Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'DNA'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 125 results

  1. U starszych osób, które chcą spowolnić starzenie się organizmu, dbając o ruch i odpowiednie odżywianie, po ćwiczeniach aerobowych, kiedy mięśnie pozyskują energię przy wykorzystaniu procesów tlenowych, bardziej wskazane są napoje białkowe niż węglowodanowe. Efekty widać już po 6 tygodniach, w dodatku wystarczy niewielka dawka białek, bo tylko 20 gramów (FASEB Journal). Zespół doktora Benjamina F. Millera z Uniwersytetu Stanowego Kolorado zwerbował grupę 16 ochotników w wieku 37 lat i starszych. Badanych podzielono na dwie grupy i zalecono, by przez 6 tygodni 3 razy w tygodniu biegali po 45 min na bieżni. Po ćwiczeniach jedna z grup piła napój białkowy, a druga węglowodanowy. Aby ocenić ilość nowo powstałych struktur mięśniowych, napoje przygotowywano na bazie ciężkiej wody. Była ona włączana w procesy metaboliczne (syntezę), trafiając w końcu do mięśni. Po 6 tygodniach naukowcy pobrali próbki mięśni i posługując się spektrometrią mas, ustalali, jaka część białek, DNA oraz błon komórkowych mięśni powstała w badanym okresie. Okazało się, że napoje białkowe sprzyjały większym zmianom w strukturze mięśni szkieletowych.
  2. Chroniąc uprawy przed szkodnikami, stosujemy pestycydy. Te jednak szkodzą na dłuższą metę zarówno nam samym, jak i środowisku. Akumulują się w wodzie, glebie oraz tkankach żywych organizmów. Dlatego rolnictwo ekologiczne coraz częściej korzysta z pomocy bakterii i grzybów, a ostatnio nawet skorpionów. Raymond St. Leger, profesor entomologii z University of Maryland, wyhodował superzabójczy gatunek grzyba. Do genomu Metarhizium anisopliae wprowadził geny kodujące neurotoksynę AaIT. To składnik jadu jednego z najgroźniejszych dla ludzi gatunków skorpiona. Androctonus australis zamieszkuje Saharę (Nature Biotechnology). Oprócz genu kodującego toksynę, do DNA grzyba wprowadzono też gen kontrolny. Powoduje on, że trucizna jest wytwarzana wyłącznie w krwi insekta. Skorpiony dysponują toksynami doskonale dostosowanymi do zabijania owadów. Drapieżnik ten uśmierca, nakłuwając wcześniej ofiarę. Musieliśmy więc znaleźć sposób na wprowadzenie trucizny do organizmu bez skorpiona. Ze względu na naturalną zakaźność, grzyby są do tego celu idealne. Lądują na powłokach ciała owada i wbijają w nie strzępki (hyphae), dzięki czemu wrastają w tkanki. Gdyby zmusić grzyby do wprowadzania do organizmu ofiary toksyny, można by ją szybko zabić. Właśnie to się nam udało – wyjaśnia profesor St. Leger. Metarhizium anisopliae i gatunki pokrewne są już wykorzystywane, m.in. w Australii i Afryce, do zwalczania szkodników upraw (np. szarańczy) i komarów. Przed skojarzeniem z toksyną skorpiona były jednak mniej skuteczne od syntetycznych pestycydów. Problem polegał na tym, że potrzeba sporo zarodników grzyba, by zabić owada. Poza tym trwa to dosyć długo. Ludzie są co prawda rzadziej gryzieni, ale nie zmniejsza to liczby zachorowań na malarię czy gorączkę tropikalną. Należało więc wyhodować superzabójczego grzyba, który uśmierca błyskawicznie. Testy laboratoryjne wykazały, że w porównaniu do niezmodyfikowanej wersji, M. anisopliae uzyskany dzięki inżynierii genetycznej jest 9-krotnie skuteczniejszy w uśmiercaniu komarów, 22-krotnie w tępieniu gąsienic i 30-krotnie w eliminowaniu najgroźniejszego szkodnika kawy Hypothenemus hampei.
  3. Jak monitorować zwierzęta żyjące w jakimś akwenie wodnym? Można je wyławiać, określać prawdopodobną wielkość stada/populacji czy zliczać (także w nowocześniejszy sposób, np. znakując obrożami z GPS-em), ale najnowsze badania zespołu z Muzeum Historii Naturalnej w Kopenhadze demonstrują, że wystarczy nabrać kieliszek wody. Okazuje się, że w próbce o pojemności ok. 20 ml znajdują się ślady DNA wszystkich zwierząt zamieszkujących jezioro czy staw. Metoda okazała się tak skuteczna nie tylko w określaniu, jakie istoty zamieszkują wody, ale także ile ich jest, że Duńczycy przypuszczają, że w ten sposób będzie się kiedyś zliczać ryby. "W próbce wody znaleźliśmy DNA tak odmiennych zwierząt, jak wydra i ważka. Wykazaliśmy, że metoda wykrywania materiału genetycznego działa w szerokim spektrum rzadkich gatunków zamieszkujących wody słodkie - wszystkie one zostawiają w środowisku ślady DNA, które można wykryć nawet w niewielkiej ilości wody z habitatu" - opowiada doktorant Philip Francis Thomsen. Zespół z Kopenhagi badał faunę 100 jezior i strumieni europejskich. Posłużono się zarówno zliczaniem, jak i techniką bazującą na DNA. Okazało się, że 2. z metod jest skuteczna nawet w przypadku bardzo rozrzedzonej i nielicznej populacji. Poza tym udowodniono, że ilość DNA w środowisku koreluje z zagęszczeniem osobników, czyli można w ten sposób określić wielkość populacji.
  4. Laureat Nagrody Nobla biolog Luc Montagnier zaszokował świat naukowy publikując informacje o eksperymencie, który sugeruje, że DNA potrafi się... "teleportować". Niewątpliwie eksperyment wymaga powtórzenia, gdyż wielu naukowców wyraziło już wątpliwości. Zespół Montagniera użył dwóch probówek. W jednej z nich umieszczono niewielki fragment DNA, w drugiej znajdowała się czysta woda. Próbki poddano działaniu pola elektromagnetycznego o częstotliwości 7 herców. Po 18 godzinach DNA odkryto w probówce z czystą wodą. Montagnier porównał uzyskane wyniki z próbkami kontrolnymi, w których nie użyto pola elektromagnetycznego lub było ono słabsze, a czas trwania eksperymentu był krótszy. W próbkach kontrolnych nie stwierdzono przeniesienia się DNA. Badania, o ile ich wyniki się potwierdzą, mogą wstrząsnąć nie tylko podstawami biologii, ale również i fizyki kwantowej. Znany jest bowiem efekt kwantowy, który umożliwia teleportację w mikroskali. Jednak efekt ten trwa ułamki sekund, tutaj zaś mamy do czynienia z niezwykle zagadkowym zjawiskiem. Niewykluczone, że życie wykorzystuje zjawiska kwantowe do rozprzestrzeniania się. A może to samo życie jest złożoną projekcją zjawisk kwantowych i zależy od nich w niezrozumiały dla nas sposób. Ze szczegółami eksperymentu można zapoznać się w sieci [PDF].
