Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'laser'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 105 results

  1. Przed tygodniem w National Ignition Facility (NIF) uzyskano rekordowo silny impuls lasera. W ramach badań nad nowymi źródłami energii 192 lasery wysłały jednocześnie ultrafioletowe impulsy świetlne w kierunku centralnej komory, w której uzyskano 1,875 megadżula. Każdy z impulsów trwał 23 miliardowe części sekundy i w sumie wygenerowały one moc 411 biliardów watów (TW) czyli 1000 razy większą niż potrzebna jest do zasilenia całych Stanów Zjednoczonych. To ważny krok w kierunku rozpoczęcia fuzji. Podczas przygotowań do uruchomienia NIF dokonywaliśmy wielu podobnych prób, podczas których uruchamiany był jeden laser czy też zestawy po cztery. Tym razem jednak jednocześnie wystrzeliły 192 lasery - mówi Edward Moses, dyrektor NIF. Moc laserów NIF wynosi w sumie 2,03 MJ, jednak zanim promienie dosięgną centralnej komory ich moc nieco spada ona podczas przechodzenia przez instrumenty diagnostyczne i optykę. NIF jest zatem pierwszym ośrodkiem, w którym lasery ultrafioletowe osiągnęły moc 2 MJ. To niemal 100-krotnie więcej niż możliwości innych podobnych ośrodków. Podczas testu osiągnięto też bardzo dużą precyzję produkcji energii. Odchylenie nie przekraczało 1,3%. Precyzja jest niezwykle ważna, gdyż to rozkład energii pomiędzy poszczególnymi promieniami będzie decydował o symetrii implozji w kapsułach zawierających paliwo niezbędne do rozpoczęcia fuzji. National Ignition Facility pracuje w ramach Lawrence Livermore National Laboratory. O otwarciu zakładu oraz jego zadaniach informowaliśmy w 2009 roku.
  2. Grupa naukowców położyła fundamenty pod skonstruowanie niezwykle dokładnego zegara atomowego. Zegara, który może pomylić się o 1/10 sekundy w ciągu 14 miliardów lat. Takie urządzenie byłoby przydatne do nawiązywania bezpiecznej łączności oraz posłużyłoby do zbadania postaw fizyki. Obecnie najdokładniejszy zegar atomowy świata - brytyjski CsF2 - może wykazać odchylenie o 1 sekundę na 138 milionów lat. Obecnie używane zegary atomowe są wystarczająco dokładne do większości zastosowań. Są jednak takie dziedziny, w których posiadanie dokładniejszego zegara jest bardzo pożądane - mówi profesor Alex Kuzmich z Georgia Institute of Technology. Oprócz fizyków z Georgii w pracach zespołu brali udział naukowcy z australijskiego University of New South Wales oraz University of Nevada. Zegary atomowe do pomiaru czasu wykorzystują drgania elektronów w atomach wywoływane przez działanie laserów. Jednak elektrony są podatne na oddziaływanie pola elektrycznego i magnetycznego, co zaburza ich dokładność. Naukowcy z USA i Australii wpadli na pomysł, by zamiast elektronów wykorzystać neutrony, które są cięższe i gęściej upakowane, zatem mniej podatne na wpływy zewnętrzne. Zegar neutronowy powinien być zatem dokładniejszy od opartego na elektronach. W naszym artykule pokazaliśmy, że za pomocą lasera można tak wpłynąć na orientację elektronów, że będziemy mogli wykorzystać neutrony w roli wahadła odmierzającego czas. Jako, że neutrony są gęsto upakowane, czynniki zewnętrzne nie będą miały niemal żadnego wpływu na ich drgania - mówi Corey Campbell, główny autor artykułu. Uczeni proponują wykorzystać petahercowy (1015) laser do wzbudzenia jonu toru 229. Taki zegar będzie pracował tylko w bardzo niskich temperaturach, rzędu ułamków kelwina. Zwykle takie temperatury uzyskuje się za pomocą lasera, jednak tutaj będzie to stanowiło problem, gdyż laser jest wykorzystywany do wzbudzenia jonów. Naukowcy zaproponowali użycie jonu toru 232 obok toru 229. Tor 232 reaguje na inną częstotliwość światła lasera niż tor 229. Cięższy jon miałby zostać schłodzony i schłodzić cały system, bez wpływania na oscylacje toru 229.
  3. Doktor Julian Allwood i doktorant David Leal-Ayala z Univeristy of Cambridge udowodnili, że możliwe jest usunięcie toneru z papieru, który został zadrukowany przez drukarkę laserową. W procesie usuwania papier nie zostaje poważnie uszkodzony, dzięki czemu tę samą kartkę można wykorzystać nawet pięciokrotnie. Niewykluczone, że w niedalekiej przyszłości powstaną urządzenia, które będą potrafiły zarówno drukować jak i czyścić zadrukowany papier. „Teraz potrzebujemy kogoś, kto zbuduje prototyp. Dzięki niskoenergetycznym skanerom laserowym i drukarkom laserowym ponowne użycie papieru w biurze może być opłacalne“ - mówi Allwood. Niewykluczone, że nowa technika nie tylko przyniesie korzyści finansowe firmom i instytucjom, ale również przyczyni się do ochrony lasów, redukcji zużycia energii i emisji zanieczyszczeń, do których dochodzi w procesie produkcji papieru i jego pozbywania się, czy to w formie spalania, składowania czy recyklingu. Naukowcy, dzięki pomocy Bawarskiego Centrum Laserowego, przetestowali 10 różnych konfiguracji laserów. Zmieniano siłę impulsów i czas ich trwania, używając laserów pracujących w ultrafiolecie, podczerwieni i w paśmie widzialnym. Podczas eksperymentów pracowano ze standardowym papierem Canona pokrytym czarnym tuszem z drukarki laserowej HP. Takie materiały i sprzęt są najbardziej rozpowszechnione w biurach na całym świecie. Po oczyszczeniu z druku, papier był następnie analizowany przy użyciu skaningowego mikroskopu elektronowego, który pozwalał zbadać jego kolor oraz właściwości mechaniczne i chemiczne. Wstępne analizy wykazały, że rozpowszechnienie się techniki oczyszczania i ponownego wykorzystywania papieru może o co najmniej połowę obniżyć emisję zanieczyszczeń związaną z produkcją i recyklingiem papieru.
  4. Naukowcy ze SLAC National Accelerator Laboratory wykorzystali najpotężniejszy na świecie laser działający w zakresie promieniowania rentgenowskiego stworzenia i zbadania próbki materii o temperaturze 2 milionów stopni Celsjusza. Eksperymenty tego typu pozwalają na zbadanie materii występującej wewnątrz gwiazd i olbrzymich planet. Mogą tez przydać się podczas badań nad procesem fuzji jądrowej. Laser Linac Coherent Light Source (LCLS) generuje impulsy promieni X, które są miliard razy jaśniejsze niż promieniowanie z jakiegokolwiek innego znanego nam źródła. Za pomocą takich impulsów rozgrzano kawałek folii aluminiowej, tworząc gorącą gęstą materię o temperaturze około 2 milionów stopni Celsjusza. Cały proces tworzenie plazmy trwał biliardowe części sekundy. Naukowcy od dawna potrafili uzyskiwać plazmę z gazów i badać ją za pomocą laserów. Dotychczas jednak nie istniało urządzenie, które byłoby w stanie tworzyć plazmę z ciała stałego. LCLS, dzięki wykorzystaniu ultrakrótkich fali X jest pierwszym, który potrafi penetrować gęste ciała stałe, tworzyć plazmę i jednocześnie ją badać - powiedział Bob Nagler, współautor badań.
