieuleczalną, przekazywaną dziedzicznie chorobą siatkówki oka prowadzącą do całkowitej ślepoty. Na jej rozwój może wpłynąć ponad czterdzieści różnych genów, lecz jej przebieg jest zwykle bardzo przewidywalny. We wczesnym dzieciństwie dochodzi do utraty widzenia w półmroku spowodowanej obumieraniem pręcików. Bardziej zagadkowy jest jednak kolejny etap choroby, w którym obumierają także czopki. Jest to zaskakujące, gdyż białka odpowiedzialne za retinitis pigmentosa w tych ostatnich nie wystepują. Zagadkę rozwiązało dwoje badaczy z Uniwersytetu Harvarda: Constance Cepko oraz Claudio Punzo. Naukowcy wykazali, że podczas rozwoju choroby we wnętrzu czopków dochodzi do niemal równoczesnej aktywacji ponad dwustu genów, spośród których liczne związane są z metabolizmem komórkowym. Najważniejszym z nich była sekwencja kodująca białko mTOR, odpowiedzialne za spowolnienie metabolizmu komórki, a nawet uruchomienie procesu trawienia wytworzonych przez siebie struktur w celu uzyskania z nich energii. To była nasza pierwsza wskazówka, że komórki mogą nie otrzymywać dostatecznej ilości odżywczych, wspomina Cepko. Jak się okazało, czopki rzeczywiście zaczynały stopniowo spalać zawarte we własnym wnętrzu substancje. Gdy zaczynało ich brakować, obumierały. Aby potwierdzić swoje przypuszczenia na żywym organizmie, badacze wykorzystali myszy z genetyczną predyspozycją do rozwoju retinitis pigmentosa, którym wstrzykiwano regularnie insulinę. Pod wpływem hormonu komórki pochłaniały do swojego wnętrza znacznie większą ilość glukozy. Co prawda pomimo stosowania zabiegu czopki obumierały, lecz utrzymywały się przy życiu znacznie dłużej. Potwierdza to dodatkowo, że przyczyną ich obumierania jest niedostateczny napływ substancji odżywczych. Niestety, zdobyta wiedza nieprędko zostanie wykorzystana w leczeniu. Okazuje się bowiem, że śmierci pręcików nie można zapobiec dzięki insulinie, gdyż proces ten nie jest zależny od poziomu glukozy. Ich obumieranie niszczy jednak delikatną strukturę siatkówki, przez co czopki prędzej czy później także czeka przykry los. Niewątpliwie odkrycie będzie miało jednak istotne znaczenie dla badaczy, którzy mogą teraz skupić się bezpośrednio na przyczynie upośledzenia widzenia w przebiegu retinitis pigmentosa.
  22. Mimo że krety do tego stopnia przystosowały się do podziemnego trybu życia, iż mają permanentnie zamknięte powieki, nadal umieją odróżnić dzień od nocy (BMC Biology). Martin Collinson i David Carmona z Uniwersytetu w Aberdeen badali krety iberyjskie (Talpa occidentalis). Brytyjczycy uważają, że u owadożernych ssaków dochodzi do degeneracji wzroku na wczesnym etapie rozwoju. Podobne zmiany genetyczne (mutacje) mogą występować u pacjentów z dziedzicznymi chorobami oczu, np. aniridią, charakteryzującą się brakiem tęczówki. Panowie śledzili rozwój narządu wzroku u kretów iberyjskich na dwóch poziomach: komórkowym i molekularnym. Wg nich, zwierzęta te mogą od czasu do czasu potrzebować wzroku, ale większość życia spędzają, przekopując się przez zwały ziemi. Gdyby dostała się ona do oczu, doszłoby do uszkodzenia gałki lub rozwoju stanu zapalnego. Brytyjczycy spodziewali się, że u kretów pojawiły się podobne zmiany, jak u pozostałych zwierząt żyjących w ciemnościach. U ryb jaskiniowych zanik soczewek uruchomił np. cały łańcuch reakcji. W ten sposób nie dochodzi również do utworzenia siatkówki z komórkami światłoczułymi (pręcikami i czopkami) oraz innych struktur oka. Wbrew oczekiwaniom, procesy zachodzące u Talpa occidentalis były różne od tego, co obserwuje się u ryb jaskiniowych. U ssaków w życiu płodowym nadal występuje bowiem nadrzędny gen PAX6, który kontroluje aktywność innych genów wpływających na rozwój oczu. Niestety, jest on "włączony" za długo, co zaburza proces przemieszczania się komórek tego narządu. Dochodzi do nieprawidłowego wykształcenia włókien soczewki. W rezultacie składa się ona z poprzerywanego nabłonka i bezładnej masy niedojrzałych komórek jądrzastych. Co prawda powieki kretów są zawsze zamknięte, ale skóra jest na tyle cienka, że zwierzęta rejestrują prześwitujące przez nie światło. Collinson opowiada też, że krety dysponują czymś na kształt rytmów dobowych.