  5. Zespół z Mayo Clinic nauczył układ immunologiczny myszy zwalczania czerniaka złośliwego. Do spokrewnionego z wirusem wścieklizny wirusa pęcherzykowatego zapalenia jamy ustnej wprowadzono DNA pobrane z ludzkich komórek czerniaka. Dzięki temu szereg genów można było wprowadzić bezpośrednio do guza. Na wczesnym etapie badań w mniej niż 3 miesiące z minimalnymi skutkami ubocznymi wyleczono 60% gryzoni. Sądzimy, że ta technika pozwoli nam zidentyfikować całkowicie nowy zestaw genów, które kodują antygeny ważne dla stymulowania układu odpornościowego, tak aby odrzucił on nowotwór. [...] Zauważyliśmy, że by odrzucenie guza było najskuteczniejsze, u myszy kilka białek musi ulegać jednoczesnej ekspresji - tłumaczy dr Richard Vile. Wierzę, że uda nam się stworzyć eksperymentalne szczepionki, dzięki którym po kolei wyeliminujemy wszystkie nowotwory. Szczepiąc przeciwko wielu białkom naraz, mamy nadzieję leczyć guzy pierwotne i chronić przed wznową. Szczepionki powstające w ramach nurtu immunoterapii nowotworowej bazują na spostrzeżeniu, że guzy przystosowują się do powtarzalnych ataków układu odpornościowego, zmniejszając liczbę antygenów na powierzchni komórek. Przez to układowi odpornościowemu trudniej jest je rozpoznać. O ile jednak nowotwory mogą się nauczyć ukrywać przed zwykłym układem odpornościowym, o tyle nie są w stanie uciec przed układem immunologicznym wytrenowanym przez zmodyfikowany genetycznie wirus pęcherzykowatego zapalenia jamy ustnej. Nikt nie wie, ile antygenów układ odpornościowy widzi na powierzchni komórek nowotworowych. Doprowadzając do ekspresji wszystkich białek w wysoce immunogennych wirusach, zwiększamy ich widoczność dla systemu odpornościowego - wyjaśnia dr Vile.
  6. Ötzi, znaleziony przed 20 laty zmumifikowany „Człowiek Lodu“, którego zwłoki liczą sobie ponad 5000 lat, miał brązowe oczy. Naukowcy badający jego DNA stwierdzili również, że jego organizm nie tolerował laktozy, był podatny na choroby serca i chorował na boreliozę. Niewykluczone też, że był spokrewniony z niektórymi współczesnymi mieszkańcami północnych wybrzeży Morza Śródziemnego. Wykryta u Ötzi borelioza to najstarszy znany przypadek tej choroby. Badania DNA wskazujące na podatność na choroby serca potwierdziły, że prawidłowo wcześniej zidentyfikowano zwapnienie arterii. To z kolei oznacza, iż występowania chorób serca nie można przypisywać wyłącznie współczesnemu trybowi życia. Jeden z genów wskazuje, że przodkowie Ötzi przybyli do Europy z terenów Bliskiego Wschodu. Gen ten jest obecnie rzadko znajdowany w Europie, jednak można go znaleźć u Włochów, a przede wszystkim u mieszkańców Sardynii i Korsyki.
  7. Szwedzcy i hiszpańscy uczeni twierdzą, że Homo sapiens nie miał nic wspólnego z zagładą neandertalczyków. Prowadzone przez nich badania genetyczne wykazały, że większość neandertalczyków wyginęła już 50 tysięcy lat temu. Później niewielka ich grupa ponownie skolonizowała centralną i zachodnią Europę i zamieszkiwała ją przez kolejne 10 000 lat. Fakt, że neandertalczycy najpierw niemal wyginęli w Europie, z później ją ponownie skolonizowali i miało to miejsce na długo zanim zetknęli się z człowiekiem współczesnym był dla nas całkowitym zaskoczeniem. To może wskazywać, że neandertalczycy byli znacznie bardziej wrażliwi na dramatyczne zmiany klimatu, które miały miejsce podczas ostatniego zlodowacenia, niż sądziliśmy - mówi profesor Love Dalén ze Szwedzkiego Muzeum Historii Naturalnej. Badania genetyczne wykazały, że na 10 000 lat przed całkowitym wyginięciem neandertalczyków ich DNA było znacznie mniej zróżnicowane niż w okresach wcześniejszych. Różnie były znacznie mniejsze niż można się spodziewać po rozpowszechnionym gatunku. Różnice genetyczne u starszych neandertalczyków oraz u neandertalczyków z Azji były tak duże, jak obecne różnice genetyczne pomiędzy ludźmi. Jednak zróżnicowanie młodszych neandertalczyków na terenie Europy było mniejsze niż obecne zróżnicowanie ludzi na Islandii - stwierdził Anders Götherström z uniwersytetu w Uppsali. Jako, że badania były prowadzone na mocno uszkodzonym materiale genetycznym, szwedzko-hiszpański zespół poprosił o pomoc specjalistów z innych krajów. Do pracy zaprzęgnięto m.in. statystyków, specjalistów od sekwencjonowania DNA czy paleoantropologów z Danii i USA. Tego typu interdyscyplinarne badania są niezwykle cenne dla poznania naszej ewolucji. W ostatnich latach badania DNA prehistorycznych ludzi przyczyniło się do wielu niespodziewanych odkryć. Zobaczymy, co przyniosą kolejne lata - mówi profesor paleontologii Juan Luis Arsuaga z madryckiego Universidad Complutense.
  8. Szwedzcy i hiszpańscy uczeni twierdzą, że Homo sapiens nie miał nic wspólnego z zagładą neandertalczyków. Prowadzone przez nich badania genetyczne wykazały, że większość neandertalczyków wyginęła już 50 tysięcy lat temu. Później niewielka ich grupa ponownie skolonizowała centralną i zachodnią Europę i zamieszkiwała ją przez kolejne 10 000 lat. Fakt, że neandertalczycy najpierw niemal wyginęli w Europie, z później ją ponownie skolonizowali i miało to miejsce na długo zanim zetknęli się z człowiekiem współczesnym był dla nas całkowitym zaskoczeniem. To może wskazywać, że neandertalczycy byli znacznie bardziej wrażliwi na dramatyczne zmiany klimatu, które miały miejsce podczas ostatniego zlodowacenia, niż sądziliśmy - mówi profesor Love Dalén ze Szwedzkiego Muzeum Historii Naturalnej. Badania genetyczne wykazały, że na 10 000 lat przed całkowitym wyginięciem neandertalczyków ich DNA było znacznie mniej zróżnicowane niż w okresach wcześniejszych. Różnie były znacznie mniejsze niż można się spodziewać po rozpowszechnionym gatunku. Różnice genetyczne u starszych neandertalczyków oraz u neandertalczyków z Azji były tak duże, jak obecne różnice genetyczne pomiędzy ludźmi. Jednak zróżnicowanie młodszych neandertalczyków na terenie Europy było mniejsze niż obecne zróżnicowanie ludzi na Islandii - stwierdził Anders Götherström z uniwersytetu w Uppsali. Jako, że badania były prowadzone na mocno uszkodzonym materiale genetycznym, szwedzko-hiszpański zespół poprosił o pomoc specjalistów z innych krajów. Do pracy zaprzęgnięto m.in. statystyków, specjalistów od sekwencjonowania DNA czy paleoantropologów z Danii i USA. Tego typu interdyscyplinarne badania są niezwykle cenne dla poznania naszej ewolucji. W ostatnich latach badania DNA prehistorycznych ludzi przyczyniło się do wielu niespodziewanych odkryć. Zobaczymy, co przyniosą kolejne lata - mówi profesor paleontologii Juan Luis Arsuaga z madryckiego Universidad Complutense.