  5. Specjaliści z należącego do NASA Jet Propulsion Laboratory (JPL), University of Maryland oraz Woods Hole Research Center stworzyli szczegółową mapę wysokości lasów. Pomoże ona zrozumieć rolę, jaką odgrywają lasy w zmianach klimatu oraz w jaki sposób ich wysokość wpływa na zamieszkujące je gatunki. Mapę stworzono za pomocą umieszczonego na orbicie lasera, który zbadał wysokość lasów wysyłając w ich kierunku 2,5 miliona impulsów świetlnych. Dane z odbicia światła były następnie szczegółowo analizowane i porównywane z informacjami uzyskanymi z 70 stacji naziemnych. Badania wykazały, że, ogólnie rzecz ujmując, wraz ze wzrostem szerokości geograficznej, spada wysokość drzew. Najwyższe rośliny znajdują się w tropikach, a im bliżej biegunów, tym są niższe. Znaczącym wyjątkiem jest roślinność Australii i Nowej Zelandii znajdująca się w okolicach 40. stopnia szerokości południowej. Rosną tam eukaliptusy, należące do najwyższych roślin na Ziemi. Najnowsze pomiary wykazują, że lasy na naszej planecie są wyższe, niż wcześniej szacowano. Dotyczy to w szczególności lasów w tropikach i tajgi. Niższe za to niż sądzono są lasy na obszarach górskich. Nasza mapa to jeden z najdokładniejszych dostępnych obecnie pomiarów wysokości lasów na Ziemi - mówi Marc Simard z JPL. Nawet jednak te pomiary nie są doskonałe. Na ich dokładność wpływa bowiem zarówno stopień w jakim człowiek na poszczególnych obszarach zniszczył lasy, jak i różnice w wysokości poszczególnych drzew. Dla niektórych części globu pomiary będą zatem znacznie bardziej dokładne niż dla innych.
  6. Na University of California San Diego powstał najmniejszy na świecie laser pracujący w temperaturze pokojowej. Zbudowano też laser, który nie posiada żadnej wartości progowej. Głównymi zaletami obu urządzeń są ich minimalne zapotrzebowanie na energię oraz miniaturowe rozmiary. Każdy laser wymaga współdziałania układu pompującego o takiej mocy, która pozwala na przekroczenie progu akcji laserowej, czyli takiego poziomu wzbudzenia, w której większość emisji lasera stanowi uporządkowany stymulowany promień światła, przeważający nad emisją spontaniczną i nieuporządkowaną. Im mniejszy jest laser, tym większa energia konieczna do osiągnięcia progu. Aby poradzić sobie z tym problemem naukowcy zaprojektowali laser, który wykorzystuje kwantowy efekt elektrodynamiczny zachodzący we współosiowych nanownękach. Laserowa wnęka zawiera metalowy pręcik otoczony pierścieniem półprzewodnikowych kwantowych studni pokrytych metalem. Taka architektura pozwoliła też na stworzenie najmniejszego lasera pracującego w temperaturze pokojowej. Jest on o cały rząd wielkości mniejszy od dotychczasowego rekordzisty. Średnica lasera wynosi mniej niż pół mikrona, czyli jest mniej więcej 1200 razy mniejsza niż kropka na końcu tego zdania. Nanolasery mogą posłużyć do zbudowania komputerów optycznych, w których komunikacja, a być może i obliczenia, będą odbywały się za pomocą sygnałów świetlnych a nie elektrycznych. Jakby tego było mało, uczeni nie wykluczają, że ich lasery można skalować, co oznacza, iż możliwe będzie wyprodukowanie jeszcze mniejszych urządzeń. To pozwoliłoby np. na badanie materiałów, których struktury są znacznie mniejsze od długości fali, przez co nie można ich badać za pomocą współczesnych laserów.
  7. Dwóch pracowników Sandia National Laboratories, prywatnie myśliwych, dyskutowało o swoim ulubionym zajęciu, a efektem ich rozmów jest... prototyp samosterującego pocisku do broni ręcznej. Kula może bez większego problemu trafić w oświetlony laserem cel z odległości około 2000 metrów. Mamy bardzo obiecującą technologię kierowania małymi pociskami, która może zostać szybko i tanim kosztem udoskonalona - mówi Red Jones, który wraz z Brianem Kastem opracował pocisk. Ich projekt to pocisk o długości 10 centymetrów, w którego czubku umieszczono czujnik optyczny, wykrywający światło lasera. Czujnik wysyła dane do ośmiobitowego procesora, a ten steruje ruchem elektromagnetycznych aktuatorów, które z kolei zarządzają niewielkimi brzechwami korygującymi tor lotu pocisku. Obecnie większość broni strzeleckiej korzysta z gwintowanych luf. Obecność gwintu nadaje pociskom ruch obrotowy, co stabilizuje je w czasie lotu. Nowe pociski wystrzeliwane są z broni gładkolufowej. Stabilność lotu zapewnia umiejscowienie środka ciężkości bliżej przodu pocisku oraz wspomniane wcześniej brzechwy. Początkowo pocisk znajduje się w plastikowej osłonie, która chroni brzechwy przed kontaktem z lufą. Komputerowe symulacje wykazały, że nowy pocisk jest znacznie bardziej celny od tradycyjnych rozwiązań. W warunkach polowych średnie odchylenie od celu znajdującego się w odległości 1000 metrów wynosi w przypadku tradycyjnego pocisku około 9 metrów. Nowy pocisk zmniejsza tę odległość do około 0,2 metra. Co więcej, projekt z Sandii nie wymaga stosowania układu mierzącego inercję, który znacznie zwiększyłby cenę pocisku. Częstotliwość kołysania się lecącego pocisku jest zależna od jego wielkości. Samosterujące rakiety są duże, zatem częstotliwość odchyleń jest niewielka, co powoduje konieczność stosowania bardzo precyzyjnych mechanizmów kontroli intercji, gdyż jest niewiele okazji do skorygowania toru lotu rakiety. W przypadku pocisku o rozmiarach opracowanych przez Jonesa i Kasta, dochodzi do 30 odchyleń w ciągu sekundy, a więc tyle razy na sekundę można skorygować jego lot. Przeprowadzone testy wykazały, że komercyjnie dostępny proch pozwala pociskowi na osiągnięcie prędkości 731 metrów na sekundę. Specjaliści uważają, że za pomocą specjalnie dobranego prochu można będzie zwiększyć jego prędkość. Podczas nocnych testów do pocisków mocowano diody LED i okazało się, że baterie i cała elektronika są w stanie przetrwać lot. Co więcej film wykonany kamerą o dużej prędkości pokazał zaskakującą rzecz. Im dłużej pocisk leci, tym wolniej opada, co oznacza, że jest bardziej celny na większe odległości. Nikt nigdy tego nie obserwował, ale mamy to nagrane - mówi Jones. Sandia szuka teraz prywatnej firmy, która będzie chciała prowadzić dalsze badania nad nowym pociskiem i rozpocząć w przyszłości jego produkcję.
