Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' mózg'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 77 results

  1. Coraz więcej tłuszczu w organizmie zwiększa ryzyko demencji i udaru, ostrzegają naukowcy z University of South Australia. Przyjrzeli się oni istocie szarej mózgów około 28 000 osób i odkryli, że w miarę jak tyjemy, dochodzi do atrofii istoty szarej, co zwiększa ryzyko schorzeń neurologicznych. Główny autor badań, doktor Anwar Mulugeta mówi, że pokazują one kolejny problem związany z otyłością. Otyłość to złożona choroba, której cechą charakterystyczną jest nadmierna ilość tkanki tłuszczowej. Otyłość wiąże się z chorobami układu krążenia, cukrzycą typu II i chronicznym stanem zapalnym. Obecnie otyłość kosztuje australijską gospodarkę 8,6 miliarda dolarów rocznie, mówi. W ciągu ostatnich pięciu dekad liczba osób otyłych wzrosła. Jednak złożona natura tej choroby powoduje, że nie wszyscy otyli są chorzy z metabolicznego punktu widzenia. A to utrudnia stwierdzenie, kto znajduje się w grupie ryzyka, a kto nie. Autorzy badań podzielili otyłych na trzy podtypy. Do podtypu „niekorzystnego” zaliczono osoby z nadmiarową tkanką tłuszczową wokół niższych partii tułowia oraz okolicach brzucha. Osoby te są narażone na większe ryzyko cukrzycy typu II oraz chorób serca. Typ „korzystny” to ten, w którym występują szersze biodra, ale niskie ryzyko wystąpienia cukrzycy czy chorób serca, z kolei do typu „neutralnego” trafiły osoby o niskim i bardzo niskim ryzyku chorób metabolicznych i układu krążenia. Ogólnie rzecz biorąc, osoby należące do tych podtypów charakteryzuje wyższe BMI, ale w każdym podtypie tłuszcz jest różnie rozłożony i występuje różne ryzyko chorób kardiometabolicznych, stwierdza Mulugeta. Badania wykazały, że im większy stopień otyłości, szczególnie wśród podtypu „niekorzystnego” i „neutralnego”, tym mniej szarej materii w mózgu. To sugeruje, że mózgi takich osób mogą gorzej funkcjonować. Jednak kwestia ta wymaga dalszych badań. Nie znaleźliśmy jednoznacznych dowodów łączących konkretny podtyp otyłości z demencją czy udarem. Nasze badanie sugeruje jednak, że stan zapalny i zaburzenia metaboliczne mogą odgrywać rolę w zmniejszeniu ilości istoty szarej, stwierdza uczony. Analizy wykazały, że w grupie wiekowej 37–73 lata ilość istoty szarej zmniejszała się o 0,3% na każdy dodatkowy 1 kg/m2, co jest odpowiednikiem dodatkowych 3 kg wagi dla osoby o wzroście 173 cm. Coraz więcej dowodów wskazuje, że otyłość to złożona choroba i że szczególnie szkodliwy jest tłuszcz zgromadzony wokół organów wewnętrznych. My użyliśmy indywidualnych profili genetycznych i metabolicznych, by potwierdzić istnienie różnych typów otyłości. Nasze badania potwierdzają tezę mówiącą, że zanim ocenimy prawdopodobny wpływ otyłości na zdrowie konkretnego człowieka, musimy przyjrzeć się jego typowi otyłości. Nawet bowiem u osób o całkiem prawidłowej wadze, nadmiar tłuszczu w okolicach brzusznych może być powodem do zmartwień, podsumowuje profesor Elina Hyppönen. « powrót do artykułu
  2. Niedawno informowaliśmy, że spożywanie kawy nie zwiększa ryzyka wystąpienia arytmii. Tym razem mamy nie najlepsze wieści dla kawoszy. Międzynarodowy zespół naukowy złożony ze specjalistów z Australii, Etiopii i Wielkiej Brytanii poinformował, że spożywanie dużych ilości kawy jest powiązane ze zwiększonym ryzykiem demencji i mniejszą objętością mózgu. Do takich wniosków doszli przyglądając się danym 17 702 osób w wieku 37–73 lat z UK Biobank. Kawa to jeden z najpopularniejszych napojów na świecie. Roczna globalna konsumpcja przekracza 9 milionów ton. Ważne jest zatem, byśmy rozumieli jej wpływ na zdrowie, mówi