  9. Kiedy komórki naturalnie obumierają, tworzą wiele "śmieci", które mogą skłaniać układ immunologiczny do atakowania własnego organizmu. Naukowcy z Georgia Health Sciences University odkryli jednak, że zapobiegając takim sytuacjom, można wykorzystać enzym 2,3-dioksygenazę indoleaminy (IDO), niedopuszczający u kobiet w ciąży do odrzuceniu płodu. Przyczyną tocznia jest utrata normalnej tolerancji na siebie, swoje własne DNA - tłumaczy dr Tracy L. McGaha. Podczas eksperymentów Amerykanie zauważyli, że po usunięciu z hodowli IDO pozostałości po obumarłych komórkach wyzwalały reakcję immunologiczną, która mogła prowadzić do choroby autoimmunologicznej. U myszy genetycznie predysponowanych do tocznia zablokowanie działania 2,3-dioksygenazy indoleaminy skutkowało rozwojem wcześniejszej i bardziej agresywnej postaci choroby. McGaha przypomniał swoje wcześniejsze badania, których wyniki ukazały się w piśmie Blood. Podobnie jak teraz, jego zespół skoncentrował się wtedy na makrofagach. Przy wejściu do śledziony znajdują się komórki układu odpornościowego, kontrolujące krew pod kątem obecności bakterii, wirusów czy cholesterolu. W pobliżu czuwa grupa makrofagów, które fagocytują niepożądane "elementy" i najwyraźniej kontrolują przebieg reakcji, bo gdy ich zabraknie, a w śledzionie pojawią się martwe komórki, rozwija się stan zapalny. Najnowsze studium wykazało, że czymś, co pozwala trzymać komórki układu odpornościowego w ryzach, jest po części właśnie IDO. To dzięki enzymowi możliwe jest skuteczne usuwanie śmieci i jednoczesne utrzymywanie spokoju wśród okolicznych komórek odpornościowych. Wniosek? Nasilając produkcję enzymu lub jego działanie, dałoby się przywrócić utraconą tolerancję na siebie. W tym miejscu warto przypomnieć, co ustalili inni naukowcy. IDO uczestniczy w katabolizmie tryptofanu. Hamuje namnażanie limfocytów T zarówno w warunkach in vivo, jak i in vitro, dlatego przypuszczano, że dzieje się tak wskutek cytotoksycznego wpływu metabolitów tryptofanu. To kolejny element układanki związanej z regulacyjną rolą 2,3-dioksygenazy indoleaminy.
  10. Zespół z Georgia Health Sciences University (GHSU) opracował metodę na ograniczenie zdolności komórek nowotworu do reperowania śmiertelnych uszkodzeń DNA wywołanych radioterapią. Można w ten sposób zwiększyć skuteczność napromienienia, ograniczając przy tym skutki uboczne. Radioterapia to wspaniała metoda, problemem są efekty uboczne. Uważamy, że [nasz wynalazek] to metoda na wywołanie śmierci tej samej liczby komórek nowotworowych mniejszą dawką promieniowania lub użycie tej samej dawki i być może wyleczenie pacjenta, który wcześniej nie miał szans na wyzdrowienie - tłumaczy dr William S. Dynan. Napromienianie powoduje rozpad podwójnej helisy DNA. Ponieważ jednak z różnym poziomem promieniowania stykamy się praktycznie wszędzie - od jedzenia po powietrze i glebę - wszystkie komórki, w tym nowotworowe, dysponują mechanizmami zapobiegającymi śmiertelnemu rozbiciu DNA. Naukowcy z GHSU przezwyciężyli te naturalne mechanizmy, opakowując przeciwciała folanami, które z łatwością dostają się do większości komórek, zwłaszcza nowotworowych. Sporo komórek nowotworowych, w tym badanych przez Amerykanów komórek raka płuc, dysponuje dużą liczbą receptorów folanów, przez co to do nich trafia gros "ładunku". Wcześniej badania nad ograniczeniem szkodliwości radioterapii koncentrowały się na receptorach na powierzchni. Dynanowi zależało jednak na stworzeniu konia trojańskiego o bardziej bezpośrednim działaniu. Akademicy połączyli fragment przeciwciała ScFv 18-2 z folanami. Po związaniu z receptorem folanowa główka opakowania nakierowuje się na jądro komórkowe. Zmiana warunków chemicznych we wnętrzu komórki prowadzi do rozerwania wiązania między ScFv 18-2 a folanem, dzięki czemu przeciwciało może zaatakować regulatorowy region kinazy białkowej zależnej od DNA - enzymu przeprowadzającego naprawę uszkodzeń DNA. Łączymy docelową molekułę z transporterem - tłumaczy Dynan. Strategia ta obiera na cel jeden z kluczowych enzymów, dlatego naprawa staje się trudniejsza - uzupełnia Shuyi Li. Naukowy duet podkreśla, że w ten sposób bezpośrednio do komórek nowotworowych można dostarczyć dowolną ilość i liczbę leków. W przyszłości panowie zamierzają poszukać innych punktów dostępu do komórek oraz najskuteczniejszych form opakowania. Ponieważ zakończył się etap badań na hodowlach komórkowych, teraz rozpoczną się eksperymenty na zwierzętach. Podejście Dynana i Li naśladuje endocytozę. Pozwala ona na przetransportowanie do komórki np. białek, które ze względu na rozmiary nie dostałyby się tu inną drogą, muszą więc polegać na tworzeniu się wakuol.