  8. Dotychczas zjawiska kwantowe były dostrzegalne tylko w skali mikro, ale dzięki pracom uczonych z University of Cambridge właśnie się to zmieniło. Na uczelni powstał układ scalony zamieniający elektrony w stan kwantowy, który podczas tej operacji emituje światło. Całość jest na tyle duża, że zjawisko można obserwować gołym okiem. Do wytworzenia stanów kwantowych wystarczy oświetlić układ za pomocą laserów. W ten sposób powstają olbrzymie polarytony o grubości ludzkiego włosa, które emitują światło. Po poddaniu ich działaniu lasera okazało się, że tworzony przez nie „płyn kwantowy“ zaczyna spontanicznie oscylować w przód i w tył, tworząc znane fizykom kwantowe wahadło. Od innych tego typu zjawisk odróżniają je tysiące razy większe rozmiary. Eksperyment przeprowadzili doktor Gab Christmann, profesor Jeremy Baumberg i doktor Natalia Berloff. Christmann wyjaśnia, że te polarytony w zdecydowanej większości poruszają się zgodnie ze sobą, co wskazuje na kwantowe splątanie. Uzyskany w ten sposób kwantowy płyn ma pewne szczególne właściwości. Próbuje np. odpychać poszczególne cząsteczki od siebie, powstają w nim wiry z określonej liczby cząsteczek, co oznacza, że wiry te tworzą regularny wzór. Uczeni dowiedli, że ich płyn kwantowy można kontrolować za pomocą laserów i tworzyć z niego wahadło oscylujące z częstotliwością liczoną w megahercach. Nie spodziewaliśmy się możliwości bezpośredniego zaobserwowania takiego zjawiska. To niezwykłe, jak doskonałe muszą być nasze próbki. Możemy w czasie rzeczywistym sterować przepływem strumieni polarytonów dzięki działaniu laserów, za pomocą których je stworzyliśmy - mówi Christmann. Co więcej, okazało się, że zwiększając liczbę laserów można tworzyć bardziej skomplikowane stany kwantowe. Celem badań jest opracowanie urządzenia, które stworzy stany kwantowe w temperaturze pokojowej i przy użyciu zasilania z baterii.
  9. Badacze z organizacji Public Intelligence opublikowali informację dotyczącą broni, która nie zabija, a którą chce budować lub udoskonalać Pentagon. Taka broń ma posłużyć przede wszystkim do rozwiązywania konfliktów bez eskalowania przemocy i wywoływania niechęci czy nienawiści do żołnierzy. Analitycy twierdzą, że obecnie używana broń tego typu nie tylko pozwala na zażegnanie kryzysu, ale wywołuje też pozytywny oddźwięk u miejscowej ludności. Jednym z takich urządzeń jest Raytheon Active Denial System. To urządzenie mikrofalowe, które na krótki czas podgrzewa skórę. Temperatura jest na tyle wysoka, że „ostrzelany“ jest zmuszony do wycofania się, jednocześnie zaś broń ma nie powodować ran. Pentagon chce zwiększyć zasięg systemu tak, by niemożliwe było zbliżenie się do niego na odległość pozwalającą na ostrzelanie z małej broni ręcznej. Innym urządzeniem jest Distributed Sound and Light Array (DSLA). To połączenie laserów, świateł i systemu dźwiękowego, które ma zdezorientować tłum. Ma jednak tę wadę, że użyte z bliskiej odległości może uszkodzić uszy i oczy. W przyszłym roku Pentagon rozpocznie testy udoskonalonego granatu hukowego. Ma on oślepiać człowieka na 10 sekund i wystawiać go na działanie dźwięku o natężeniu 143 decybeli. Udoskonalona zostanie też gumowa amunicja. Wojskowi domagają się, by miała ona większy zasięg i została wyposażona w barwnik pozostawiający ślady na ubraniu i ciele ostrzelanego, by można było go później zidentyfikować. Jeśli zaś chodzi o broń, która jeszcze nie istnieje, to na „liście życzeń“ Pentagonu znalazły się dwa interesujące systemy. jeden z nich to Subsurface Non-Lethal Engagement-Impulse Swimmer Gun. Ma być to broń generująca pod wodą impuls dźwiękowy, który z odległości nawet 150 metrów będzie wywoływał zaburzenia orientacji oraz nudności u wrogich płetwonurków. Odmiana tego systemu będzie generowała nanosekundowy impuls elektryczny, powodujący utratę kontroli nad mięśniami. Pentagon nie wyklucza takiej modyfikacji tej broni, że możliwe będzie zatrzymywanie za jej pomocą samochodów lub statków, poprzez przeciążenie ich systemów elektronicznych. Najciekawszym pomysłem ma być jednak Laser Based Flow Modification. W zamierzeniach pomysłodawców tego systemu, pozwoli on na „ostrzelanie“ krawędzi natarcia skrzydła samolotu, dzięki czemu zmieni się siła nośna i maszyna zostanie zmuszona do lądowania.
  10. W Niemczech zbudowano najmniejszy w historii silnik Stirlinga. To wynaleziony na początku XIX wieku silnik, który przetwarza energię cieplną w energię mechaniczną. Specjaliści z Uniwersytetu w Stuttgarcie i Instytutu Systemów Inteligentnych Maksa Plancka tak zmodyfikowali urządzenie, by uzyskać jak najmniejsze wymiary. Oryginalny silnik Stirlinga ma z jednej strony cylinder z gazem połączony ze źródłem ciepła, a z drugiej chłodnicę. Dwa tłoki przepychają gaz pomiędzy ciepłym i zimnym obszarem. W celu zmniejszenia rozmiarów silnika niemieccy uczeni zastąpili zbiornik gazu pojedynczą cząsteczką melaminy, którą zanurzono w wodzie. Całość umieszczono w zbiorniku o wysokości 4 mikrometrów. W roli tłoka wystąpił laser. Im większa była intensywność promienia, tym mniejszą swobodę ruchu miała molekuła. Zachowywała się ona zatem podobnie do molekuł gazu w oryginalnym projekcie. Drugi z laserów w czasie krótszym niż 10 milisekund podgrzewał wodę do temperatury 90 stopni Celsjusza, wywołując ruch melaminy. Wyłączenie lasera powodowało gwałtowne ochładzanie się wody. Pomimo tego, że udało się odtworzyć działanie silnika Stirlinga, mikroskopijne urządzenie jest mniej doskonałe niż pracujące w skali makro. W przeciwieństwie do makroskopowego silnika, który pracuje bardzo płynnie i całkowicie przewidywalny sposób, nasz silnik zacina się - mówi profesor Bechinger. Dzieje się tak dlatego, że molekuły wody bez przerwy uderzają w molekułę melaminy, co powoduje nierównomierne przepływy energii. W dużym silniku generowane jest tyle energii, że kolizje te nie mają znacznie, jednak w świecie mikro zaburzają one pracę urządzenia. Mimo to, naukowcy byli zadziwieni faktem, że średnia wydajność silnika była taka jak oryginału. Naukowcy podkreślają, że ich silnik nigdy nie znajdzie praktycznego zastosowania, jednak mają nadzieję, że badania nad nim posłużą do opracowania bardziej stabilnych źródeł napędu dla mikromaszyn.
