Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' materiał' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 15 wyników

  1. Wytrzymałe i lekkie materiały są niezwykle pożądane w przemyśle i życiu codziennym. Mogą one udoskonalić wiele maszyn i przedmiotów, od samochodów przez implanty medyczne po kamizelki kuloodporne. Niestety wytrzymałość i niska masa zwykle nie idą w parze. Poszukujący rozwiązania tego problemu naukowcy z University of Connecticut, Columbia University i Brookhaven National Laboratory wykorzystali DNA i szkło. Dla tej gęstości jest to najbardziej wytrzymały znany materiał, mówi Seok-Woo Lee z UConn. Żelazo może wytrzymać nacisk do 7 ton na centymetr kwadratowy, jest jednak bardzo gęste i ciężkie. Znamy metale, jak tytan, które są lżejsze i bardziej wytrzymałe. Potrafimy też tworzyć stopy metali o jeszcze mniejszej masie i jeszcze większej wytrzymałości. Ma to bardzo praktyczne zastosowania. Na przykład najlepszym sposobem na zwiększenie zasięgu samochodu elektrycznego nie jest dokładanie akumulatorów, a zmniejszenie masy pojazdu. Problem w tym, że tradycyjne techniki metalurgiczne osiągnęły w ostatnich latach kres swoich możliwości, naukowcy szukają więc innych niż metale wytrzymałych i lekkich materiałów. Szkło, wbrew temu co sądzimy, jest wytrzymałym materiałem. Kostka szkła o objętości 1 cm3 może wytrzymać nacisk nawet 10 ton. Pod jednym warunkiem – szkło nie może posiadać wad strukturalnych. Zwykle pęka ono właśnie dlatego, że już istnieją w nim niewielkie pęknięcia, zarysowania czy brakuje atomów w jego strukturze. Wytworzenie dużych kawałków szkła pozbawionego wad jest niezwykle trudne. Naukowcy potrafią jednak tworzyć niewielkie takie kawałki. Wiedzą na przykład, że kawałek szkła o grubości mniejszej niż 1 mikrometr jest niemal zawsze bez wad. A jako że szkło jest znacznie mniej gęste niż metale czy ceramika, szklane struktury zbudowane kawałków szkła o nanometrowej wielkości powiny być lekkie i wytrzymałe. Dlatego też Amerykanie wykorzystali DNA, które posłużyło za szkielet, i pokryli je niezwykle cienką warstwą szkła o grubości kilkuset atomów. Szkło pokryło jedynie nici DNA, pozostawiając sporo pustych przestrzeni. Szkielet z DNA dodatkowo wzmocnił niewielką, pozbawioną wad, szklaną strukturę. A jako że spora jej część to puste przestrzenie, dodatkowo zmniejszono masę całości. W ten sposób uzyskano materiał, który ma 4-krotnie większą wytrzymałość od stali, ale jest 5-krotnie mniej gęsty. To pierwszy tak lekki i tak wytrzymały materiał. Możliwość projektowania i tworzenia trójwymiarowych nanomateriałów przy użyciu DNA otwiera niezwykłe możliwości przed inżynierią. Jednak potrzeba wielu badań, zanim możliwości te wykorzystamy w konkretnych technologiach, stwierdza Oleg Gang z Columbia University. Teraz naukowcy prowadzą eksperymenty z zastąpieniem szkła ceramiką opartą na węglikach. Planują przetestować różne struktury DNA i różne materiały, by znaleźć takie o najlepszych właściwościach. Jestem wielkim fanem Iron Mana. Zawsze zastanawiałem się, jak stworzyć lepszą zbroję dla niego. Musi być one bardzo lekka, by mógł szybciej latać i bardzo wytrzymała, by chroniła go przed atakami wrogów. Nasz nowy materiał jest pięciokrotnie lżejszy i czterokrotnie bardziej wytrzymały od stali. Nasze szklane nanostruktury byłyby lepsze dla Iron Mana niż jakikolwiek inny materiał, stwierdził Lee. « powrót do artykułu
  2. Po raz pierwszy udało się zmierzyć spin elektronu w materiale. Osiągnięcie uczonych z Uniwersytetów w Bolonii, Wenecji, Mediolanie, Würzburgu oraz University of St. Andrews, Boston College i University of Santa Barbara może zrewolucjonizować sposób badania i wykorzystania kwantowych materiałów w takich dziedzinach jak biomedycyna, energia odnawialna czy komputery kwantowe. Pomiar spinu w kontekście topologii materiału, w którym był mierzony, był możliwy dzięki wykorzystaniu promieniowania synchrotronowego oraz nowoczesnym technikom modelowania zachowania materii. Profesor Domenico di Sante z Uniwersytetu w Bolonii wyjaśnia: Na zachowanie elektronów w materiałach mają wpływ pewne właściwości kwantowe, determinujące ich spin w materiale, w którym się znajdują. Tak jak na tor ruchu światła we wszechświecie ma wpływ obecność gwiazd, ciemnej materii czy czarnych dziur, które zaginają czasoprzestrzeń. Właściwości elektronu znamy od dawna, jednak dotychczas nikt nie bezpośrednio nie zmierzył „topologicznego spinu” elektronu. Uczeni z Włoch, Niemiec, Wielkiej Brytanii i USA wykorzystali efekt znany jako dichroizm kołowy. Zjawisko to polega