główna autorka badań, doktorantka Kitty Pham z University of South Australia. Wraz z kolegami z Uniwersytetów w Addis Abebie, Exeter, Cambridge i Alan Turing Institute, analizowała ona dane dotyczące m.in. ryzyka udaru, demencji i objętości mózgu. Po uwzględnieniu wszelkich możliwych zmiennych zauważyliśmy, że konsumpcja większych ilości kawy jest w istotnym stopniu powiązana z mniejszą objętością mózgu. Picie ponad 6 filiżanek kawy dziennie może zwiększać ryzyko demencji i udarów, dodaje Pham. Naukowcy zauważyli, że związek pomiędzy konsumpcją kawy a ryzykiem demencji nie jest liniowy. Okazało się bowiem, że osoby spożywające ponad 6 filiżanek dziennie są narażone na średnio o 53% większe ryzyko wystąpienia demencji. Związek kawy z ryzykiem udaru był mniej widoczny. Zwykle ludzie piją 1-2 filiżanki kawy dziennie. [...] Jeśli jednak zauważymy, że zbliżamy się do 6 filiżanek dziennie, powinniśmy poważnie zastanowić się nad każdą kolejną filiżanką – stwierdziła jedna z badaczek, profesor Elina Hypponen. Wyniki badań ukazały się na łamach Nutritional Neuroscience. « powrót do artykułu
  3. Dzieci z rzadką chorobą genetyczną, deficytem AADC, nie mogą siedzieć, chodzić, mówić, mają nawet problemy z podniesieniem głowy. Tymczasem u grupy maluchów poddanych w San Francisco eksperymentalnej terapii genetycznej doszło do olbrzymiej poprawy funkcjonowania. A wszystko zaczęło się od rewolucyjnej metody leczenia, opracowanej przed laty przez profesora Krzysztofa Bankiewicza. Deficyt AADC (dekarboksylaza L-aminokwasów aromatycznych) to bardzo rzadka choroba genetyczna, w wyniku której mózgi dzieci mają problemy z wydzielaniem neuroprzekaźników – dopaminy i serotoniny – regulujących wiele funkcji i procesów. dzieci takie nie są np. w stanie mówić czy samodzielnie jeść. W eksperymentalnym leczeniu prowadzonym przez Uniwersytet Kalifornijski w San Francisco (USCF) i będący jego częścią Benioff Children's Hospitals, wzięło udział 7 dzieci w wieku 4–9 lat, które urodziły się z AACD. Po leczeniu wszystkich pacjentów zaobserwowano poprawę funkcji motorycznych, lepsze zachowanie, dłuższy sen i lepszą interakcję z rodzicami i rodzeństwem. Charakterystyczne dla tej choroby napadowe przymusowe patrzenie w górę z rotacją gałek ocznych, podczas którego chorzy całymi godzinami patrzą do góry i mogą doświadczać epizodów podobnych do drgawek, cofnęło się u 6 z 7 pacjentów, donoszą autorzy badań. Jednym z nich jest pionier nowej metody leczenia, profesor Krzysztof Bankiewicz z Wydziału Neurochirurgii UCSF. Profesor Bankiewicz już przed 20 laty stworzył technologię, w ramach której pacjentom z chorobą Parkinsona wszczepiał bezpośrednio do mózgu odpowiednie geny. Przed kilku laty rozpoczął próby z wykorzystaniem jej u dzieci z AADC, osiągając bardzo obiecujący wyniki. Obie choroby są bowiem powiązane z nieprawidłowościami w enzymie AADC, który zamienia lewodopę w dopaminę. W 2019 roku profesor Bankiewicz operował w Warszawie dwoje małych Polaków oraz Hiszpankę. Obecnie wiadomo o 135 dzieciach z AADC żyjących na świecie. Problem ten dotyka częściej dzieci o azjatyckich korzeniach. Profesor Bankiewicz stworzył wektor wirusowy, za pomocą którego dostarcza gen AADC. Wektor jest wstrzykiwany bezpośrednio w mózg przez mały otwór w czaszce, pod kontrolą rezonansu magnetycznego. Dzieci z niedoborem AACD nie posiadają funkcjonującej kopii genu, ale założyliśmy, że sama ścieżka neuronowa jest nienaruszona, mówi współautor badań, doktor Nalin Gupta. To inna sytuacja niż w parkinsonizmie, gdzie neurony wytwarzające dopaminę ulegają degeneracji. Istnieje jeszcze jedna zasadnicza różnica pomiędzy leczeniem tą metodą AADC