  11. Trzech naukowców z Goddard Space Fight Center otrzymało od NASA grant w wysokości 100 000 USD, który jest przeznaczony na rozwój technologii laserowego zbierania próbek. Ich bezdotykowe kolekcjonowanie eliminuje ryzyko zanieczyszczenia. Obecny w science-fiction, przede wszystkim w Star Treku, system laserowego zbierania próbek, znajduje się w zasięgu współczesnej technologii - stwierdził Paul Stysley. Wraz z Demetriosem Pouliosem i Barry'm Coyle'em próbowali oni stworzyć laserowe urządzenie służące do sprzątania orbity okołoziemskiej. Okazało się jednak, że lasery, przynajmniej obecnie, nie radzą sobie z tak dużymi obiektami jak np. szczątki satelitów. Mogą być jednak użyte do zbierania próbek. Stysley, Poulios i Coyle zajmą się badaniem trzech technologii. Pierwsza zakłada użycie dwóch przeciwległych promieni lasera. Jest ona już używana w ograniczonym zakresie do przesuwania cząsteczek, jednak wymaga istnienia atmosfery, przez co nie będzie się nadawała do wielu zastosowań. Druga technologia, przetestowana w laboratorium, korzysta z optycznego solenoidu. Jest on opisywany przez uczonych jako promienie, których intensywność osiąga maksimum spiralnie do osi rozprzestrzeniania się. Pozwala ona przesuwać cząsteczki w kierunku źródła światła. Wiadomo też, że działa w próżni, co pozwoli na wykorzystanie jej w przestrzeni kosmicznej. W końcu trzecia, obecnie czysto teoretyczna technologia, korzystająca z pola elektromagnetycznego opisywanego przez funkcję Bessela pierwszego rodzaju. Zakłada ona wytworzenie pól magnetycznych lub elektrycznych wokół cząsteczek i nadanie im w ten sposób przyspieszenia. Chcemy być pewni, że dobrze rozumiemy działanie tych technik. Mamy nadzieję, że jedna z nich spełni nasze oczekiwania. Dopiero zaczynamy nad tym pracować. To nowe zastosowanie, którym nikt się dotąd nie zajmował - mówi Coyle.
  12. Naukowcy z California Institute of Technology (Caltech) we współpracy z uczonymi z Uniwersytetu Wiedeńskiego po raz pierwszy w historii schłodzili za pomocą lasera miniaturowy obiekt mechaniczny do najniższego możliwego stanu energetycznego. Osiągnięcie to umożliwi przeprowadzenie w przyszłości eksperymentów, które dotychczas nie były możliwe. Użyliśmy światła do wprowadzenia masywnego systemu mechanicznego - składającego się z miliardów atomów- w stan, w którym zachowuje się on zgodnie z prawami mechaniki kwantowej. W przeszłości można było tego dokonać tylko w przypadku pojedynczych jonów i atomów schwytanych w pułapki - powiedział główny autor badań, profesor Oskar Painter. Uczony i jego zespół najpierw stworzyli bardzo precyzyjną krzemową belkę o długości liczonej w mikrometrach i dobrali częstotliwość światła laserowego tak, by mogło ono dotrzeć do systemu i, po odbiciu, odebrać zeń energię cieplną. Dzięki niezwykłej precyzji wykonania każdego elementu oraz osłony izolującej całość od wpływów środowiska doprowadzili system do stanu podstawowego, w którym drgania mechaniczne są zredukowane do absolutnego minimum. W takim stanie można wykryć bardzo niewielkie siły i masy oddziałujące na system. Zwykle ich obecność jest maskowana drganiami. Nasz eksperyment otwiera drogę do przeprowadzenia bardzo interesujących badań z zakresu mechaniki kwantowej - stwierdził profesor Painter. Pozwoli to np. na sprawdzenie czy systemy mechaniczne mogą zostać wprowadzone w stan splątania kwantowego. Aby osiągnąć stan podstawowy, konieczne było schłodzenie belki do temperatury poniżej 100 milikelwinów. Dopiero wówczas udałoby się usunąć „szum" w postaci fononów, które w olbrzymiej ilości są tworzone w temperaturze pokojowej. Tradycyjne metody kriogeniczne mogły się nie sprawdzić, gdyż po pierwsze wymagają użycia bardzo drogiego sprzętu, a po drugie, nie można ich zastosować w każdym przypadku. Postanowiliśmy użyć fotonów do usunięcia fononów z systemu - powiedział Jasper Chan, jeden z naukowców biorących udział w eksperymencie. Uczeni wywiercili w krzemowej belce otwory, które po potraktowaniu światłem o określonej długości fali, zadziałały jak pułapki, w które złapało się światło. Doszło wówczas do silnej interakcji światła z drganiami mechanicznymi. Jako, że przesunięcie w częstotliwości światła jest wprost związane z ruchem termicznym obiektu, to światło, gdy już wydostanie się z pułapki, zabiera ze sobą takie informacje o systemie mechanicznym jak np. ruch i temperatura. W ten sposób powstał przetwornik optomechaniczny, który zamieniał informacje o systemie mechanicznym w światło. Taki przetwornik może zostać wykorzystany do łączenia różnych systemów kwantowych.
  13. Odebranie na Ziemi zdjęć o wysokiej rozdzielczości wykonanych przez sondę fotografującą Marsa trwa około 90 minut. NASA chce w 2016 roku uruchomić laserowy system transmisji danych, dzięki któremu czas przesyłania zdjęć ulegnie skróceniu do kilku minut. Agencja zatwierdziła właśnie rozpoczęcie prac nad systemem Laser Communications Relay Demonstration (LCRD). Będzie on rozwijany przez specjalistów z Goddard Space Fligh Center i w fazie testów zostanie umieszczony na komercyjnych satelitach telekomunikacyjnych. Mimo, iż NASA opracowała już nowoczesne systemy przesyłania danych za pomocą wyższych częstotliwości radiowych, nowe metody kompresji danych i inne techniki, to nie będą one nadążały za ilością danych przekazywanych w przyszłości przez zaawansowane instrumenty oraz dalekie misje załogowe. Tak jak w pewnym momencie internet nie mógł już dużej polegać na dostępie wdzwanianym, tak NASA zbliża się do granic możliwości obecnie wykorzystywanych technologii - powiedział Dave Israel, główny naukowiec programu LCRD. Powstał więc pomysł rozszerzenia możliwości wykorzystywanych sieci radiowych, zarówno naziemnych jak i satelitarnych, o technologie optyczne. Powinno to zwiększyć przepustowość tych sieci od 10 do 100 razy. Prace potrwają wiele lat, ale odniesiemy z tego olbrzymie korzyści w postaci znacznie większej ilości danych, które będziemy mogli przesyłać w obie strony. Szczególnie będą one widoczne przy transmisji danych z dalszych regionów Układu Słonecznego i spoza niego - mówi James Reuther, jeden z dyrektorów w Biurze Głównego Technologa NASA. Podczas demonstracji możliwości nowego systemu dane zostaną zakodowane w promieniu lasera i wysłane ze stacji bazowej do satelity komunikacyjnego. Satelita zostanie wyposażony w teleskopy. lasery, lustra, czujniki, systemy śledzące, elektronikę kontrolną oraz dwa typy modemów. Jeden ich rodzaj będzie służył do komunikacji z pojazdami odbywającymi misje na krańcach Układu Słonecznego i poza nim oraz z niewielkimi satelitami znajdującymi się na niskiej orbicie Ziemi, które mają do dyspozycji niewiele energii. Drugi rodzaj modemów zostanie przystosowany do odbioru olbrzymiej ilości danych z pobliskich urządzeń. Israel mówi, że w przyszłości ten drugi rodzaj modemów może odbierać dziesiątki gigabitów w ciągu sekundy. Wspomniany satelita komunikacyjny, po odebraniu danych będzie przekazywał je do dwóch stacji znajdujących się na Hawajach i w Południowej Kalifornii. Testy nowego systemu potrwają 2-3 lata.