  11. Jak monitorować zwierzęta żyjące w jakimś akwenie wodnym? Można je wyławiać, określać prawdopodobną wielkość stada/populacji czy zliczać (także w nowocześniejszy sposób, np. znakując obrożami z GPS-em), ale najnowsze badania zespołu z Muzeum Historii Naturalnej w Kopenhadze demonstrują, że wystarczy nabrać kieliszek wody. Okazuje się, że w próbce o pojemności ok. 20 ml znajdują się ślady DNA wszystkich zwierząt zamieszkujących jezioro czy staw. Metoda okazała się tak skuteczna nie tylko w określaniu, jakie istoty zamieszkują wody, ale także ile ich jest, że Duńczycy przypuszczają, że w ten sposób będzie się kiedyś zliczać ryby. "W próbce wody znaleźliśmy DNA tak odmiennych zwierząt, jak wydra i ważka. Wykazaliśmy, że metoda wykrywania materiału genetycznego działa w szerokim spektrum rzadkich gatunków zamieszkujących wody słodkie - wszystkie one zostawiają w środowisku ślady DNA, które można wykryć nawet w niewielkiej ilości wody z habitatu" - opowiada doktorant Philip Francis Thomsen. Zespół z Kopenhagi badał faunę 100 jezior i strumieni europejskich. Posłużono się zarówno zliczaniem, jak i techniką bazującą na DNA. Okazało się, że 2. z metod jest skuteczna nawet w przypadku bardzo rozrzedzonej i nielicznej populacji. Poza tym udowodniono, że ilość DNA w środowisku koreluje z zagęszczeniem osobników, czyli można w ten sposób określić wielkość populacji.
  12. Czemu samce owadów starają się pozostać w pobliżu samic po spółkowaniu? Do tej pory przeważał pogląd, że monitorując zachowanie partnerki i uniemożliwiając jej kolejne akty płciowe, samiec zwiększa prawdopodobieństwo, że to on będzie ojcem. Tymczasem ostatnie badania nad świerszczami polnymi pokazują, że nie ma tu mowy o agresji czy dominacji, a rycerskie samce ryzykują wręcz życie, gdy ochraniając swoje wybranki, pozwalają im pierwszym wejść do norki. Samice owadów kopulują z wieloma samcami, a ostatni partner z największym prawdopodobieństwem zapładnia jaja. Utrudnianie kontaktów z innymi samcami wydaje się więc dobrym sposobem na zapewnienie sobie ojcostwa. Gdy jednak entomolodzy z Uniwersytetu w Exeter przeprowadzili eksperymenty na dzikich świerszczach polnych (Gryllus campestris), okazało się, że taka interpretacja sytuacji daleka jest od rzeczywistości. Brytyjczycy badali owady w ciągu 2 sezonów rozrodczych. Przeanalizowali ponad 200 godzin nagrań z kamery na podczerwień. Badali też DNA świerszczy i znakowali je. Dr Rolando Rodríguez-Muñozof nie zauważył żadnych oznak agresji samców wobec samic ani prób ograniczania ruchu samicy do lub z norki. Przepuszczając wybranki przodem, samce często narażały się na niebezpieczeństwo, np. atak ptaków. Relacje między świerszczami są inne od tego, co zakładaliśmy. Zamiast być tyranizowane, samice są raczej ochranianie przez samce. Możemy nawet powiedzieć, że samce są rycerskie. Żyjąc w pojedynkę, samce i samice równie często padają ofiarą drapieżników, gdy jednak połączą się w pary, samce są zabijane o wiele częściej, a samice zawsze przeżywają atak. Nie jest to jednak całkowicie altruistyczne - samce nadal odnoszą korzyści. Nawet jeśli zginą, przeżywająca samica nosi ich plemniki. W ten sposób samce upewniają się, że ich materiał genetyczny przetrwa. Zespół z Exeter wykorzystał 96 kamer i mikrofonów. Monitorowano populację świerszczy polnych z północnej Hiszpanii. Na grzbiecie każdego osobnika umieszczano miniaturową tabliczkę z numerem. By zbadać DNA, pobierano wycinek odnóża. Naukowcy sprawdzali, które osobniki ze sobą spółkowały, ile czasu samiec i samica spędzili razem, ile czasu każdy samiec poświęcił na zwabienie samic oraz ile odbyło się walk, kiedy jeden samiec próbował podejść do norki, w której znajdował się inny samiec. Samce bardzo chronią swoje partnerki, ale wykazują dużą agresję w stosunku do potencjalnych rywali. Samce zamieszkujące z samicami wygrywają więcej walk ze zbliżającymi się rywalami niż w sytuacji, gdy walczą na własną rękę [tylko dla siebie] - podsumowuje profesor Tom Tregenza.
  13. Zapadając w torpor (stan kontrolowanego obniżenia temperatury przez zwierzęta stałocieplne), chomiki dżungarskie wydłużają sobie telomery, czyli ochronne sekwencje z nukleotydów, które zabezpieczają przed skracaniem chromosomów po ich podwojeniu w czasie podziału komórki. Chomiki dżungarskie są szare, a ich grzbiet przecina ciemna pręga. Gdy dni ulegają skróceniu, futro staje się białe, zwierzę traci na wadze i jego narządy rozrodcze się kurczą. Gryzonie te zapadają w torpor, a nie w hibernację, gdyż temperatura ich ciała spada na mniej niż dobę. Im dłużej trwa zima, tym częściej chomiki wprowadzają się w stan odrętwienia. Christopher Turbill z Uniwersytetu Medycyny Weterynaryjnej w Wiedniu prowadził eksperymenty na 25 chomikach dżungarskich. Przez 180 dni wystawiał je na oddziaływanie światła dziennego tylko przez 8 godzin na dobę. Część zwierząt trzymano w temperaturze 20°C, a część w 9. Jako że skrócenie okresu dostępu do światła sugerowało rozpoczęcie zimy, zwierzęta zaczęły chudnąć i zapadały w torpor. Chomiki z grupy hodowanej w niższej temperaturze robiły to częściej, "spały" też głębiej. Austriacy stwierdzili, że zmiany relatywnej długości telomerów (ang. relative telomere length, RTL) najlepiej wyjaśnić częstością torporu, zwłaszcza gdy temperatura ciała jest niska. Jednym słowem – torpor wydłużał telomery, a największy wzrost długości następował u zapadających częściej w odrętwienie chomików z niższą temperaturą ciała. Zespół Turbilla podkreśla też, że na zmiany RTL wpływał spadek wagi. Można jednak przypuszczać, że jedno wiąże się z drugim: chłodniejsze gryzonie częściej zapadają w torpor, a przy okazji bardziej chudną, w obu przypadkach wydłużając sobie telomery. Na razie nie wiadomo, czy sprytny wybieg chomików zapewnia im dłuższe życie.