na różnej absorpcji przez substancje światła spolaryzowanego kołowo prawo- i lewoskrętnie. W swoich badaniach skupili się na metalach kagome. To materiały, w których atomy tworzą – znany z tradycyjnego japońskiego koszykarstwa kagome – wzór składający się z sieci trójkątów o wspólnych wierzchołkach. Ta nietypowa geometria atomów powoduje, że elektrony zachowują się w takim materiale w sposób nietypowy, co pozwala badać niezwykłe zjawiska kwantowe. Metale kagome służą m.in. do badań nad nadprzewodnictwem wysokotemperaturowym. Pierwsze eksperymenty z nimi przeprowadzono w USA w 2018 roku. Teraz dwuwarstwowe metale kagome XV6Sn6 – gdzie X oznacza pierwiastek ziem rzadkich, tutaj były to terb, skand i holm – posłużyły do badania topologicznego spinu elektronu. Było to możliwe dzięki połączeniu eksperymentu z analizą teoretyczną. Teoretycy przeprowadzili najpierw złożone symulacje kwantowe na potężnych superkomputerach i poinstruowali eksperymentatorów, w którym miejscu materiału powinni mierzyć dichroizm kołowy, wyjaśnia Di Sante. « powrót do artykułu
  3. Brązy z Beninu są jednymi z najwspanialszych przykładów sztuki afrykańskiej. To tysiące metalowych plakietek i rzeźb, które w przeszłości zdobiły pałac królewski w Królestwie Beninu (obecnie stan Edo w Nigerii). Są tak doskonałe, że gdy dotarły do Europy spotkały się z niedowierzaniem. Sądzono, że jest niemożliwe, by ludy Afryki wytwarzały sztukę o tak wysokiej jakości. Teraz okazuje się, że głównym źródłem materiału, z którego powstawały zabytki pomiędzy XV a XVIII wiekiem były... dzisiejsze Niemcy. Obecnie dysponujemy ponad 700 analizami chemicznymi brązów z Beninu i wiemy, że ich skład znacznie różni się od składu zaawansowanych wyrobów metalurgicznych wytwarzanych w regionie Igbo-Ukwu w IX wieku. Ze źródeł historycznych wiemy, że gdy pod koniec XV wieku Portugalczycy rozpoczęli szeroko zakrojony handel z Afryką Zachodnią, jako środek płatniczy wykorzystywali manile. Były to płacidła w kształcie otwartej bransolety czy też podkowy wykonane z miedzi lub mosiądzu. Z Europy do Afryki trafiły miliony manili. Naukowcy od dawna podejrzewali, że głównym źródłem metalu, z którego w Królestwie Beninu wytwarzano brązy, były właśnie manile. Jednak badane dotychczas manile były i słabo datowane, i na tyle zanieczyszczone, że nie nadawały się do wytwarzania z nich przedmiotów wysokiej jakości. Dodatkową zagadkę stanowił fakt, że stosunek izotopów ołowiu w brązach z Beninu wykazywał się wysoką homogenicznością. To wskazywało, że materiał pochodził z jednego źródło, a twórcy brązów przez wieki z niego korzystali, zatem przywiązywali bardzo dużą wagę do jakości materiału. Znajduje to zresztą potwierdzenie w badaniach dotyczących historii handlu niewolnikami i spisów towarów, jakie Europejczycy wymieniali na niewolników. Grupa naukowców zbadała manile z XVI-XIX wieku wydobyte z wraków u wybrzeży Afryki, Europy i Ameryki. Gdy porównali je z brązami z Beninu okazało się, że skład jest niezwykle podobny. Co więcej, skład manili odpowiada składowi rud z niemieckiej Nadrenii. Badania te znajdują potwierdzenie w historycznych dokumentach. W 1548 roku między rodzina Fuggerów podpisała z królem Portugalii umowę na dostawę w ciągu trzech lat 432 ton (niemal 1 miliona 400 tysięcy) manili. Mowa jest tutaj o dwóch typach manili. Jedne zwane są „de la Mina”, a drugie „Guine”. Te pierwsze to manile, które produkowano na potrzeby handlu z obszarem obejmującym mniej więcej współczesne wybrzeże Ghany. Typ „Guine” był zaś używany na większym obszarze subsaharyjskiej Afryki Zachodniej. Kontrakt bardzo szczegółowo opisuje oba typy manili, mówi o tym, że mają odpowiadać one dostarczonym wzorcom, określa ich jakość oraz wagę. Ma to być 312 gramów dla „de la Mina” oraz 250 gramów dla „Guine”. W Afryce Zachodniej krążyła olbrzymia liczba manili. Były jednym z pierwszych europejskich towarów, jakie dotarły na rynki Afryki Zachodniej. Już od samego początku głównym źródłem materiału dla artystów z Królestwa Beninu były manile z nadreńskich rud. Z czasem na lukratywny rynek wytwarzania manili weszły też inne kraje. W XVIII wieku zaczęły pojawiać się manile z Anglii i prawdopodobnie Skandynawii. Jednak rzemieślnicy ludu Edo pozostali wierni wysokiej jakości metalowi z Niemiec, których domagali się od portugalskich kupców. « powrót do artykułu