  14. Na Michigan State University powstał laser, który wykrywa przydrożne bomby-pułapki. Są one największym zagrożeniem dla wojsk koalicyjnych w Afganistanie. Jako, że tego typu bomby są umieszczane często w zaludnionych obszarach, system, który je identyfikuje musi spełniać kilka szczególnych założeń. Przede wszystkim musi wykrywać je nie doprowadzając jednocześnie do eksplozji. Ponadto musi być w stanie odróżnić bombę od wielu innych znajdujących się w pobliżu obiektów. Identyfikacja musi być też wiarygodna, by uniknąć np. niepotrzebnego ewakuowania okolicznych mieszkańców wskutek błędnego rozpoznania niegroźnego obiektu jako materiału wybuchowego. Laser z Michigan ma moc porównywalną ze wskaźnikiem laserowym wykorzystywanym np. podczas prezentacji. Emituje on krótkie impulsy w kierunku podejrzanego obiektu, wybijając z niego molekuły i doprowadzając je do wibracji. Następnie emitowane są długie impulsy, które „nasłuchują" tych wibracji i na ich podstawie identyfikują każdą z molekuł. Cały system sprzężony jest z kamerami, co pozwala na badanie podejrzanego obszaru z bezpiecznej odległości. „Laser i jego sposób pracy powstał początkowo z myślą o zastosowaniu go w mikroskopach, ale udało się nam go przystosować do wykrywania materiałów wybuchowych" - mówi Marcos Bantus, profesor chemii i założyciel firmy BioPhotonic Solutions. Badania prowadzone przez jego firmę są częściowo finansowane przez Departament Bezpieczeństwa Wewnętrznego.
  15. Richard Taylor, dyrektor Instytutu Materiałoznawstwa na University of Oregon, opublikował na łamach Physics World artykuł, w którym opisuje nowoczesne sposoby tworzenia kręgów zbożowych. Wg niego, staromodne liny, drewniane kłody i stołki barowe zastąpiły lasery, elementy kuchenek mikrofalowych oraz GPS-y. Części gadżetów naukowcy pewnie jeszcze w ogóle nie zidentyfikowali. Bez wątpienia jednego nie da się "wygniataczom" zbóż odmówić – pomysłowości. Pierwsze doniesienia o kręgach sięgają roku tysięcznego. Wtedy nazywano je kołami wilijnymi i uznawano za skutek nocnych tańców boginek. W latach 70. w południowej Anglii powstało bardzo dużo kręgów. W 1991 r. Doug Bower i Dave Chorley przyznali, że większość zapoczątkowujących nową agromodę kręgów była ich dziełem. Panowie pokazali nawet wykorzystywane przez siebie przyrządy. Mimo ich publicznej spowiedzi, fenomen nie zniknął, a wręcz przeciwnie – nadal się rozwijał. Z czasem kręgi stawały się coraz bardziej skomplikowane, obecnie niektóre składają się nawet z 2 tys. różnych kształtów. Pewne kręgi powstają w oparciu o wzory matematyczne. W zeszłym roku Lucy Pringle odkryła, że jeden z nich stworzono na bazie wzoru Eulera. Taylor sądzi, że za pomocą składowych mikrofalówki można sprawić, że źdźbła wyłożą się i ulegną wychłodzeniu w poziomie. Amerykanin uważa, że dzięki pospolitemu urządzeniu kuchennemu proces tworzenia kręgów zyskał na prędkości i pozwolił na uzyskiwanie bardzo drobnych szczegółów. Inni naukowcy twierdzą, że odtwarzali już wzory w zbożu i trawie, używając magnetronu, czyli lampy mikrofalowej, oraz 120-woltowej baterii. Jaką funkcję spełniają inne wymienione w artykule akademika z University of Oregon sprzęty? GPS-y pozwalają dokładnie wytyczyć i odtworzyć wzór, stanowią więc coś w rodzaju elektronicznej wersji linijki, ekierki i kątomierza, podczas gdy laser tnie roślinność niczym skalpel skrzyżowany z dłutem. Na witrynie Lucy Pringle można podziwiać zdjęcia naprawdę pięknych i złożonych kręgów. Badaczka znalazła ciekawy sposób na sfinansowanie swojej pasji: w sklepie internetowym oferuje puzzle przedstawiające najbardziej interesujące kręgi zbożowe, a także kalendarze z malowniczymi agrowzorami.
  16. Grafen ma wiele zalet, ale też i jedną bardzo poważną wadę - nie występuje w nim pasmo wzbronione, bez którego jest nieprzydatny do zastosowań w elektronice. Dlatego też poszukiwana jest odpowiednia metoda tworzenia tego pasma. W półprzewodnikach występuje region energetyczny, zwany pasmem wzbronionym, gdzie nie są dostępne żadne stany elektroniczne [poziomy energetyczne - red.]. Mówi się, że gęstość nośnika wynosi tam zero. Jeśli mamy urządzenie podłączone do dwóch elektrod i występuje w nim pasmo wzbronione, to możemy spowodować, by płynął przez nie prąd o minimalnym napięciu. Brak pasma wzbronionego w grafenie oznacza, że nie można go „wyłączać". A to właśnie dzięki temu, iż możemy „włączać" i „wyłączać" prąd, możemy też kodować informacje w postaci 0 i 1. To wyjaśnia, dlaczego brak pasma wzbronionego to poważny wada, uniemożliwiające zastosowanie tego wyjątkowego materiału w wielu miejscach - mówi Foa Torres z Universidad Nacional de Cordoba w Argentynie. Torres i jego zespół, po przeanalizowaniu sposobu, w jaki laser wpływa na elektrony w grafenie, doszli do wniosku, że oświetlenie go światłem w średnich zakresach podczerwieni utworzy w nim pasmo wzbronione. Co więcej, jego właściwości można dobrać za pomocą polaryzacji światła. Wyobraźmy sobie elektron, który przesuwa się z lewej strony na prawą, w kierunku obszaru oświetlonego przez laser. Elektron wchodzi w interakcję z radiacją lasera, emitując lub absorbując fotony. Ta interakcja powoduje, że elektron jest odbijany lub rozpraszany, tak jakby trafił na ścianę - tutaj jest to pasmo wzbronione. W przeciwieństwie do normalnych pasm wzbronionych to jest tworzone dynamicznie - mówi Torres. Jego zdaniem interakcja pomiędzy strukturą grafenu a laserem daje nadzieję na uzyskanie egzotycznych stanów materii, takich jak izolatory topologiczne. Uczony uważa też, że wprowadzane laserowo pasmo wzbronione pozwoli na tworzenie nowych urządzenie optoelektronicznych. Tera Torres i jego współpracownicy chcą przeprowadzić eksperymenty, które mają zweryfikować prawdziwość ich założeń. Ich przeprowadzenie powinno być tym łatwiejsze, że z Argentyńczykami skontaktowały się już dwie znane grupy badawcze z USA i Hiszpanii, które są zainteresowane ich teorią. Drzwi zostały otwarte. Teraz wkraczamy na obiecującą terra incognita - mówi Torres.