  14. W ramach finansowanych przez NASA badań dowiedziono, że część elementów potrzebnych do budowy DNA może pochodzić z kosmosu. "Cegiełki" tworzące DNA znajdowano w meteorytach już w latach 60. ubiegłego wieku, jednak dotychczas nie było pewności, czy powstały one w kosmosie czy też są ziemskimi zanieczyszczeniami. Po raz pierwszy mamy trzy różne dowody wskazujące, że ten budulec dla DNA powstał w kosmosie - mówi doktor Michael Callahan z Goddard Space Fligh Center. Uczeni badali próbki 12 bogatych w węgiel meteorytów, z których 9 znaleziono na Antarktydzie. Każdą z próbek rozpuszczono w kwasie mrówkowym i poddano badaniu za pomocą chromatografu, a następnie spektrometrii masowej. Naukowcy znaleźli w nich adeninę i guaninę oraz hypoksantynę i ksantynę. Natomiast w dwóch meteorytach odkryto, po raz pierwszy, trzy molekuły związane z zasadami nukleinowymi: purynę, 2,6-diaminopurynę oraz 6,8-diaminopurynę. Te dwie ostatnie niemal nie występują w ziemskiej biologii, a zatem zanieczyszczenie materiałem pochodzenia ziemskiego jest praktycznie niemożliwe. Nie sądzimy, byśmy znaleźli te analogi zasad nukleinowych jeśli doszłoby do zanieczyszczenia na Ziemi, ponieważ niemal nie występują one w biologii. Dysponujemy tylko jednym raportem o znalezieniu 2,6-diaminopuryny u jednego z wirusów [to cyjanofag S-2L- red.] - mówi Callahan. Jeśli przyjmiemy, że asteroidy są chemicznymi ‚fabrykami', to musimy też przyjąć, ze mogą powstawać w nich bardzo różne zasady nukleinowe, nie tylko takie, które spotykamy na Ziemi. Będzie to zależało od składu asteroidów i warunków w nich panujących - dodaje uczony. Drugi dowód zdobyto podczas badań, mających na celu sprawdzenie, czy nie doszło do zanieczyszczenia. Naukowcy zbadali lód, który otaczał znalezione meteoryty. Okazało się, że zawartość dwóch zasad nukleinowych oraz hypoksantyny i ksantyny, jest w lodzie o rząd wielkości mniejsza. Liczyć je należy w częściach na bilion, podczas gdy w meteorytach - w częściach na miliard. Co więcej, żaden z analogów zasad nukleinowych nie został znaleziony w lodzie, a to znaczy, że musiał znajdować się w meteorycie w chwili upadku. Analiza meteorytu znalezionego w Australii oraz otaczającego go gruntu również nie wykazała w gruncie obecności zasad znalezionych w meteorycie. Trzeci dowód to odkrycie, że wszystkie zasady, zarówno te, które występują w ziemskich organizmach żywych, jak i te, które w nich nie występują, powstały w wyniku reakcji nie mających żadnego związku z organizmami żywymi. W laboratorium identyczny zestaw zasad i ich analogów powstaje w reakcji, w której biorą udział cyjanek wodoru, amoniak i woda. To wspiera teorię, że są one pochodzenia pozaziemskiego - stwierdza Callahan.
  15. Badania szwajcarskiej organizacji iGENEA wykazały, że połowa europejskich mężczyzn i 70% Brytyjczyków jest genetycznie spokrewniona z faraonem Tutanchamonem. Na potrzeby kanału Discovery uczeni mieli za zadanie odtworzyć DNA władcy. Okazało się, że profil DNA Tutanchomona należał do haplogrupy R1b1a2. Tę samą haplogrupę ma ponad 50% europejskich mężczyzn, mają oni zatem wspólnego przodka z faraonem. Co ciekawe, profil genetyczny 70% hiszpańskich i 60% francuskich mężczyzn jest podobny do profilu władcy, a jednocześnie mniej niż 1% współczesnych Egipcjan jest genetycznie spokrewnionych z Tutanchamonem. Uczeni uważają, że haplogrupa R1b1a2 powstała około 9500 lat temu w okolicach Morza Czarnego i rozprzestrzeniła się po Europie wraz z rozwojem rolnictwa. Nie wiadomo kiedy i w jaki sposób ludzie z tą haplogrupą trafili do Egiptu. iGENEA postanowiła wykorzystać wyniki swoich badań i oferuje usługę w ramach której można sprawdzić w jaki sposób jest się spokrewnionym z Tutanchamonem. Badania kosztują od 139 do 399 euro i cieszą się sporym zainteresowaniem.
  16. Naukowcy z Uniwersytetu Oksfordzkiego wykazali, że molekularne klatki z DNA, w których w przyszłości będzie się umieszczać choćby leki, mogą wnikać do żywych komórek i w nich przetrwać. Raport z badań na ten temat ukazał się właśnie w internetowym wydaniu pisma ACS Nano. Klatki wyprodukowano z czterech krótkich nici syntetycznego DNA, które zaprojektowano w taki sposób, by spontanicznie splatały się w czworościan o wysokości ok. 7 nanometrów. Wcześniej naukowcy z Oksfordu wykazali, że da się obudować takim czworościanem cząsteczki białka, a pułapki na proteiny otwierają się dopiero po napotkaniu określonych molekuł występujących wewnątrz komórki. W ramach najnowszego eksperymentu Brytyjczycy wprowadzili do hodowlanych ludzkich komórek embrionalnych nerek fluorescencyjnie znakowane czworościany DNA. Następnie komórki zbadano pod mikroskopem. Okazało się, że klatki z DNA pozostały zasadniczo nietknięte, przeżywając atak enzymów komórkowych przez przynajmniej dwie doby. Akademicy uważają to za duży postęp, ponieważ by spełniać funkcję transportera leków, klatka z DNA musi skutecznie wnikać do komórek i uwalniać ładunek dopiero po dotarciu na wybrane miejsce. Wcześniejsze badania pokazały, że rozmiary cząstek są istotnym czynnikiem określającym, czy cząstka łatwo wniknie do komórki [...]. Cząstki o promieniu poniżej 50 nanometrów częściej skutecznie szturmują komórki niż cząstki większe. Przy 7 nanometrach średnicy nasze czworościany z DNA są na tyle kompaktowe, by bez problemów dostać się do komórek, a jednocześnie na tyle duże, by pomieścić w sobie ładunek. Potrzeba dalszych badań, aby sprawdzić, jak klatki z kwasu dezoksyrybonukleinowego odnajdują drogę w żywych komórkach - opowiada prof. Andrew Tuberfield.
  17. Grupa uczonych z Uniwersytetu Kalifornijskiego w San Francisco (UCSF) opracowała sposób na szczegółowe badanie ewolucji nowotworów u ludzi, co pozwala na stwierdzenie kolejności występowania mutacji genetycznych prowadzących do pojawienia się choroby. Praca uczonych podobna jest do pracy archeologów. Na podstawie badań DNA komórek nowotworowych starają się określić kolejność pojawiania się mutacji. Dermatolog Raymond Cho i współpracujący z nim uczeni z Oregon University, University of California, Berkeley i Samsung Advanced Institute of Technology określili już kolejność pojawiania się mutacji w przypadku raka kolczystokomórkowego skóry, który charakteryzuje się największą liczbą mutacji, oraz raka jajnika. Badania nagromadzenia kopii genu TP53, związanego z pojawieniem się obu tych nowotworów, dowiodły, że duże zmiany w tym genie zachodzą na wczesnych etapach rozwoju choroby. Określenie kolejności mutacji jest bardzo istotne, gdyż pozwoli stwierdzić, które zmiany odpowiadają za który etap choroby. „Mimo że z nowotworami związane są liczne mutacje, to te, do których zawsze dochodzi wcześniej, wywołują kolejne anomalie" - mówi Cho.