  4. Na siedzeniach jednego z poznańskich tramwajów znalazły się zdjęcia historycznych i współczesnych pojazdów MPK Poznań. Na siedziskach można zobaczyć fotografie prezentujące najważniejsze wydarzenia z dziejów komunikacji miejskiej w Poznaniu: od uruchomienia dorożek w 1865 roku, poprzez pierwszy tramwaj konny (1880 rok), pierwszy tramwaj elektryczny (1898 rok), pierwsze autobusy (1925 rok), uruchomienie kolejki wąskotorowej Maltanka (1972 rok), aż po wprowadzenie do ruchu liniowego autobusów elektrycznych (koniec 2019 roku). Znajdujące się w pobliżu – w ramkach – kody QR pozwolą pozyskać więcej informacji na temat historycznego i wykorzystywanego obecnie taboru - napisano na stronie przewoźnika. Okazją do nietypowego przedstawienia historii komunikacji miejskiej są testy nowych materiałów obiciowych. Oprócz tkaniny nadrukowywanej w tramwaju testowane są 2 tkaniny runowe. W tym samym pojeździe zamontowane zostaną również siedziska ze sztucznej skóry. Prace w tramwaju Moderus Gamma (numer boczny 628) to kolejny etap testów, które rozpoczęto latem w autobusie o numerze bocznym 1001. Moderus Gamma, w którym prowadzone są testy siedzeń, zostanie udostępniony mieszkańcom podczas obchodów dnia św. Katarzyny, patronki przewoźników, na wystawie taboru, która zaplanowana została na niedzielę, 27 listopada br., na przystanku PST Dworzec Zachodni [...]. Później pojazd będzie regularnie przemierzał poznańskie trasy. MPK Poznań zachęca pasażerów do wyrażenia opinii o materiałach i już teraz podaje link do ankiety internetowej. « powrót do artykułu
  5. Zużyte łopaty turbin wiatrowych stanowią coraz poważniejszy problem ekologiczny. Obecnie są składowane na wysypiskach, a ich liczba szybko rośnie. A co, gdyby można było je... zjeść? Podczas odbywającego się właśnie spotkania Amerykańskiego Towarzystwa Chemicznego naukowcy z Michigan State University (MSU) zaprezentowali nowy materiał na łopaty, które po zużyciu można by przerobić na nowe łopaty lub zamienić w szereg innych produktów, w tym w żelki spożywcze. Piękno naszego wynalazku polega na tym, że po zakończeniu cyklu życia łopaty, materiał, z którego została wykonana można rozpuścić na części składowe i użyć znowu. I tak bez końca, mówi doktor John Dorgan, jeden z twórców nowego materiału. Łopaty turbin są wykonywane z włókna szklanego. Niektóre firmy opracowały co prawda technologię przerabiania włókna na mniej wartościowy materiał, ale większość łopat kończy na składowiskach. A z tym jest coraz większy problem. Jako, że turbiny są tym bardziej efektywne, im są większe, produkuje się je coraz większe. Co gorsza wiele firm wymienia łopaty na długo przed przewidywanym czasem ich eksploatacji, by zamontować większą turbinę. Dogan i jego koledzy stworzyli materiał na łopaty składający się z włókna szklanego oraz syntetycznego i naturalnego polimeru z roślin. Powstała w ten sposób żywica na tyle wytrzymała, że można ją wykorzystywać w turbinach czy przemyśle motoryzacyjnym. Następnie materiał taki został rozpuszczony do świeżego monomeru, usunięto z niego mechanicznie włókno szklane, a z monomeru wykonano nowy materiał o – co niezwykle ważne – identycznych właściwościach jak materiał oryginalny. Co interesujące, nowy materiał może znaleźć wiele innych zastosowań, w zależności od domieszek. Naukowcy stworzyli jego wersję, która nadaje się do wykonania blatów kuchennych i kranów. Można go też kruszyć i wykorzystywać w technologii formowania wtryskowego. Bardzo interesującą cechą nowego materiału jest też możliwość przetworzenia go na produkt o wyższe wartości. Za pomocą odpowiednich technik materiał ze zużytych łopat turbin można przerobić na szkło akrylowe (PMMA), z którego powstaną szyby czy reflektory samochowowe, a z kolei PMMA można przerabiać na superchłonny polimer wykorzystywany w pieluszkach. Możliwe jest też uzyskanie mleczanu potasu, który po oczyszczeniu zostanie wykorzystany w żelkach czy napojach. Uzyskaliśmy z naszego materiału mleczan potasu jakości spożywczej. Taki sam, jaki jest używany w moich ulubionych żelkach, mówi Dorgan. Naukowcy z Michigan chcą teraz wyprodukować łopaty do turbin średniej wielkości, by przeprowadzić testy polowe. Zauważają, że obecnie na rynku brak jest odpowiedniej ilości bioplastiku, by zaspokoić ew. zapotrzebowanie na nowe turbiny. Na początku ich produkcja musiałaby być dość ograniczona z tego powodu, mówi Dorgan. Uczony zauważa, że nie powinniśmy mieć oporów przed jedzenie słodyczy, które kiedyś były turbiną wiatrową. Atom węgla pochodzący z rośliny jest takim samym atomem węgla jak ten pochodzący z paliw kopalnych. To część globalnego obiegu węgla. My wykazaliśmy, że możemy z biomasy stworzyć wytrzymałe tworzywo sztuczne, a następnie zamienić je na pożywienie, stwierdza uczony. « powrót do artykułu