  17. Emily Brooke, studentka ostatniego roku projektowania przemysłowego z Uniwersytetu w Brighton, opracowała urządzenie o nazwie BLAZE, które rzutuje laserowo na drogę zielony znak informujący o obecności roweru, motocyklu lub skutera. Jej wynalazek został doceniony, dzięki czemu wygrała miejsce na kursie w prestiżowym Babson College w Massachusetts. BLAZE jest zasilany bateriami. Wystarczy go przymocować do rączek. Jaskrawozielony symbol roweru przemieszcza się przed pojazdem. Widać go nawet w świetle dziennym. Można też wykorzystać opcję migania, która znacznie zwiększa widoczność. Brooke podkreśla, że do większości wypadków z udziałem rowerów dochodzi z powodu niedostatecznej widoczności rowerów. Nawet oświetlony jak bożonarodzeniowa choinka, rower jest nadal niewidoczny w martwym punkcie autobusu. Z BLAZE widzisz rower przed cyklistą i myślę, że to dużo zmienia w przypadku kluczowych scenariuszy zagrażających rowerzystom na drogach. Konstruując BLAZE, studentka współpracowała z ekspertami ds. bezpieczeństwa, a także psychologami ruchu drogowego. Trzeba przyznać, że jej urządzenie pod każdym względem przewyższa naklejkę "Patrz w lusterka, motocykle są wszędzie".
  18. W Nature Photonics ukazał się artykuł, którego autorzy opisują, w jaki sposób zbudowali laser z pojedynczej żywej komórki. Prace nad nim rozpoczęły się od stworzenia komórki produkującej emitujące światło proteiny. Po oświetleniu komórki niebieskim światłem rozpoczęła ona emisję skoncentrowanej wiązki światła zielonego. Zwykle lasery produkuje się z materii nieożywionej. Malte Gather i Seok Hyun Yun z Wellman Center for Phodomedicine stworzyli pierwszy laser z organizmu żywego. Jako medium, dzięki któremu zachodzi emisja, wykorzystali białko zielonej fluoroscencji (GFP). To bardzo dobrze poznana molekuła, po raz pierwszy otrzymana z meduz. Teraz komórki ludzkich nerek zmieniono tak, by produkowały GFP. Takie komórki umieszczano pomiędzy miniaturowymi lustrami, które działały jak wnęka rezonansowa i światło odbijało się między nimi wielokrotnie przelatując przez komórkę. Komórki były żywe podczas eksperymentu jak i po jego zakończeniu. To z kolei pozwoliło uczonym stwierdzić, że nowy laser jest w stanie sam się naprawić. Jeśli bowiem GFP ulegnie zniszczeniu, komórka wyprodukuje nową molekułę. Nowy laser znajdzie szerokie zastosowania. Od badań procesów wewnątrzkomórkowych po obrazowanie medyczne i terapię. Specjaliści zastanawiają się, w jaki sposób dostarczyć światło laserowe do głębokich warstw tkanek. Dzięki nowemu podejściu możemy rozwiązać ten problem zmieniając samą tkankę w laser - mówią autorzy badań.
  19. Niemieccy naukowcy z Instytutu Technologii w Karlsruhe przesłali w promieniu lasera dane z prędkością 26 terabitów na sekundę i skutecznie je rozkodowali. Sukces zespołu profesora Jürga Leutholda był możliwy dzięki opracowaniu nowej metody rozkodowywania danych. Opto-elektryczna metoda polega na rozbiciu danych optycznych na strumienie tak, by ilość informacji trafiająca do dekodera była bardziej uporządkowana. Jest to konieczne, gdyż nie istnieją elektryczne dekodery zdolne do pracy z częstotliwością 26 terabitów na sekundę. Zespół Leutholda zastosował używaną w komunikacji mobilnej technikę OFDM (Orthogonal Frequency-Division Multiplexing), metodę polegającą na jednoczesnej transmisji wielu strumieni danych w ortogonalnych częstotliwościach. Bazuje ona na szybkich transformacjach Fouriera. Wyzwaniem było zwiększenie prędkości całego procesu nie o 1000, ale o niemal milion, by osiągnąć prędkość przetwarzania danych rzędu 26 terabitów na sekundę. Decydujące okazało się zaimplementowanie matematycznego wzorca w optyce - mówi Leuthold. Uzyskane przez nas wyniki pokazują, że nie przekroczyliśmy jeszcze fizycznej granicy transferu danych - dodaje uczony. Kilka lat temu osiągnięcie prędkości 26 Tb/s było uważane za utopię, nawet jeśli mówiono o wykorzystaniu systemów z wieloma laserami. Nie istniał żaden przykład takiej transmisji. Przesyłając 26 terabitów na sekundę można jednocześnie obsłużyć do 400 milionów połączeń telefonicznych. Wówczas nikt nie potrzebował tak szybkich transmisji. Teraz sytuacja jest inna - mówi. Rosnący popyt na transmisję wideo powoduje, że konieczne jest stosowanie łączy o coraz większej przepustowości. Układane są pierwsze kable pozwalające na przesyłanie 100 gigabitów na sekundę, a naukowcy w wielu instytucjach badawczych skupiają się nad rozwojem technologii pozwalających przesłać od 400 Gb/s do 1 Tb/s. Profesor Wolfgang Freude, współautor badań, zauważa, że inny zespół zaprezentował już transmisję rzędu 100 Tb/s. Problem w tym, że oni nie użyli jednego, ale 370 laserów. To niezwykle kosztowne przedsięwzięcie. Jeśli wyobrazimy sobie taki system, będzie on zajmował wielkie szafy i zużywał kilowaty energii - mówi. Tymczasem Niemcy przesłali 26 terabitów w ciągu sekundy za pomocą jednego lasera, korzystając z optycznego grzebienia częstości. Jest to taki rodzaj promienia, którego widmo składa się z wielu równoodległych częstości. W ten sposób pracuje laser femtosekundowy, który ma szerokie widmo. Transformacje Fouriera pozwalają na wydzielenie różnych kolorów z promienia lasera na podstawie czasu przybycia do celu różnych jego części. Niemcy optycznie rozdzielili różne kolory, a następnie połączyli je w dekoderze. W ten sposób lepiej zorganizowano dane, które przybywają w różnym czasie, co pozwoliło na ich efektywne dekodowanie. System opracowany w Karlsruhe może zostać zintegrowany w układzie scalonym, co w przyszłości umożliwi jego praktyczne wykorzystanie.