i choroby Parkinsowna. W parkinsonizmie lek podaje się do skorupy, w AADC zaś do istoty czarnej śródmózgowia oraz pola brzusznego nakrywki. Leczenia AADC jest prostsze niż parkinsonizmu. W AADC neurony są prawidłowe, nie wiedzą tylko, jak wytwarzać dopaminę, gdyż brakuje im AADC, wyjaśnia Bankiewicz. Obrazowanie za pomocą PET (pozytonowa tomografia emisyjna), przeprowadzone po podaniu środka, wykazały wzrost aktywności AADC w mózgu. Natomiast w płynie mózgowo-rdzeniowym stwierdzono zwiększoną koncentrację metabolitów neuroprzekaźników. Gdy naukowcy rozpoczynali swój eksperyment, tylko 2 z 7 dzieci było w stanie częściowo kontrolować głowę, jedno mogło wyciągać ręce lub chwytać, a żadne nie było w stanie samodzielnie siedzieć. Sześcioro dzieci określano jako drażliwe, sześcioro cierpiało na bezsenność. Zdolności motoryczne wszystkich dzieci należały do kategorii ciężko upośledzonych. Po zabiegu u wszystkich dzieci doszło do poprawy, a zaczęła się ona od zniknięcia problemów z napadowym przymusowym patrzeniem w górę. Problem ten zniknął jako pierwszy i nigdy nie powrócił. W kolejnych miesiącach u wielu pacjentów doszło do poprawy całkowicie zmieniającej życie. Nie tylko zaczęły się śmiać i poprawił im się nastrój, ale niektóre nawet mogły mówić i chodzić. U wszystkich pacjentów doszło do widocznej poprawy funkcji motorycznych, lepiej kontrolowały głowę, tułów i wykonywać celowe ruchy kończynami. Do 12 miesiąca po zabiegu 6 z 7 dzieci było w stanie kontrolować głowę, a 4 potrafiło samodzielnie siedzieć. W tym samym czasie 3 pacjentów zyskało możliwość wyciągania ramion i chwytania, a 2 było w stanie chodzić o lasce. Ponadto jeden z pacjentów zaczął mówić posługując się około 50 wyrazami, a inny zaczął mówić przy pomocy wspomagającego urządzenia w ciągu 12-18 miesięcy po dostarczeniu genów. W 2,5 roku po zabiegu jeden z pacjentów zaczął samodzielnie chodzić. Rodzice i opiekunowie dzieci donosili o znacznej poprawie nastroju i snu, w znacznym stopniu poprawiła się też zdolność dzieci do odżywania się, rzadziej wymiotowały, lepiej odprowadzały śluz i ślinę z górnych dróg oddechowych. U żadnego z dzieci nie zauważono ani krótko-, ani długoterminowych skutków ubocznych terapii. Jeden z małych pacjentów zmarł 7 miesięcy po zabiegu. Był w tym czasie w dobrym – jak na swoją chorobę – stanie zdrowia i przyczyną śmierci prawdopodobnie była AADC. Obecnie zespół doktora Bankiewicza kontynuuje testy swojej terapii na chorych z parkinsonizmem i przygotowuje się do przetestowania tej samej techniki chirurgicznej i wektora wirusowego na pacjentach na wczesnym etapie choroby Alzheimera i zanikiem wieloukładowym.   « powrót do artykułu
  4. O ile nam wiadomo, jest to pierwsza udana demonstracja bezpośredniego dekodowania z mózgu pełnych wyrazów u osoby, która jest sparaliżowana i nie może mówić, stwierdza neurochirurg profesor Edward Chang. Uczony wraz z kolegami opracował „neuroprotezę mowy”, urządzenie, które u ciężko sparaliżowanego pacjenta rejestruje sygnały w mózgu i przekłada je na mowę. Każdego roku z powodu różnych chorób, udarów czy wypadków tysiące osób tracą możliwość mówienia. Nowy system daje nadzieję, że będą mogły łatwo komunikować się z otoczeniem. Dotychczasowe badania na tym polu ograniczały się do literowania. Neuroprotezy do komunikacji wyłapywały z mózgu sygnały, za pomocą których chory sterował kursorem i na wirtualnej klawiaturze, litera po literze, pisał to, co chce powiedzieć. Cheng i jego zespół poszli w zupełnie innym kierunku. Skupili się na sygnałach kontrolujących mięśnie aparatu mowy. Zdaniem Amerykanów, jest to bardziej naturalny i płynny sposób, dzięki któremu