  6. Szkliwo to najtwardszy materiał biologiczny wchodzący w skład naszego organizmu. Znane jest ze swojej wyjątkowej sztywności, twardości, lepkosprężystości, stabilności i wytrzymałości. Mimo, że jego grubość liczona jest w milimetrach, jest wyjątkowo odporne na deformacje i uszkodzenia. A wszystkie te właściwości zawdzięcza swojej wyjątkowej strukturze. Teraz uczeni z Chin i USA stworzyli materiał, który naśladuje tę strukturę dzięki specjalnie pokrytym nanowłóknom. Jego właściwości mechaniczne są lepsze od właściwości szkliwa, dzięki czemu nowy materiał znajdzie szerokie zastosowanie w inżynierii. Hewei Zhao z Beihang University w Pekinie i jego zespół rozpoczęli pracę od zsyntetyzowania nanowłókien hydroksyapatytu o długości 10 mikrometrów. Następnie pokryli je warstwą amorficznego nadtlenku cynku, który tworzy silne wiązania z hydroksyapatytem. Włókna następnie poprzeplatano molekułami poli(alkoholu winylowego), a całość zamrożono. Miksturę poddano działaniu dwukierunkowego gradientu temperatury. Utworzyły się równolegle ułożone kryształy lodu, co wymusiło na włóknach zajęcie przestrzeni pomiędzy kryształami i ułożyło je wszystkie w tym samym kierunku. W końcu całość poddano liofilizacji i kompresji. W wyniku całego procesu otrzymano gęste sztuczne szkliwo zbudowane z równolegle ułożonych i ściśle przylegających warstw nanowłókien hydroksyapatytu pokrytych nadtlenkiem cynku. Szczegółowe analizy wykaząły, że taka struktura wytrzymuje naprężenia przekraczające 140 MPa, a podczas rozciągania zwiększa swoją długość zaledwie o 1,8% przed rozerwaniem. Co ważne, Zhao i jego zespół wykazali, że materiał ten można masowo produkować i nadawać mu dowolny kształt. Szczegółowy opis materiału opublikowano na łamach Science. « powrót do artykułu
  7. Tkanina jest tym, co sprawia, że różnica między normalnym spódnicy, a doskonałymi to niebo, a ziemia. Tkaniny są dostępne we wszystkich rodzajach wzorów, kolorów, stylów, wzorów itp., ale to zależy od Ciebie, która tkanina będzie pasować do Twojego celu najlepiej. Twój pierwszy cel powinien być wybór tkanin, które nie marszczą się łatwo. Łatwość pielęgnacji jest kolejną optymalną cechą, ponieważ będziesz musiała często prać swoją spódnicę. Jeśli jednak wolisz kupować tkaniny z nadrukami lub innymi ozdobami zamiast tkanin jednolitych, pamiętaj, że takie tkaniny są trudniejsze do uszycia. Należy również wziąć pod uwagę warunki pogodowe, w których najczęściej będziemy nosić spódnice. Jeśli zawsze pada deszcz, gdzie mieszkasz, to wodoodporne tkaniny są właśnie dla Ciebie! Są one mocne Z jakiego materiału można uszyć spódnicę? Wybór materiału na spódnicę zależy wyłącznie od Ciebie. Na początek określ rodzaj spódnicy, którą chcesz uszyć. Materiał jest kluczowy, ponieważ decyduje o kroju odzieży. Powinnaś wybrać tkaninę na spódnicę na podstawie jej właściwości, kolorów i użyteczności. Idealna będzie spódnica wykonana z higroskopijnego, lekkiego, a zarazem trwałego materiału. Jeśli ktoś jest alergikiem lub ma wrażliwą skórę, może lepszym rozwiązaniem będzie materiał antyalergiczny? Spódnice to element odzieży, który musi być wykonany z odpowiednich materiałów. Powinnaś wiedzieć, czy się marszczy, jak się zachowuje, czy się gniecie i czy oddycha. Dlatego kupując materiał na spódnicę, należy go dotknąć, aby stwierdzić, czy dobrze się na Tobie leży. Tkaniny24 bawełniane, jedwabna satyna, len, skóra, wiskoza czy sztruks to jedne z najpopularniejszych opcji. W sezonie zimowym natomiast na myśl przychodzą szlachetne wełny. Spódnice wykonane z wełny są zarówno modne jak i wysokiej klasy. Spódnica wełniana to doskonały wybór na zimę, ponieważ zapewnia ciepło, a jednocześnie wygląda bardzo elegancko i fajnie. Być może zszokuje Cię fakt, że wełna ma dużą higroskopijność, co oznacza, że skutecznie chroni Twoje ciało przed wilgocią. Na co zwracać uwagę wybierając materiał? Przed zakupem tkaniny na spódnicę, należy wziąć pod uwagę kilka kryteriów. Jaki jest skład? Skład materiału ma kluczowe znaczenie. Dostępne są materiały naturalne, syntetyczne i imitacje. Włókna mają różne właściwości i ceny, więc to do Ciebie należy wybór rodzaju materiału, który będzie dla Ciebie najlepszy. Wybierz rozsądnie gramaturę Zawartość włókien w spódnicy zależy od ilości materiału użytego do jej uszycia. Im większa gramatura, tym więcej włókien zostało użytych do jej produkcji. Niższa gramatura oznacza lżejszą spódnicę, która może być przezroczysta, ale również bardziej elastyczna. « powrót do artykułu