  20. Inżynierowie ze Stanford University wyprodukowali półprzewodnikowy laser w skali nano, który działa szybciej i jest bardziej energooszczędny niż jakiekolwiek inne urządzenie tego typu. Obecnie wykorzystywane obwody elektryczne, które służą do przesyłania danych, wymagają dużych ilości energii na każdy bit i są relatywnie powolne - mówi profesor Jelena Vuckovic, której zespół stworzył nowy laser. Vuckovic i jej grupa współpracują z zespołami naukowców Jamesa Harrisa ze Stanford oraz Gary'ego Shambata z University of California Berkeley nad laserami z kryształem fotonicznym. Takie urządzenia są bardzo małe, działają szybko i zużywają niewiele energii. Stworzyliśmy nadajnik danych optycznych - laser - który wykorzystuje 1000-krotnie mniej energii i jest 10-krotnie szybszy od najlepszych dostępnych komercyjnie laserów. Co więcej, sądzimy, że uda się go udoskonalić - informuje Vuckovic. Inni naukowcy pracują nad podobnymi rozwiązaniami, ale najlepszy laser, jaki udało się uzyskać, wymagał do pracy innego lasera, dostarczającego mu (pompującego) energię. Potrzebujemy lasera pompowanego elektrycznością, nie światłem - mówi uczona ze Stanforda. Tymczasem tego typu urządzenia z kryształem fotonicznym były dotychczas trudne w produkcji i mało wydajne, co uniemożliwiało ich skomercjalizowanie. Tymczasem zespół Vukovic stworzył łatwy w produkcji i bardzo wydajny laser z kryształem fotonicznym. Prace nad nim rozpoczęły się od wyhodowania plastra z arsenku galu za pomocą natryskiwania na podłoże poszczególnych warstw molekuł. Co jakiś czas arsenek galu zastępowano trzema warstwami arsenku indu. Ten materiał tworzył na arsenku galu kwantowe kropki. Całość miała w sumie grubość 220 nanometrów. Następnie powierzchnia plastra została wzbogacona jonami. Z jednej strony były to jony krzemu, z drugiej - berylu. „Wysepki" jonów są dobrze widoczne na powierzchni, ale się ze sobą nie stykają. Pozwalają jednak precyzyjnie sterować przepływem prądu, skupiając ładunki w pożądanym miejscu i zwiększając efektywność lasera. Na koniec tak przygotowany plaster jest precyzyjnie „dziurawiony" za pomocą okrągłych otworów układających się w kształt plastra miodu. Pozycja i rozmiary otworów są niezwykle istotne dla poprawnego działania urządzenia. Otwory są niemal idealnie okrągłe z gładkimi wewnętrznymi ścianami i są bardzo ważne dla funkcjonowania lasera. Działają jak zespół luster odbijających fotony w kierunku centrum lasera - mówi Vuckovic. Tak skonstruowany laser jest w stanie wysłać to 100 miliardów impulsów w ciągu sekundy, a każdy z nich może oznaczać jeden bit. Uczeni stworzyli też odbiornik i połączyli go z laserem za pomocą cienkich łączy optycznych. W pojedynczej warstwie można zmieścić setki optycznych nadajników i odbiorników, które można połączyć łączami optycznymi i umieścić na jednym układzie scalonym. Na razie najpoważniejszą przeszkodą na drodze do zastosowania lasera Vuckovic jest temperatura, jakiej wymaga do pracy. Wynosi ona bowiem zaledwie 150 kelwinów (-123 stopnie Celsjusza). Dzięki ulepszeniu procesu produkcyjnego możemy stworzyć laser, który pracuje w temperaturze pokojowej, a jednocześnie jest nadal około 1000-krotnie bardziej energooszczędny od współczesnych technologii - mówi Vuckovic.
  21. Japończycy stworzyli laserowy system zapłonowy dla samochodów, dzięki któremu nie tylko zaoszczędzimy benzynę, ale zmniejszymy też emisję tlenków azotu - głównego składnika smogu. Nowy zapłon zbudowany jest z ceramiki, zatem można go tanio produkować w dużych ilościach. W obecnie stosowanym zapłonie iskrowym wykorzystuje się wysokie napięcie i iskrę przeskakującą pomiędzy dwoma elektrodami. Iskra zapala mieszankę paliwowo-powietrzną. Produktem spalania mieszanki są tlenki azotu. Można co prawda zmienić skład mieszanki tak, by do środowiska trafiało mniej NOx, jednak taka mieszanka zawiera mniej paliwa, a zatem do jej zapalenia konieczne jest wykorzystanie wyższego napięcia. Niestety, iskry powstające dzięki wyższemu napięciu prowadzą do szybkiego zużywania się elektrod, cała konstrukcja jest zatem niepraktyczna. Tymczasem lasery, zapalające mieszankę dzięki skoncentrowanej energii optycznej, nie zawierają elektrod, zatem nie dochodzi do ich korozji. Takunori Taira z japońskiego Narodowego Instytutu Nauk Naturalnych wymienia kolejną zaletę laserów. Urządzenia takie poprawiają też efektywność silnika. Konwencjonalne świece zapłonowe umieszczone są na cylindrach i zapalają mieszankę gdy ta zajdzie się blisko nich. Jednak zimne metalowe elektrody oraz ściany cylindra błyskawicznie absorbują ciepło powstałe podczas eksplozji mieszanki, tłumiąc płomień gdy tylko powstanie. Taira mówi, że lasery można wycelować w środek mieszanki, zapalając ją od wewnątrz, dzięki czemu gazy będą rozprzestrzeniały się symetrycznie, a proces taki będzie przebiegał nawet trzykrotnie szybciej niż w konwencjonalnych rozwiązaniach. Ponadto lasery wyzwalają energię w ciągu nanosekund, podczas gdy świecom zajmuje to milisekundy. „Odpowiednie dobranie czasu i szybkie spalanie są bardzo ważne. Im bardziej precyzyjny wybór momentu zapłonu, tym bardziej efektywne spalanie i lepsza ekonomia silnika" - mówi Taira. Dotychczas zaprzęgnięcie laserów do tego typu zadania było niemożliwe, gdyż musiałyby one skupić światło o mocy około 100 gigawatow na centymetr kwadratowy i wysyłać je w krótkich impulsach o energii większej niż 10 milidżuli każdy. Takie wymagania spełniały duże ciężkie lasery z laboratoriów naukowych. Japończycy poradzili sobie z tym problemem budując kompozytowy laser z ceramiki. Powstały one dzięki podgrzaniu ceramicznego proszku, przez co powstała przezroczysta struktura w której umieszczono jony metali. Japońskie lasery zbudowane są z dwóch segmentów składających się z itru, aluminium i galu. Jeden z segmentów wzbogacono neodymem, a drugi chromem. Laser ma jedynie 9 milimetrów średnicy i 11 milimetrów długości. Emituje on dwie wiązki światła, które jednocześnie zapalają mieszankę w dwóch miejscach. Dzięki temu pali się ona szybciej i bardziej równomiernie niż mieszanka zapalana w jednym miejscu. Zespół Tairy współpracuje obecnie z należącą do Toyoty DENSO Corporation. Celem współpracy jest stworzenie lasera emitującego trzy wiązki światła.
  22. Uczonym po raz pierwszy udało się udowodnić, że atomy mogą być przemieszczane w promieniu lasera i mają wówczas takie same właściwości, jak światło w światłowodach. Osiągnięcie specjalistów z Australia National University będzie miało znacznie przy budowie urządzeń kwantowych, wymagających do pracy użycia sterowalnych fal materii. Takimi urządzeniami będą np. atomowe interferometry, wykorzystywane do pomiaru pola grawitacyjnego Ziemi. Światłowód może przewodzić wiele modów światła, które nakładają się na siebie, tworząc charakterystyczny wzorzec. Udowodniliśmy, że gdy atomy w komorze próżniowej są przemieszczane w promieniu lasera, również i one tworzą wzorce - mówi profesor Ken Baldwin. Jego zespół uwięził chmurę zimnych atomów helu, a następnie poddał je działaniu promienia lasera, który biegł aż do urządzenia obrazującego. Następnie stopniowo zmniejszano intensywność światła, aż do pojawienia się wzorca. Potem ochłodziliśmy atomy tak, że zaczęły zachowywać się bardziej jak fala niż jak cząsteczka i utworzyły kondensat Bosego-Einsteina. Gdy kondensat został wprowadzony do światła lasera, wzorzec zanikł, co dowodzi, że przetransportowaliśmy jeden tryb - pojedynczą falę kwantową - mówi doktor Andrew Truscott. Uczeni dowiedli, że mierząc czas, w jakim atomy przybywają do systemu obrazowania są w stanie odróżnić tryb wielomodowy (powstawania wzorca) od jednomodowego. Pomiary promienia wielomodowego pokazały, że atomy przybywają w grupach, jako wynik interferencji. Jednak jako, że kondensat Bosego-Einsteina zawiera tylko jeden tryb kwantowy, bez żadnej interferencji, gdy go przemieściliśmy również jej nie zaobserwowaliśmy - dodaje Truscott. Dowiedliśmy zatem, że atomy mogą być przemieszczane w promieniu światła i mogą mieć wówczas takie same właściwości jak światło poruszające się w światłowodzie - mówi doktor Mattias Johnsson, twórca modelu teoretycznego do opisanych badań.