komunikacja z niemówiącym pacjentem może być znacznie szybsza i bardziej płynna. Zwykle mówimy z prędkością 150–200 wyrazów na minutę, zauważa Cheng. Wszelkie metody pisania czy kontrolowania kursora są wolniejsze i bardziej pracochłonne. Jeśli przejdziemy bezpośrednio do słów, tak jak robimy to tutaj, wiele zyskamy, gdyż jest to bardziej podobne do naturalnego sposobu mówienia. W ciągu ostatniej dekady Chengowi bardzo pomogli pacjenci z University of California San Francisco (UCSF) Epilepsy Center. Były to osoby, które operowano w celu znalezienia źródła epilepsji i na powierzchni ich mózgów umieszczano elektrody. Wszystkie to osoby mówiły i zgodziły się na dokonanie badań, podczas których analizowano aktywność ich mózgów w czasie mówienia. W ten sposób udało się stworzyć mechanizm przekładający sygnały z mózgu służące do sterowania aparatem mowy, na słowa. Jednak sam ten fakt nie gwarantował, że to samo będzie skuteczne u osób, których aparat mowy został sparaliżowany. Tym bardziej, że nie było wiadomo, czy u osób, których aparat mowy sparaliżowany jest od lat, sygnały go kontrolujące nie uległy jakimś zmianom lub uszkodzeniom. Rozpoczęto więc program badawczy BRAVO (Brain-Computer Interface Restoration Arm and Voice). Jego pierwszym pacjentem (BRAVO1), był mężczyzna w wieku nieco poniżej 40 lat, który ponad 15 lat wcześniej doznał poważnego udaru, który uszkodził połączenia pomiędzy jego mózgiem, kończynami i aparatem mowy. Od tamtej pory mężczyzna komunikował się ze światem za pomocą bardzo ograniczonych ruchów głowy i wskaźnika przyczepionego do czapki baseballowej, którym pokazywał litery na ekranie. Pacjent, wraz z zespołem Cheunga stworzyli najpierw słownik składający się z 50 wyrazów, jakie można było rozróżniać na podstawie aktywności mózgu. Wyrazy te, jak „rodzina”, „woda” czy ”dobrze” – pozwalały na stworzenie setek zdań. Naukowcy umieścili na mózgu pacjenta gęstą sieć elektrod, która badała aktywność w korze ruchowej i ośrodkach mowy. W czasie 48 sesji nagrali 22 godziny aktywności neuronów. W czasie nagrywania pacjent starał się wielokrotnie wypowiadać każde z 50 słów ze słownika, a elektrody rejestrowały aktywność jego mózgu. Podczas testów, zadaniem BRAVO1 była próba wypowiedzenia prezentowanych przez naukowców zdań utworzonych za pomocą 50-wyrazowego słownika. Później zaś pacjentowi zadawano pytania, a ten miał na nie odpowiadał. Testy wykazały, że system na podstawie aktywności mózgu jest w stanie pracować ze średnią prędkością do 15 wyrazów na minutę, a mediana bezbłędnego generowania wypowiedzi wynosi 75%. Najlepszy osiągnięty wynik to 18 wyrazów na minutę i dokładność 93%. Autorzy badań mówią, że były to testy mając sprawdzić czy ich koncepcja w ogóle m sens. Jesteśmy zachwyceni, że udało się w ten sposób dekodować wiele zdań o różnym znaczeniu. Wykazaliśmy, że w ten sposób można ułatwić pacjentom komunikację, stwierdza doktor David Moses, inżynier z laboratorium Changa i jeden z głównych autorów badań. Naukowcy już przygotowują się do poszerzenia swoich eksperymentów o kolejne osoby z poważnym paraliżem i deficytami komunikacyjnymi. Pracują jednocześnie nad powiększeniem słownika i przyspieszeniem tempa komunikacji.   « powrót do artykułu