  8. Przed ponad 3000 lat w północnej części Luizjany, w miejscu znanym jako Poverty Point, mieszkały społeczności łowiecko-zbierackie. Naukowcy sądzili dotychczas, że były to proste społeczności, ale archeolog Tristram R. Kidder z University of Washington w Saint Luis przekonuje, że to fałszywy obraz. Wiele bowiem wskazuje na to, że byli wśród nich zręczni inżynierowie oraz osoby zdolne do zorganizowania prac na masową skalę. W Poverty Point znajduje się masywny kopiec o wysokości 22 metrów, kilka mniejszych kopców oraz sześć koncentrycznych półkolistych struktur. Wszystko to jest dziełem łowców-zbieraczy, którzy około 3400 lat temu przemieścili ponad 1,5 miliona metrów sześciennych ziemi, by wznieść te struktury. Kidder uważa, że zbudowali w ten sposób ważne miejsce pielgrzymkowe. Zostało ono nagle opuszczone pomiędzy 3200 a 3000 lat temu, a wydarzenie to zbiega się w czasie z powodziami w dolinie Mississippi i zmianami klimatu. Na brzegach konstrukcji znaleziono liczne artefakty, co wskazuje, że ludzie tam mieszkali. Jednak najbardziej zaskakujące jest tempo wzniesienia kopca i koncentryczny półokręgów oraz ich niezwykła odporność na warunki atmosferyczne. Kidder i jego zespół prowadzili prace na stanowisku Ridge West 3, tym samym, które z 1991 roku badał znany archeolog Jon Gibson. Teraz, dzięki wykorzystaniu nowoczesnych technik badawczych, w tym datowania radiowęglowego, analiz mikroskopowych i pomiarów magnetycznych, naukowcy dowiedli, że struktury powstały bardzo szybko. Nie zauważono bowiem żadnych śladów wietrzenia pomiędzy poszczególnymi warstwami, a takie ślady by były, gdyby zrobiono chociażby krótką przerwę w budowie. To zaś oznacza, że w krótkim czasie zorganizowano dużą grupę ludzi, którzy pod kierownictwem i zgodnie z planem byli w stanie wznieść masywne struktury. Taki sposób organizacji przeczy postrzeganiu prostych społeczności łowiecko-zbierackich. Tym, co jeszcze bardziej imponuje, jest odporność całej struktury na warunki zewnętrzne. Jest ona praktycznie nienaruszona. Tymczasem Poverty Point znajduje się zaledwie ok. 320 km od Zatoki Meksykańskiej. Z powodu jej bliskości w miejscu tym mamy do czynienia z intensywnymi opadami, co czyni wszelkie konstrukcje ziemne niezwykle podatnymi na erozję. Gdy uczeni zbadali materiał wykorzystany do budowy kopca i półokręgów, okazało się, że składa się on ze starannie dobranych proporcji gliny, mułu i piasku. Rzymianie mieli swój słynny beton, a Chińczycy budowali trwałe konstrukcje z ubijanej ziemi. Tutejsza ludność opracowała przepis na takie mieszanie różnych materiałów, by uzyskać z tego bardzo trwały materiał. Był on odporny na erozję, mimo że go nie ubijano. To coś, na co współcześni inżynierowie wciąż nie wpadli, stwierdza Kidder. « powrót do artykułu
  9. Nowy nieorganiczny materiał, o bardzo niskim przewodnictwie cieplnym może poprawić wydajność energetyczną urządzeń. Obecnie nawet 70% generowanej energii jest marnowana w postaci ciepła odpadowego. Zjawisko to jest nie tylko bardzo niekorzystne dla środowiska naturalnego, ale również prowadzi do przegrzewania się urządzeń, spadku ich wydajności i trwałości. Jednak część tego ciepła można by odzyskiwać i zamieniać w energię za pomocą materiałów o niskiej przewodności cieplnej. Przewodność cieplna ciał stałych bierze się z zachowania ich fononów, czyli wibracji struktury krystalicznej. Można ją zmniejszyć na dwa sposoby. Albo skrócić drogę rozpraszania fononów, albo je spowolnić. Droga rozpraszania fononów zależy od ich wzajemnego rozpraszania oraz rozpraszania się na defektach materiałów lub ich granicach. Z kolei prędkość grupy fononów zależy od struktury i składu materiału. Dotychczas próbowano skracać drogę rozpraszania fononów poprzez wprowadzanie celowych defektów w materiałach czy też poprzez zmianę interakcji grup fononów na styku różnych warstw materiałów. Naukowcy z University of Liverpool wyprodukowali kompozytowy materiał, w którym warstwy BiOCl i Bi2O2Se pooddzielali od siebie warstwami Bi4O4SeCl2. W ten sposób uzyskali materiał, którego przewodność cieplna w temperaturze pokojowej w kierunku ułożenia warstw wynosi zaledwie 0,1 W K/m. To jedna z najlepszych wartości wśród materiałów nieorganicznych, jedynie 4-krotnie większa niż przewodność cieplna powietrza. Punktem wyjścia dla trwających pięć lat badań było zrozumienie, w jaki sposób struktura materiału pozwala na kontrolowanie przewodnictwa cieplnego. W efekcie uzyskali materiał, którego przewodnictwo cieplne jest niższe niż każdej z jego składowych z osobna. To zaś pokazało, jak ważna jest struktura atomowa i lokalizacja poszczególnych atomów, bo to one zdecydowały o