  23. Profesor John Badding i jego zespół z Penn State University stworzyli pierwszy światłowód wykorzystujący selenek cynku. Materiał ten pozwala na bardziej efektywne i swobodne manipulowanie światłem. Wdrożenie nowej technologii umożliwi udoskonalenie laserów, czujników i światłowodów. Badding wyjaśnia, że możliwości światłowodów zawsze były ograniczone przez stosowane do ich produkcji szkło krzemionkowe. Szkło ma przypadkowo ułożone atomy. W przeciwieństwie do niego w substancjach krystalicznych, takich jak selenek cynku, atomy są uporządkowane. To pozwala na transport światła o większych długościach fali, szczególnie w średnich zakresach podczerwieni - mówi naukowiec. Ponadto, w przeciwieństwie do szkła, selenek cynku jest samoistnym półprzewodnikiem. Od dawna wiemy, że to użyteczny półprzewodnik, który umożliwia takie manipulowanie światłem, na jakie nie można sobie pozwolić w przypadku krzemionki. Problemem jednak było uzyskanie z tego półprzewodnika włókien. Nikomu wcześniej się to nie udało - stwierdza Badding. Jego zespół wykorzystał nowatorską metodę osadzania wysokociśnieniowego, opracowaną przez studenta Justina Sparksa z Wydziału Chemii. Naukowcy osadzili selenek cynku w szklanych rdzeniach światłowodu. Osadzanie wysokociśnieniowe to wyjątkowa technologia, która pozwoliła na uformowanie długich, cienkich rdzeni z włókien selenku cynku - podkreślił profesor Badding. Testy przeprowadzone na nowych światłowodach wykazały, że charakteryzują się one dwiema bardzo interesującymi cechami. Po pierwsze, bardziej efektywnie zamieniają jeden kolor światła w inny. Tradycyjne światłowody nie zawsze pozwalają na uzyskanie wymaganych kolorów. Selenek cynku, dzięki zjawisku nielinearnej konwersji częstotliwości, pozwala na znacznie bardziej swobodne manipulowanie kolorami. Po drugie, nowe włókno jest bardziej wszechstronne, gdyż umożliwia efektywne transportowanie dłuższej fali elektromagnetycznej. To pozwoli na znaczne udoskonalenie laserów. Na przykład wojsko używa obecnie technologii Lidar wykorzystującej fale o długości od 2 do 2,5 mikrona. Urządzenie działające w średnich wartościach podczerwieni, powyżej 5 mikronów, byłoby bardziej dokładne. Nasze włókna mogą transportować światło o długości fali do 15 mikronów - wyjaśnia Badding. Lidar stosowany jest też do badania zanieczyszczeń powietrza, jego udoskonalenie pozwoli zatem na dokładniejsze określanie jego składu.
  24. Na Princeton University powstał nowy typ czujnika, dzięki któremu możliwa będzie ocena stanu budynków czy mostów. Badanie zmian zachodzących w budowlach i wykrywanie pojawiających się uszkodzeń to bardzo ważne, a jednocześnie niełatwe zadanie. Sigurd Wagner i Patrick Gorrn postanowili wykorzystać laser, organiczne związki chemiczne i elastyczny polimer do stworzenia "skóry", którą można pokryć budowlę. Sprawdzając stan pokrycia można będzie oceniać zmiany zachodzące w samej budowli. Ich pomysł polega na użyciu poli(dimetylosiloksanu), którzy przygotowano tak, by miał falistą strukturę. Na jej powierzchnię nanosi się płynną mieszaninę molekuł organicznych. Gdy całość oświetlimy laserem ultrafioletowym, emitowane jest światło o konkretnej długości fali. W tym wypadku jest to widzialne czerwone światło. Jednak wszelkie zmiany na powierzchni "skóry", jej rozciągnięcie czy ścieśnienie, powodują zmianę długości fali emitowanego światła. Eksperymenty wykazały, że już ściśnięcie gumy o 2,2% prowadzi do zmian, które są wykrywane przez specjalne czujniki. Te potrafią zauważyć różnice sięgające zaledwie 5 nanometrów w długości fali. To bardzo dokładna metoda i jest to jej główna zaleta. W wielu przypadkach dochodzi bowiem do nieznacznych zmian struktury, które nie muszą objawiać się widocznymi uszkodzeniami. Te czujniki pozwalają zanotować takie zmiany - mówi Wagner. Dodatkową zaletą nowej metody jest możliwość sprawdzania zdrowia "skóry" z pewnej odległości oraz uniknięcie konieczności prowadzenia okablowania. Technologia z Princeton znajduje się obecnie w fazie eksperymentalnej. Uczeni szukają teraz jak najlepszych molekuł emitujących światło oraz metod ich umieszczania na PDMS. Wiemy, jak prowadzić eksperymenty. Ale nie znaleźliśmy jeszcze magicznej formuły - zauważył Wagner.
  25. W 50 lat po powstaniu lasera naukowcom z Yale University udało się zbudować pierwszy w historii antylaser. To urządzenie, w którym dochodzi do interferencji pomiędzy dwiema wiązkami światła w taki sposób, że idealnie się znoszą. Odkrycie przeciera drogę do powstania olbrzymiej liczby nowych technologii i postępu w wielu dziedzinach od optoelektroniki po radiologię. Już niemal przed rokiem fizyk z Yale A. Douglas Stone wraz z zespołem opublikowali teorię dotyczącą budowy antylasera, dowodząc, że można go stworzyć na bazie krzemu. Jednak dopiero teraz, po połączeniu sił z grupą pracującą pod kierunkiem Hui Cao udało się zbudować postulowany antylaser. Urządzenie nazwano doskonałym pochłaniaczem koherencyjnym (coherent perfect absorber - CPA). Naukowcy skupili we wnęce zawierającej plaster krzemu dwie wiązki laserowe o konkretnej częstotliwości. Krzem zadziałał jak "medium utraty", idealnie zestrajając wiązki tak, że zostały uwięzione we wnęce i odbijały się w niej tak długo, aż zostały zaabsorbowane i zamienione w ciepło. Stone uważa, że CPA będzie można w przyszłości wykorzystywać w roli optycznych przełączników, detektorów i innych komponentów komputerów optycznych. Uczony uważa również, że jego wynalazek trafi do radiologii, gdyż możliwe będzie dostrojenie go do konkretnej emisji elektromagnetycznej z wybranych regionów ciała i obrazowanie tkanek, które obecnie są niewidoczne. Teoretycznie CPA jest w stanie zaabsorbować 99,999% światła. Obecnie urządzenie absorbuje 99,4%, jednak jest to spowodowane ograniczeniami laboratoryjnymi i faktem, iż zbudowano na razie prototypowe urządzenie. Pierwsze CPA ma długość 1 centymetra, ale symulacje komputerowe dowodzą, iż możliwe jest zbudowanie antylasera o wielkości zaledwie 6 mikrometrów.
×
×
  • Create New...