  18. W Lawrence Berkeley National Laboratory powstały pierwsze trójwymiarowe linijki plazmonowe, za pomocą których można mierzyć liczone w nanometrach zmiany przestrzenne w systemach makromolekularnych. Amerykanom w ich stworzeniu pomagali naukowcy z niemieckiego Uniwersytetu w Stuttgarcie. Linijki takie pozwolą na precyzyjne pomiary np. interakcji DNA z enzymami, zaginania protein czy ruchu peptydów. Zademonstrowaliśmy trójwymiarowe plazmonowe linijki bazujące na plazmonowych oligomerach i spektroskopii plazmonowej. Pozwalają nam one na uzyskanie dokładnego obrazu ułożenia przestrzennego złożonych makromolekularnych procesów biologicznych oraz śledzenie ich ewolucji - stwierdził Paul Alivisatos, szef zespołu badawczego. W miarę jak badamy coraz mniejsze struktury, koniecznie jest opracowanie narzędzi, pozwalających na ich mierzenie. Dlatego też amerykańsko-niemiecki zespół postanowił wykorzystać plazmony, czyli fale tworzone przez wzbudzone elektrony, powstające wskutek interakcji światła z metalem. Dwie nanocząsteczki metali szlachetnych, znajdujące się blisko siebie, sprzęgną się za pomocą rezonansu plazmonów i powstanie rozpraszająca światło struktura, a jej właściwości będą ściśle zależały od odległości pomiędzy nanocząsteczkami. Ten efekt rozpraszania światła został przez nas wykorzystany do stworzenia linijek plazmonowych, których użyliśmy do mierzenia odległości pomiędzy komórkami - mówi Alivisatos. Dotychczas do tego typu pomiarów używano linijek bazujących na barwnikach chemicznych i zjawisku FRET, czyli mechanizmie przenoszenia energii pomiędzy dwoma chromoforami. Użycie plazmonów ma tę przewagę, że w ich przypadku nie mamy do czynienia z blaknięciem czy migotaniem. Są one ponadto bardzo jasne i stabilne. Do niedawna używano wyłącznie dwuwumiarowych linijek plazmonowych, gdyż uczeni nie potrafili sobie poradzić ze zbyt dużym rozpraszaniem światła, do jakiego dochodziło gdy wiele nanocząsteczek metali znajdowało się blisko siebie i poruszały się one w trzech wymiarach. W tak uzyskiwanym obrazie spektrum rozpraszanego światła było bardzo szerokie i niemożliwe było wyłonienie poszczególnych elementów, które można byłoby przypisać położeniu konkretnej nanocząsteczki. Teraz uczeni poradzili sobie z tym problemem stosując pięć złotych nanopręcików, z których każdy ma indywidualnie kontrolowaną długość i orientację. Pręciki ułożone są w literę H - dwa znajdują się na dole, dwa na górze, a pomiędzy nimi, prostopadle do reszty, ułożono piąty pręcik. Dzięki takiemu ułożeniu pomiędzy pojedynczym pręcikiem, a dwoma równoległymi powstaje silne sprzężenie, które pozwala na uzyskanie ostrego obrazu i umożliwia wykonanie pomiarów. Dodatkową zaletą takiej struktury jest duża swoboda ruchu wszystkich pręcików, co umożliwia dokładne badania zmian w strukturze badanych systemów. http://www.youtube.com/watch?v=dgdWrMaAxd4
  19. Izoflawony z soi zwiększają wpływ radioterapii na komórki raka płuc. Podczas badań naukowcy posłużyli się preparatem, w którym znalazły się 3 główne izoflawony ziaren soi: genisteina, daidzyna oraz glicytyna (Journal of Thoracic Oncology). Aby ulepszyć radioterapię dla komórek raka płuc, badamy potencjał naturalnych nietoksycznych składników soi izoflawonów w zakresie zwiększania efektów promieniowania w przypadku komórek nowotworowych, przy jednoczesnej ochronie normalnych komórek płuca przed uszkodzeniem – wyjaśnia dr Gilda Hillman z Wydziału Naświetlania Onkologicznego Wayne State University. Naturalne izoflawony sojowe mogą uwrażliwiać komórki nowotworowe na działanie radioterapii, hamując mechanizmy przeżycia, które uruchamiają, by się chronić [ostatnio naukowcy zademonstrowali, że blokują mechanizmy naprawy DNA uszkodzonego przez promieniowanie]. W tym samym czasie związki te działają w prawidłowej tkance jak przeciwutleniacze, chroniąc ją przed niepożądanym uszkodzeniem przez radioterapię. Komórki linii A549 niedrobnokomórkowego raka płuc, które w ramach eksperymentu potraktowano przed radioterapią izoflawonami, wykazywały więcej uszkodzeń DNA i mniej aktywności naprawczej od komórek poddanych wyłącznie napromienianiu. Wcześniej akademicy wykazali, że czysta genisteina wykazuje w liniach ludzkich komórek niedrobnokomórkowego raka płuc efekt przeciwnowotworowy, ale jak pokazano ostatnio, w przypadku zastosowania mieszanki z soi jest on silniejszy.
  20. Albatros amsterdamski (Diomedea amsterdamensis), uważany przez niektórych za podgatunek albatrosa wędrownego (Diomedea exulans), jest odrębnym gatunkiem. Potwierdziły to badania genetyczne. Albatrosy amsterdamskie rozmnażają się wyłącznie na leżącej na południowym Oceanie Indyjskim Wyspie Amsterdam. Należy ona do Francji i stanowi część Francuskich Terytoriów Południowych i Antarktycznych. W Czerwonej Księdze Gatunków Zagrożonych Międzynarodowej Unii Ochrony Przyrody i Jej Zasobów D. amsterdamensis widnieją jako gatunek skrajnie zagrożony. Po raz pierwszy opisano je w 1983 roku. Ptaki łączą się w pary na całe życie i co dwa lata składają jedno jajo. Młody wykluwają się po 80 dniach wysiadywania przez oboje rodziców. Rocznie na lęgowisku na pojedynczym płaskowyżu (Plateau des Tourbières) w centrum Wyspy Amsterdam pojawia się od 18 do 26 par; cała populacja to 130-170 osobników. Testy zespołu dr Theresy Burg z Uniwersytetu w Lethbridge wykazały, że DNA albatrosów amsterdamskich znacząco różni się od genomu najbliższych krewnych, czyli albatrosów wędrownych. Wszystko wskazuje na to, że jako gatunek D. amsterdamensis wyodrębniły się ok. 265 tys. lat temu. Od momentu odkrycia ornitolodzy spierali się o taksonomię D. amsterdamensis. Amerykańska Unia Ornitologiczna (American Ornithologists' Union, AOU) twierdziła, że albatrosy amsterdamskie to gatunek, a np. dr James Clements, autor Birds of the World, A Check List, nie. Burg postanowiła zakończyć tę dyskusję, analizując genom. Wyniki prac jej zespołu ukazały się w piśmie branżowym Journal of Avian Biology. Wg Kanadyjki, nawet z wyglądu albatrosy amsterdamskie, zwane też białolicymi, są inne od albatrosów wędrownych. Są nieco mniejsze [ważą do 8 kg, a rozpiętość ich skrzydeł sięga 3,4 m, podczas gdy masa ich kuzynów może sięgać 12 kg, a rozpiętość skrzydeł 3,7 m]. Składają jaja w innym czasie, a ich pióra są nieco bardziej brązowe niż u pozostałych wędrownych albatrosów. Ornitolodzy podkreślają, że mimo imponującej rozpiętości skrzydeł i zdolności do przebywania dużych odległości, w okresie lęgowym albatrosy amsterdamskie zawsze powracają na położony na wysokości 500-600 m n.p.m. płaskowyż na Wyspie Amsterdam. Nie dzielą tego obszaru z żadnymi innymi albatrosami wędrownymi. Ta izolacja doprowadziła prawdopodobnie do wyodrębnienia się gatunku.