uzyskaniu tak pożądanych cech nowego materiału. Autorzy badań, Matt Rosseinsky, Jon Alaria i ich zespół, chcą teraz tak zmodyfikować nowy materiał, by zyskał on właściwości termoelektryczne. Planują też wykorzystać swoje doświadczenia do pracy nad materiałami, którymi można będzie powlekać turbiny gazowe. Materiały takie muszą mieć przewodność cieplną niższą niż szkło, czyli poiżej 0,9 W/K/m. To jednak nie wszystko. Zdaniem autorów, łączenie materiałów o różnym ułożeniu atomów w celu zmniejszania przepływu ciepła, to bardzo obiecujący kierunek badań. Te materiały możemy udoskonalać osobno, optymalizując ich struktury, zanim jeszcze je połączymy, stwierdzają. « powrót do artykułu
  10. Od kiedy na całym świecie, w związku z epidemią COVID-19, gwałtownie wzrosło zapotrzebowanie na maseczki, pojawiły się problemy z zapewnieniem tego środka ochronnego pracownikom służby zdrowia. Stąd też apele, o noszenie własnoręcznie wykonanych maseczek. Amerykańskie Towarzystwo Chemiczne informuje na łamach swojego pisma ACS Nano, że maseczkę najlepiej wykonać z połączenia bawełny i  syntetycznego szyfonu. Najlepiej odfiltruje ona aerozole. Najdrobniejsze z wydychanych przez nas cząstek z łatwością prześlizgują się przez różne tkaniny. Stąd też rodzi się pytanie, z jakich materiałów powinna być wykonana maseczka domowej roboty. Postanowił na nie odpowiedzieć Supratik Guha i jego koledzy z University of Chicago. Naukowcy wykorzystali specjalną komorę do mieszania aerozoli, w której wytwarzali cząstki wielkości od 10 nm do 6 mn. Wentylator kierował aerozole w stronę tkaniny, a zespół sprawdzał, liczbę i rozmiary cząstek aerozoli, które przedostały się przez tkaniny. Okazało się, że najlepszym rozwiązaniem jest połączenie jednej warstwy gęstej bawełny z dwiema warstwami szyfonu. W badaniu użyto szyfonu składającego się w 90% z poliestru i 10% z lycry. Taka maseczka zatrzymuje – w zależności od wielkości cząstek – od 80 do 99 procent aerozolu. Szyfon można zastąpić naturalnym jedwabiem lub flanelą i całość sprawdzi się niemal równie dobrze. Naukowcy wyjaśniają, że gęsto utkany materiał, jak bawełna, działa jak bariera mechaniczna. Z kolei szyfon czy naturalny jedwab, które przechowują statyczne ładunki elektryczne, działają jak bariera elektrostatyczna. Najważniejsze jest jednak dokładne zakładanie maseczki. Jej niewłaściwe założenie, gdy powietrze będzie uciekało bokiem, zmniejsza skuteczność maseczki nawet o 60%. « powrót do artykułu
  11. Dzięki „szczęśliwemu wypadkowi” naukowcy z University of Massachusetts w Lowell otrzymali nową stabilną formę węgla. Wydaje się mieć ona wyjątkowe właściwości: jest twardsza od stali, równie dobrze przewodzi prąd, a jej powierzchnia jest połyskliwa jak polerowanego aluminium. Najbardziej zaś zaskakujący jest fakt, iż nowa forma wydaje się ferromagnetykiem i utrzymuje tę właściwość w temperaturach dochodzących do 125 stopni Celsjusza. O odkryciu poinformował fizyk Joel Therrien podczas International Symposium on Clusters and Nanomaterials. Słuchający jego wystąpienia specjaliści byli podekscytowani, ale i ostrożnie podeszli do tych rewelacji. Qian Wang, fizyk z Uniwersytetu Pekińskiego, stwierdziła: gdy opublikują wyniki swoich badań i zostaną one potwierdzone przez innych, spotka się to z olbrzymim zainteresowaniem. Jeśli materiał ten wykazuje właściwości magnetyczne, to może być bardzo użyteczny przy budowie bioczujników czy nośników leków. Uczona zwraca uwagę, że węgiel jest lżejszy niż inne ferromagnetyki, a ponadto nie jest toksyczny. Robert Whetten, materiałoznawca z Northern Arizona University, stwierdził, że on dał się przekonać Therrienowi. Przypomina, że gdy w połowie lat 80. ogłaszano odkrycie kulistego fullerenu C60, to spotkało się to z równie dużym sceptycyzmem. Przypomina jednak, że już wcześniej pojawiły się twierdzenia o odkryciu magnetyzmu w czystym węglu, a później okazywało się, iż próbki były zanieczyszczone. Na razie naukowcom udało się uzyskać jedynie cienkie warstwy nowego materiału, które badali za pomocą mikroskopów elektronowych i spektrometrów rentgenowskich. Wszyscy zwracają uwagę, że potrzebne są kolejne badania. Sumio Iijima, ekspert od nanomateriałów z Meijo University, który w 1991 roku odkrył węglowe nanorurki mówi, że zaprezentowane dane „nie są wystarczająco dobre”, by przekonać go, iż Amerykanie odkryli nowy alotrop węgla. Chce, by na większej próbce przeprowadzono badania metodą krystalografii rentgenowskiej. Dopiero to pozwoli na określenie struktury materiału. Therrien mówi, że nowy materiał uzyskano podczas nieudanych