  5. W ludzkim organizmie występuje naturalnie około 10 metali. Szczególnie potrzebne są tlenki miedzi i żelaza, biorące udział w procesach wewnątrzkomórkowych. Naukowcy od pewnego czasu podejrzewali, że w blaszkach amyloidowych gromadzących się w mózgu w przebiegu choroby Alzheimera, mogą znajdować się dowody na nieprawidłowe obchodzenie się organizmu z metalami. Jednak najnowsze odkrycie zaskoczyło wszystkich i pokazało, że nie do końca rozumiemy procesy chemiczne w mózgu. W mózgach dwóch osób zmarłych na chorobę Alzheimera naukowcy odkryli żelazo i miedź w stanie wolnym, nagromadzone obok tlenków żelaza i miedzi. Nie spodziewaliśmy się znaleźć wolnego żelaza i miedzi. To jasno pokazuje, że musimy o chemii mózgu nauczyć się więcej, niż sobie wyobrażaliśmy, mówi profesor nanofizyki biomedycznej Neil Telling z Keele University. W czasie badań naukowcy użyli spektromikroskopii rentgenowskiej. To niedestrukcyjna metoda wykorzystywana do badań środowiskowych i analizowania materiałów syntetycznych w skali nano. Wykorzystuje synchrotron generujący polichromatyczne promieniowanie rentgenowskie. Wybiera się z niego promieniowanie o niskiej energii i kieruje na badany obiekt. Skoncentrowane promienie, o średnicy 20 nanometrów, były przesuwane przez badane płytki amyloidowe, tworząc szereg obrazów. Każdy obraz ze zbioru odpowiadał innej energii promieniowania. Po ich połączeniu uczeni uzyskali spektrum absorpcji dla różnych regionów blaszek. Następnie przeanalizowali te spektra, identyfikując w ten sposób obecne metale. Zbadali też właściwości magnetyczne próbek, wykorzystując spolaryzowane promienie rentgenowskie. Badania przeprowadzone w brytyjskim Diamond Light Source i amerykańskim Advanced Light Source pozwoliły na zaobserwowanie nanoskalowych złogów żelaza i miedzi w stanie wolnym. Autorzy badań sądzą, że depozyty takie mogły pojawić się w wyniku reakcji chemicznych zachodzących w blaszkach. Wolne metale znajdowały się bowiem w sąsiedztwie tlenków tych metali. Profesor Telling mówi, że konieczne są dalsze badania, by móc powiedzieć cokolwiek na temat roli tych metali w chorobach neurodegeneracyjnych. Minie wiele lat, zanim z całą pewnością będziemy mogli powiedzieć, czy metale w stanie wolnym występują tylko w blaszkach amyloidowych czy też znajdują się również w innych tkankach. Jednak nasze odkrycie sugeruje, że w mózgu może dochodzić do agresywnych reakcji redoks, które być może biorą udział w postępie choroby. « powrót do artykułu
  6. Naukowcy z Instytutu Podstaw Informatyki PAN, Instytutu Nenckiego PAN, Uniwersytetu Warszawskiego opracowali pierwszy, kompleksowy „Atlas obszarów regulatorowych aktywnych w glejakach o różnym stopniu złośliwości”, który ujawnił zaburzenia ekspresji genów i nowy mechanizm regulujący inwazyjność złośliwych guzów mózgu. Wyniki badań zostały opublikowane w czasopiśmie Nature Communications. Ludzki genom to ogromny zbiór instrukcji, które są odczytywane i interpretowane, aby wyprodukować białka komórkowe i umożliwić różnorodne funkcje komórek i tkanek. DNA kodujące białka stanowi mniej niż 2% ludzkiego genomu, a odszyfrowanie funkcji pozostałych, niekodujących regionów, stanowi wielkie wyzwanie. W każdej tkance aktywnych jest kilkadziesiąt tysięcy genów, a zrozumienie sposobu ich regulacji pozwala lepiej wniknąć w funkcje komórki. W komórce nić DNA jest owinięta wokół białek zwanych histonami i tworzy wysoce zorganizowaną strukturę zwaną chromatyną. Zmiany biochemiczne histonów przyczyniają się do otwartości lub braku dostępu do chromatyny, i mogą pobudzać lub hamować ekspresję genów (procesy te nazywamy epigenetycznymi). Enzymy mogą odczytywać instrukcje zawarte w DNA tylko w miejscach chromatyny, które są otwarte, co oznacza, że są dostępne dla enzymów. Mapowanie regionów regulatorowych i otwartej chromatyny w skali całego genomu zapewnia wgląd w to, jak geny są regulowane w określonych komórkach i stanach fizjologicznych lub patologicznych. Zmiany w dostępności chromatyny są regulowane przez procesy epigenetyczne, które zapewniają ich trwałość, wpływają na odczytywanie