  21. Powstał pierwszy molekularny silnik, którego efekty pracy można wykorzystać w praktyce. Dotychczas tego typu urządzenia były jedynie ciekawostkami, gdyż nie istniało żadne połączenie pomiędzy nimi a światem zewnętrznym. Tymczasem Martin McCullagh, Ignacio Franco, Mark A. Ratner i George C. Schatz z Northwestern University wykorzystali molekułę DNA do zamiany światła w pracę mechaniczną. Wyniki swoich badań opublikowali w Journal of the American Chemical Society. Wspomniana molekuła to fragment DNA o strukturze spinki do włosów, w skład której wchodzą dwie pary zasad guanina-cytozyna połączone azobenzenem. Końcówka jednej pary zasad jest przytwierdzona do podłoża, a końcówka drugiej - do dźwigni mikroskopu sił atomowych. To właśnie mikroskop służy za interfejs łączący molekularny silnik ze światem zewnętrznym. Urządzenie działa dzięki temu, że azobenzen pod wpływem światła przechodzi izomeryzację, zmieniając się pomiędzy izomerami trans i cis. Jest ona związana ze zmianą kształtu azobenzenu, co prowadzi do poruszania się całego silnika. Proces jest odwracalny, można więc przeprowadzać go wielokrotnie. Naukowcy wiedzą, w jaki sposób uzyskać pracę netto z całego systemu. Najpierw molekułę znajdującą się w trybie cis rozciągają za pomocą końcówki mikroskopu sił atomowych, następnie światło zmienia izomer cis w bardziej sztywny izomer trans. Teraz izomer trans jest ściskany do oryginalnej wielkości silnika, po czym drugie źródło światła zmienia strukturę w izomer cis. Jako, że molekuła jest bardziej sztywna podczas jej ściskania niż rozciągania, uzyskujemy pracę netto. Energia włożona w rozciągnięcie jest bowiem mniejsza, niż energia uzyskana ze ściśnięcia. Całość działa dzięki indukowanym światłem zmianom w molekule z DNA i azobenzenu. Ze względu na konstrukcję, integralną częścią silnika jest mikroskop sił atomowych. Praca musi być wykonana na molekule i dźwigni podczas rozciągania, a energia jest pozyskiwana w czasie ściskania. Jeśli molekuła jest sztywniejsza w czasie ściskania, uzyskujemy energię netto - mówi Schatz. Naukowcy oszacowali pozyskaną energię na maksymalnie 3,4 kcal/mol przy maksymalnej wydajności 2,4%. Można to porównać z 7,3 kcal/mol pozyskiwanej z hydrolizy ATP, która jest głównym źródłem energii dla procesów biologicznych. Pozyskaliśmy obiecującą ilość energii, ale prawdziwym celem tych badań jest poszukiwanie nowych sposobów na jej konwersję. Zaproponowany przez nas silnik to punkt wyjścia do dalszych usprawnień. Pozwoli nam on ocenić możliwości maszyn zbudowanych z pojedynczej molekuły. To z kolei jest bardzo ważnym krokiem w kierunku zmiany takich maszyn z naukowej ciekawostki w źródło energii dla procesów odbywających się w nanoskali - dodaje Schatz.
  22. Po raz pierwszy w historii zauważono włączenie fragmentu ludzkiego DNA do genomu bakterii. Naukowcy z Northwestern University stwierdzili, że Neisseria gonorrhoeae, bakteria powodująca rzeżączkę, stosunkowo niedawno zaczęła korzystać z naszego DNA. Odkrycie pozwoli zbadać ewolucję bakterii, obserwować jej zdolność do ciągłego dostosowywania się do przebywania w ludzkim organizmie. Rozprzestrzeniająca się za pośrednictwem kontaktów seksualnych rzeżączka to jedna z najstarszych trapiących ludzkość chorób i jedna z niewielu, która występuje tylko i wyłącznie u Homo sapiens. Bakteria przyjęła część DNA gospodarza. Ma to olbrzymie ewolucyjne znaczenie, gdyż pozwala jej się adaptować do gospodarza - mówi profesor mikrobiologii i immunologii Hank Seifert z Northwestern University. Dotychczas wiedzieliśmy, że bakterie mogą wymieniać materiał genetyczny pomiędzy sobą oraz z drożdżami. Przyjęcie ludzkiego DNA to dla bakterii olbrzymi skok. Musiała ona pokonać wiele przeszkód, by tego dokonać - stwierdził główny autor badań, Mark Anderson. Naukowcy jeszcze nie wiedzą, czy przyjęcie naszego DNA daje bakterii jakieś szczególne korzyści. Przypuszczają, że mogą dzięki temu powstać nowe jej szczepy. Na całym świecie corocznie na rzeżączkę choruje 50 milionów osób. Jest ona uleczalna, jednak obecnie działa na nią tylko jeden antybiotyk. Na wcześniejsze się uodporniła. Profesort Sifert zauważa, że już w Biblii wspomniano o chorobie, której opis pasuje do rzeżączki.