próby syntezy pentagrafenu. To teoretycznie przewidywana forma węgla, w której atomy są połączone w kształt pierścieni składających się z pięciu elementów. Dotychczas nikt jej nie uzyskał. Uczony chciał wykorzystać technikę pozwalającą na wymuszenie nietypowej struktury atomowej. Do komory służącej do chemicznego osadzania z fazy gazowej włożył folię miedzianą spełniającą formę katalizatora i podgrzał ją do temperatury około 800 stopni Celsjusza. Zamiast jednak wpompować do środka prosty gaz, jak metan, użył bardziej złożonego 2,2 dimetylbutanu. Po skończeniu zajęć ze studentami Therrien wrócił do laboratorium i poczuł zapach smoły. Wnętrze komory było pokryte czarnym osadem, jednak na miedzianej folii pojawiła się jasna, błyszcząca warstwa. Po dwóch latach eksperymentów z różnymi heksanami jego zespół nauczył się odtwarzać uzyskaną substancję na podłożach o grubości do 1 mikrometra i długości kilku centymetrów. Naukowcy twierdzą, że otrzymują w ten sposób pofałdowane warstwy węgla złożone pierścieni, na których składa się 6 lub 12 atomów połączonych wiązaniami kowalencyjnymi. Podczas wspomnianego sympozjum pokazano film, na którym widać, że zawieszone w kroplach wody kawałki nowego materiału reagują na magnes, a najbardziej sensacyjnym jest stwierdzenie, iż właściwości magnetyczne występują w temperaturze d0 125 stopni, czyli w takim zakresie, w jakim pracują silniki czy komputery. Therrien mówi, że próbowano zarysować nowy materiał za pomocą stali i się nie udało. Zarysowuje go diament. Inną niezwykłą właściwością jest wysoki połysk. Dotychczasowe pomiary wykazały, że materiał odbija ponad 90% światła w zakresach od dalekiego ultrafioletu po połowę podczerwieni. Nowy materiał przewodzi ładunki elektryczne niemal równie dobrze jak stal, a po poddaniu go powolnemu wyżarzaniu do temperatury 1000 stopni Celsjusza, pojawia się w nim pasmo zabronione, staje się więc półprzewodnikiem. Naukowcy nie nadali mu jeszcze nazwy. « powrót do artykułu
  12. Chińscy archeolodzy potwierdzili, że znaleziony w urnie z czasów neolitycznej kultury Yangshao zwęglony materiał to pozostałości jednej z najstarszych na świecie jedwabnych tkanin. Urnę odkryto na stanowisku Wanggou w prowincji Henan. Z pomocą testu ELISA opracowanego przez ekspertów z Chińskiego Narodowego Muzeum Jedwabiu potwierdzono, że zwęglona tkanina z urny to jedwab - powiedział na konferencji prasowej kurator Zhao Feng. Gu Wanfa, dyrektor Instytutu Badania Zabytków i Archeologii w Zhengzhou, ujawnił, że w Henanie odkryto klaster ruin z okresu kultury Yangshao sprzed 5-7 tys. lat. Tkanina z Wanggou ma 5300-5500 lat. Inne stare potwierdzone przypadki tkaniny jedwabnej pochodzą z czasów kultury Lianghzu i mają 4200-4400 lat - opowiada Gu. W książce A History of Chinese Science and Technology (t. II) Wydawnictwa Prasowego Uniwersytetu Jiao Tong w Szanghaju napisano, że w 1958 r. specjaliści zaangażowani w badania archeologiczne prowincji Zhejiang odkryli na stanowisku Qianshanyang (kultura Liangzhu) w Huzhou bambusowy koszyk, w którym znajdowały się m.in. tekstylia. Naukowcy z Instytutu Tekstyliów oraz Uniwersytetu Technologicznego Zhejiangu zidentyfikowali je jako materiał jedwabny, a także jedwabne włókna i wstążki. Później zespół z Instytutu Archeologicznego prowincji odkrył na stanowisku jedwabne wstążki sprzed ok. 4 tys. lat. W publikacji mówi się również o innym przypadku - skrawkach jedwabiu i tkanin z materiałów roślinnych sprzed ok. 5500 lat; odkopano je w latach 80. XX w. na neolitycznym stanowisku w Qingtai Village. Na stanowisku Wanggou resztki jedwabiu znaleziono w czaszce dziecka. Wanfa uważa, że odkrycie sugeruje, w owym czasie chińska technologia produkcji jedwabiu już raczej dojrzewała, niż dopiero się zaczynała. Ponieważ kształt urny nawiązuje do wyglądu kokonu jedwabników, Zhao Feng przypuszcza, że chowając w ten sposób swoich zmarłych, kiedyś ludzie chcieli, by powstali oni z martwych, tak jak dorosły motyl wydostaje się z kokonu.   « powrót do artykułu