  23. Naukowcy z Massachusetts Institute Technology próbują dowiedzieć się, jak to się dzieje, że potrafimy rozpoznawać obiekty. Ich prace mogą posłużyć do stworzenia maszyn widzących w sposób podobny jak ludzie. Widzenie i rozpoznawanie przedmiotów to dla nas umiejętności tak oczywiste, że w ogóle się nad nimi nie zastanawiamy. Tymczasem są to bardzo skomplikowane mechanizmy. Wystarczy uświadomić sobie, że nigdy nie widzimy dwukrotnie tego samego obrazu. Przedmioty, ludzi i zwierzęta oglądamy w coraz to nowych sytuacjach, pod innym kątem, przy zmieniającym się oświetleniu. A mimo to potrafimy je rozpoznać. Ta stabilność, niezmienność to podstawa umiejętności rozpoznawania obiektów - mówi James Di Carlo z McGovern Institute for Brain Research w MIT. Chcemy dowiedzieć się, w jaki sposób mózgowi udało się osiągnąć tę stabilność i jak możemy ją zaimplementować w systemach komputerowych - dodaje. Jedno z możliwych wyjaśnień jest takie, że w ciągu sekundy następują trzy niewielkie ruchy gałek ocznych. Tymczasem obiekty fizyczne poruszają się dość wolno. Oczy rejestrują więc "klatki" z obrazami danego obiektu, a mózg uznaje, że seria następujących po sobie "zdjęć" przedstawia ten sam obiekt i dlatego potrafimy go rozpoznać. Już wcześniej zespół DiCarlo przeprowadził ciekawy eksperyment, który potwierdziałby teorię "serii zdjęć". Badanym wyświetlano przedmiot peryferiach pola widzenia. Gdy oczy zaczynały się poruszać tak, żeby znalazł się on w centrum pola widzenia, przedmiot zamieniano na inny. Badani świadomie nie byli w stanie zarejestrować zmiany, jednak okazało się, że po pewnym czasie mylili oba przedmioty. Może to świadczyć o tym, że mózg, do którego trafiała "seria zdjęć" dwóch różnych przedmiotów, uznawał je za jeden. Ostatnio profesor DiCarlo przeprowadził kolejny eksperyment, tym razem na małpach. Naukowcy zbierali sygnały dobiegające z dolnej kory skroniowej w której najprawdopodobniej znajduje się ośrodek "stałości wzrokowej". Neurony tej kory mają swoje preferencje i reagują na "ulubiony" przedmiot niezależnie od tego, w którym miejscu pola widzenia się on znajduje. Najpierw zidentyfikowaliśmy obiekt, który neuron preferował - na przykład żaglówkę - oraz taki, który mniej 'lubił' - na przykład filiżankę herbaty - opowiada magistrant Nuo Li. Gdy w różnych miejscach pola widzenia wyświetlaliśmy żaglówkę, oczy małpy w naturalny sposób przemieszczały się tak, by znalazła się ona w centrum. Jedno z miejsc w polu widzenia wybraliśmy jako punkt, w którym będziemy małpę 'oszukiwać'. Najpierw wyświetlaliśmy tam żaglówkę, a gdy oczy zaczynały się poruszać, zmienialiśmy ją na filiżankę herbaty - mówi. Badania wykazały, że po serii takich "oszustw" neurony małp zareagowały tak samo, jak neurony ludzi z poprzednich badań - straciły orientację co do przedmiotu. Neuron, który "lubił" żaglówki nadal je preferował we wszystkich punktach pola widzenia, z wyjątkiem tego jednego, w którym pokazywano mu filiżankę herbaty. Akurat w tym miejscu zaczął preferować filiżankę herbaty. Im dłużej trwały eksperymenty, tym silniejsza była zmieniona preferencja. Co ważne, naukowcy w żaden sposób nie wpływali na preferencje małp. Zwierzęta mogły swobodnie wędrować wzrokiem po całym ekranie, na którym pokazywano obrazki. Byliśmy zdumieni efektywnością uczenia się neuronów, szczególnie po 1- lub 2-godzinnym treningu - mówi DiCarlo. Wydaje się, że nawet u dorosłych system rozpoznawania obiektów bez przerwy się uczy na podstawie doświadczenia. Jeśli weźmiemy pod uwagę fakt, że w ciągu roku oczy człowieka wykonują około 100 milionów ruchów, to ten właśnie mechanizm może być podstawą naszych umiejętności łatwego rozpoznawania obiektów - dodaje profesor.