  23. Nowe studium naukowców z Uniwersytetu Kalifornijskiego rzuca nieco światła na ludzką zdolność przystosowania się do niedotlenienia. Dobierając przez 200 pokoleń muszki owocowe (Drosophila melanogaster) odporne na hipoksję, specjaliści zademonstrowali towarzyszące temu trwałe zmiany w genomie. Niedotlenienie wiąże się nie tylko z przebywaniem na dużych wysokościach (chorobą wysokościową) czy schodzeniem głęboko pod wodę. Występuje też przy zawale, udarze czy schorzeniach układu oddechowego, które ograniczają ilość tlenu docierającego do narządów wewnętrznych. Akademicy zdecydowali się na badanie owocówek, ponieważ ich mechanizmy molekularne są bardzo podobne do ludzkich. Uzyskane po 200-pokoleniowej hodowli owady tolerowały śmiertelne w normalnych warunkach niedotlenienie. Co więcej, przekazywały tę cechę potomstwu. Utrzymywała się ona nawet przy braku stresu wywołanego niedotlenieniem. Sugeruje to, że w grę wchodzi mechanizm genetyczny, a nie fizjologiczny. Zespół doktora Gabriela G. Haddada porównywał genomy specjalnie dobieranych D. melanogaster i grupy kontrolnej. W ten sposób wskazano specyficzne regiony DNA, głównie na chromosomie X, które odpowiadały za oporność na niedotlenienie. Kilka z tych regionów zawierało geny kontrolujące szlak sygnalizacyjny Notch. Jest on wykorzystywany przez różnorodne organizmy do regulowania przeznaczenia linii komórkowych. Wcześniej wykazano, że szlak ten jest nadmiernie aktywowany zarówno u niedotlenionych owocówek, jak i myszy. Aby potwierdzić, że rzeczywiście korzystne zmiany dotyczą właśnie Notch, Amerykanie zastosowali inhibitor gamma-sekretazy o nazwie DAPT. Zabieg ten znacznie zmniejszył przeżywalność przedstawicieli tolerującego hipoksję szczepu. Naukowcy stwierdzili również, że muszki bez mutacji lub z mutacjami prowadzącymi do ubytku funkcji (ang. loss-of-function mutation) wykazywały znaczny spadek tolerancji na hipoksję. Dla odmiany mutacje polegające na nabyciu funkcji (ang. gain-of-function mutation) bardzo zwiększały zdolność tolerowania niedotlenienia. Potwierdziliśmy, że wynikiem długoterminowego wystawienia na wpływ niedotlenienia są zmiany w DNA, a nie tylko w ekspresji genów – podsumowuje Haddad.
  24. Do związanych z nowotworami uszkodzeń DNA dochodzi już wkrótce po wypaleniu papierosa – dowodzą naukowcy z University of Minnesota. Efekt jest widoczny tak szybko, że stanowi odpowiednik wstrzyknięcia substancji bezpośrednio do krwiobiegu. W studium wzięło udział 12 ochotników. Akademicy skupili się zwłaszcza na tym, co dzieje się we krwi z jednym z wielopierścieniowych węglowodorów aromatycznych (WWA) - fenantrenie. Dodawano go do wypalanych przez badanych papierosów. By WWA zadziałały kancerogennie na płuca, muszą zostać poddane metabolicznej aktywacji. W 3-stopniowej sekwencji tworzą się addukty - w tym wypadku połączenia dwóch substancji chemicznych, czyli DNA i epoksydów dioli (ang. diol epoxide) – które mogą powodować mutacje i rozpoczynać proces nowotworzenia. Co ciekawe, naukowcy po raz pierwszy zbadali ten szlak u ludzi narażonych na kontakt z WWA w wyniku palenia papierosów. W eksperymentalnych papierosach wykorzystano stabilną izotopowo pochodną fenantrenu, najprostszego WWA z regionem zatokowym, z wchodzącym w jej skład deuterem (ang. [D10]phenanthrene fenantren). Specjaliści podkreślają, że metabolity WWA wiążą się kowalencyjnie z DNA lub RNA komórki. Szczególne możliwości w tym zakresie mają powstające w I fazie metabolizmu epoksydy dioli, a zwłaszcza te z nich, u których wiązanie epoksydowe znajduje się we wspomnianym wcześniej rejonie zatokowym cząsteczki. Dzieje się tak, ponieważ cechuje go podwyższona reaktywność zarówno biologiczna, jak i chemiczna. Po wypaleniu papierosów przez 12 ochotników w osoczu poszukiwano tetraolu [D10]PheT - głównego końcowego związku metabolicznej ścieżki fenantrenu. Okazało się, że trzystopniowa ścieżka prowadząca do powstawania epoksydioli była aktywowana dosłownie w mgnieniu oka. Poziom [D10]PheT w osoczu wszystkich badanych był maksymalny w najwcześniejszych uwzględnianych punktach czasowych (15-30 min po paleniu), a potem spadał.
  25. By się rozmnażać, wirusy wprowadzają swój materiał genetyczny do komórek atakowanego organizmu. W przebiegu odwiecznej wojny między bakteriami a wirusami te pierwsze wykorzystały metodę przeciwnika, by wykształcić jeden z pierwszych na Ziemi prymitywnych układów odpornościowych. Artie McFerrin Texas A&M University wyjaśnia, że wojna bakteryjno-wirusowa toczy się od milionów lat, zaś bakterie rozwinęły antybiotykooporność dzięki wirusowemu DNA, które uległo zmutowaniu. Po przebiciu błony komórkowej wirus wprowadza do cytoplazmy swój kwas nukleinowy. Potem następuje przejęcie kontroli nad metabolizmem gospodarza, tak że bakteria pracuje już na użytek wirusa i kopiuje jego materiał genetyczny i białka kapsydu. Z powodu licznych przypadkowych mutacji w chromosomie bakterii wszystko może jednak pójść nie po myśli najeźdźcy. Ponieważ materiał genetyczny wirusa stał się już częścią chromosomu bakterii, także ulega zmutowaniu. W ten sposób bakteria nie tylko nie pada ofiarą swojego naturalnego wroga, ale i radzi sobie lepiej od pobratymców bez obcego kwasu nukleinowego. Zyskuje nowe triki, nowe geny, nowe białka i nowe umiejętności. Odkryliśmy, że z wirusowym DNA schwytanym na miliony lat w chromosomie komórka wytworzyła nowy układ immunologiczny. Pozyskała nowe białka, które pozwoliły odeprzeć napór antybiotyków i innych szkodliwych czynników próbujących ją utlenić, takich jak np. nadtlenek wodoru. Te komórki, które dysponują nowy wirusowym zestawem trików, nie umierają lub nie umierają tak szybko. By dojść do takich wniosków, zespół Wooda musiał najpierw przeprowadzić eksperymenty na pewnym szczepie pałeczek okrężnicy (Escherichia coli). Z ich chromosomów usunięto całe wirusowe DNA. Za pomocą "enzymatycznych nożyc" z 9 lokalizacji wycięto w sumie 166 tys. nukleotydów. Okazało się, że po tej operacji znacznie wzrosła wrażliwość bakterii na antybiotyki. To konkretne studium dotyczyło E. coli, ale niemal u wszystkich bakterii można znaleźć wirusowy materiał genetyczny, a u niektórych szczepów wirusowe DNA stanowi aż 20% chromosomu. U niektórych bakterii 1/5 chromosomu pochodzi od ich wroga, a do czasu naszego studium ludzie przeważnie nie podejmowali prób badania tych 20%, uznając, że to DNA jest bierne i nieistotne, nie ma więc większego wpływu na komórkę. A jak widać, bez tego typu analiz nie uda się prawdopodobnie opracować skutecznych antybiotyków.
×
×
  • Create New...