  13. Przeprowadzone przez NASA badania potwierdziły, że Saturn niszczy swoje pierścienie w maksymalnym tempie oszacowanym przez misje Voyager 1 i 2. Pierścienie są ściągane na powierzchnię planety, na którą spada tworzący je lód i pył. Szacujemy, że z pierścieni opada na Saturna tyle wody, że w ciągu pół godziny wypełniłaby ona basen olimpijski. W tym tempie pierścienie Satruna znikną w ciągu 300 milionów lat, jeśli jednak weźmiamy pod uwagę nie tylko dane z Voyagerów, ale też to, co przekazała sonda Cassini na temat materiału opadającego na równik Saturna, to możemy stwierdzić, że pierścienie znikną w czasie krótszym niż 100 milionów lat. To bardzo szybko, biorąc pod uwagę fakt, że Saturn liczy sobie ponad 4 miliardy lat, mówi James O'Donoghue z Goddard Space Flight Center, główny autor badań dotyczących pierścieni Saturna. Naukowcy od dawna zastanawiali się, że Saturn narodził się z pierścieniami, czy też nabył je później. Najnowsze badania sugerują, że prawdziwy jest drugi z tych scenariuszy. Uczeni sądzą, że pierścienie liczą sobie nie więcej niż 100 milionów lat. Tyle bowiem czasu musiało zająć pierścieniowi C dojście do obecnego stanu, zakładając, że pierwotnie był on równie gęsty co pierścień B. Zdaniem O'Donoghue pierścienie Saturna znajdują się obecnie w połowie swojego życia. Niewykluczone też, że w przeszłości równie gęste pierścienie miały Jowisz, Uran i Neptun. Obecnie pozostały im jednie ich resztki. Nie wiadomo, skąd się wzięły pierścienie wokół planety. Jedna z teorii mówi, że mogą być one pozostałościami po księżycach, które zaczęły się zderzać, gdy ich orbity zakłóciła przelatująca obok kometa lub asteroida. Pierwsze sygnały o zanikających pierścieniach Saturna przesłały nam Voyagery. Na zgromadzonych przez nie danych widoczne były zarówno dziwne zmiany w naładowaniu jonosfery Saturna, różnice w gęstości pierścieni jak i wąskie ciemne pasy wokół planety. Kilka lat później Jack Connerney z NASA opublikował pracę, w której wysunął teorię, że wszystkie te zjawiska są połączone i mają związek z opadaniem materiału z pierścieni na planetę. « powrót do artykułu
  14. Porowatość to kluczowa cecha materiałów wykorzystywanych do przechowywania energii. Im bardziej porowate ciało stałe tym więcej płynów i gazów można w nim przechować. Jednak zbyt duża liczba porów destabilizuje materiał. Naukowcy z Wydziału Chemii Uniwersytetu Chemicznego w Dreźnie stworzyli właśnie najbardziej porowaty ze znanych materiałów. DUT-60 ma największa powierzchnię właściwą i największą właściwą objętość porów, wynoszącą 5,02 cm3g-1. Materiały o tak dużej powierzchni właściwej jak ten mogą wykazywać niezwykłe właściwości. Jeśli wyobrazimy sobie jeden gram zeolitu jako płaską powierzchnię, to pokryje ona około 800 metrów kwadratowych, gram grafenu ma powierzchnię niemal 3000 metrów kwadratowych. Natomiast jeden gram DUT-60 pokryje powierzchnię 7800 metrów kwadratowych, wyjaśnia profesor Stefan Kaskel. DUT-60 został najpierw stworzony za pomocą metod obliczeniowych, a później zsyntetyzowany. Przejście od postaci cyfrowej do uzyskanie czystego DUT-60 zajęło nam 5 lat. Z powodu bardzo skomplikowanej metody produkcyjnej materiał ten jest droższy od złota i diamentów. Poza tym jak dotychczas potrafimy jednorazowo zsyntetyzować go nie więcej niż 50 miligramów, dodaje uczony. Dotychczasowym rekordzistą porowatości był materiał o nazwie NU-110 uzyskany w 2012 rou przez Omara Farhę z Northwestern University. Objętość jego porów wynosiła 4,40 cm3g-1. To znacząco mniej niż w przypadku DUT-60. Materiał uzyskany w Dreźnie to ważny krok w kierunku badania górnej granicy porowatości w materiałach krystalicznych. « powrót do artykułu
  15. Kanadyjsko-amerykański zespół badawczy znalazł dowody wskazujące, że materiał znajdujący się pod powierzchnią gwiazd neutronowych może być najtwardszym materiałem we wszechświecie. M. E. Caplan, A. S. Schneider i C. J. Horowitz opisali na łamach Physical Review Letters swoje symulacje i uzyskane wyniki. Nie od dzisiaj wiadomo, że gwiazdy neutornowe charakteryzują się wyjątkowo duża gęstością. Wcześniejsze badania sugerowały, że w związku z tym, powierzchnia gwiazd neutronowych jest niezwykle wytrzymała. Teraz Caplan, Schneider i Horowitz twierdzą, że materiał położony bezpośrednio pod powierzchnią jest jeszcze twardszy niż ona sama. Astrofizycy teoretyzują, że w gwiazdach neutronowych gęsto upakowane neutrony tworzą pod powierzchnią najróżniejsze kształty. Wiele z nich nazwano „makaronem”. Teraz uczeni postanowili sprawdzić, czy materiał ten może być bardziej gęsty i twardy niż powierzchnia gwiazdy. Przeprowadzili liczne symulacje, które wykazały, że mamy tam do czynienia z najtwardszym materiałem we wszechświecie. Jest on 10 miliardów razy twardszy od stali. To jednak nie wszystko. Symulacje te dowodzą też, że gwiazdy neutronowe, poprzez swoje silne pole grawitacyjne, mogą zaburzać czasoprzestrzeń. A zaburzenia te są skutkiem nieregularnego charakteru „makaronu” wewnątrz gwiazd. Niewykluczone, że w przyszłości zaobserwujemy fale grawitacyjne wywoływane tymi zaburzeniami. « powrót do artykułu
×
×
  • Dodaj nową pozycję...