  24. Powszechnie wiadomo (i potwierdzają to badania), że u osób niewidomych pozostałe zmysły znacznie się wyostrzają. Dotychczas nie było jednak wiadomo, jak do tego dochodzi. Badacze z Beth Israel Deaconess Medical Center (BIDMC) uchylili rąbka tajemnicy dzięki interesującemu eksperymentowi. Przeprowadzone doświadczenie wyjaśnia częściowo mechanizm kompensacji utraconej zdolności widzenia, lecz także dowodzi, że proces ten zachodzi bardzo szybko i jest odwracalny. Jak tłumaczy dr Alvaro Pascual-Leone, jeden z autorów badania, zdolność mózgu do reorganizacji jest znacznie większa, niż dotychczas sądzono. W naszym badaniu wykazaliśmy, że nawet u osoby dorosłej część mózgu odpowiedzialna za widzenie szybko dostosowuje się do przetwarzania [informacji o] dotyku w reakcji na całkowitą utratę zdolności widzenia. Szybkość i dynamiczna natura zaobserwowanych zmian sugeruje, że dzieje się to nie dzięki tworzeniu nowych połączeń nerwowych, które zajmowałoby znaczną ilość czasu, lecz dzięki prezentowaniu przez korę wzrokową nowych zdolności, które są ukryte, gdy wzrok jest sprawny. W jednym z poprzednich badań naukowcy z BIDMC udowodnili, że osoby, którym zasłoni się oczy, już po pięciu dniach znacznie skuteczniej odczytują tekst zapisany alfabetem Braille'a. Wykonane później testy wykazały, że ich kora mózgowa przeszła znaczne zmiany. Badacze podążyli tym tropem i postanowili okreslić naturę tych zmian. Do badania zaproszono 47 ochotników. Połowie z nich zasłonięto całkowicie oczy na pięć dni, pozostałym zaś - tylko na czas wykonywanych testów. Badani z obu grup uczyli się intensywnie (przez cztery do sześciu godzin dziennie) alfabetu Braille'a pod okiem instruktorów z Carroll Center for the Blind. Wykonano u nich także obrazowanie metodą funkcjonalnego rezonansu magnetycznego, pozwalające na określenie aktywności poszczególnych części mózgu. Eksperyment wykazał, że osoby, którym zasłonięto oczy na pięć pełnych dni, nie tylko radzą sobie znacznie lepiej z odczytywaniem informacji zapisanych alfabetem Braille'a, lecz także ich mózgi przeszły znaczną reorganizację. Ich kora wzrokowa wykazywała ogromną aktywność w reakcji na dotyk. Także jej pobudzanie metodą przezczaszkowej stymulacji magnetycznej (ang. transcranial magnetic stimulation - TMS) znacznie zakłócało możliwość odbioru informacji związanych z dotykiem, co dodatkowo potwierdza zmiany zachodzące w układzie nerwowym. Co ciekawe, już w 24 godziny po zakończeniu eksperymentu mózg uczestników eksperymentu wracał do normalnego trybu funkcjonowania. Jak ocenia dr Lotfi Merabet, główna autorka badania, ta wyjątkowo szybka adaptacja oznacza, że funkcje normalnie hamowane w obrębie kory wzrokowej zostają "wyciągnięte na powierzchnię", gdy zachodzi taka potrzeba. Dodaje: jesteśmy przekonani, że z czasem te funkcje zostają utrzymane i wzmocnione, prowadząc ostatecznie do trwałych zmian strukturalnych. Wykonany eksperyment podważa więc przekonanie niektórych badaczy o trwałym podziale funkcjonalnym mózgu na części o wyraźnej specjalizacji. Wyniki badań opublikowano w najnowszym numerze czasopisma PLoS One.
  25. Podczas badań na rezusach (Macaca mulatta) okazało się, że rejon odpowiadający za odbiór dźwięków może bezpośrednio wpływać na pracę obszarów związanych z percepcją wzrokową. W procesie nie uczestniczą żadne struktury integrujące. Zespół P. Barone'a z Centrum Badań nad Mózgiem i Poznaniem w Tuluzie utrwalał reakcje neuronów za pomocą mikroelektrod umieszczonych w pierwszorzędowej korze wzrokowej. Zadanie małp polegało na skierowaniu spojrzenia na bodziec. Naukowcy wyliczali czas upływający od momentu jego prezentacji do uaktywnienia się neuronów (fachowo nazywa się go czasem latencji). W pierwotnej wersji eksperymentu prezentowano tylko bodziec wzrokowy. Potem z tego samego punktu dochodził też dźwięk. Gdy bodziec wzrokowy był silny, dołączenie dźwięku nie zmieniało czasu reakcji. Jeśli jednak był on słaby, skojarzenie wzroku ze słuchem skracało czas latencji o 5 do 10 procent. Nasze odkrycia sugerują, że pojedyncze neurony z pierwszorzędowej kory wzrokowej mogą integrować informacje z innej modalności sensorycznej. Bodziec słuchowy jest przetwarzany szybciej od wzrokowego. Rezusy nauczyły się kojarzyć dźwięk z widokiem, dlatego kora wzrokowa jest przygotowana do odbioru słabszego sygnału.
×
×
  • Create New...