konkretnych genów, a w konsekwencji na procesy komórkowe. Rozregulowanie ekspresji genów często towarzyszy rozwojowi nowotworów. Procesy regulujące otwartość chromatyny są odwracalne i można je kontrolować czynnikami zewnętrznymi, zatem sterowanie dostępnością chromatyny ma duży potencjał kliniczny. Glejaki są guzami mózgu, w których często dochodzi do zaburzenia kontroli ekspresji genów, co powoduje niekontrolowany rozrost guza i zaburzenia funkcji mózgu. Złośliwe glejaki najczęściej występują u osób starszych, są odporne na standardowe terapie i dlatego mają bardzo złe rokowania. Łagodne glejaki występują głównie u dzieci i mają lepsze rokowania, choć nieleczone, mogą przekształcić się w złośliwe nowotwory. Współpracując z neurochirurgami z warszawskich ośrodków klinicznych zebrano unikalną kolekcję próbek i przeprowadzono kompleksową, cało-genomową analizę wzorców epigenetycznych w próbkach guzów łagodnych i złośliwych. Porównanie wzorców pozwoliło wskazać konkretne procesy powiązane ze złośliwością glejaków. W projekcie po raz pierwszy zbadano jednocześnie wzorce otwartości chromatyny, stanu histonów, metylacji DNA i ekspresji genów w ponad 30 próbkach guzów mózgu. Wykorzystano wszystkie wskazówki molekularne, aby zidentyfikować elementy regulatorowe, takie jak promotory, które kontrolują ekspresję sąsiednich genów i wzmacniacze, które sterują ekspresją odległych genów. Stworzony przez naukowców Atlas, do którego można uzyskać dostęp za pośrednictwem serwera internetowego, pozwala lepiej zrozumieć znaczenie niekodujących regionów genomu, które są aktywne w mózgu. Ujawnił też nowe mechanizmy sterujące nowotworzeniem w guzach mózgu. Nasze badania doprowadziły do powstania pierwszego, kompleksowego atlasu aktywnych elementów regulatorowych w glejakach, który umożliwił identyfikację funkcjonalnych wzmacniaczy ekspresji i promotorów w próbkach pacjentów. To kompleksowe podejście ujawniło wzorce epigenetyczne wpływające na ekspresję genów w łagodnych glejakach oraz nowy mechanizm powiązany ze złośliwością guzów obejmujący ścieżkę sygnałową kierowaną przez czynnik FOXM1 i kontrolująca inwazyjność i migracje komórek glejaka. Atlas dostarcza ogromnego zbioru danych, które można wykorzystać do kolejnych analiz i porównań z istniejącymi i nowymi zbiorami danych. Pozwoli to na nowe odkrycia i lepsze zrozumienie mechanizmów rozwoju glejaków – mówią dr Karolina Stępniak i dr Jakub Mieczkowski, główni autorzy publikacji. Stworzenie i udostępnienie atlasu aktywnych obszarów regulatorowych w glejakach o różnym stopniu złośliwości umożliwi dokonywanie nowych odkryć i lepsze zrozumienie mechanizmów kluczowych dla rozwoju glejaków. « powrót do artykułu
  7. Uczeni z Uniwersytetów w Aberdeen i Leicester zidentyfikowali w mózgu obszar, który napędza zapotrzebowanie na pożywienie bogate w białko. Odkrycie może mieć znaczenie dla rozwoju personalizowanych terapii otyłości. Nie od dzisiaj bowiem wiadomo, że dieta niskobiałkowa jest powiązana z otyłością. Naukowcy zauważyli, że gdy szczury trzymano na diecie niskobiałkowej, doszło do większej aktywizacji pola brzusznego nakrywki (VTA), czyli jądra limbicznego śródmózgowia, obszaru odpowiedzialnego za aktywne poszukiwanie jedzenia. Z badań wynika, że gdy wcześniej ograniczy się dostarczanie protein, VTA staje się bardziej wrażliwe na proteiny niż na inne składniki odżywcze. To zaś sugeruje, że mózgi zwierząt działają tak, by upewnić się, że dostawy białka zostaną utrzymane na odpowiednim poziomie. Taka adaptacja jest zrozumiała, gdyż niedobór białka może mieć katastrofalne skutki zdrowotne. Ponadto wcześniejsze badania wiązały niski poziom białek z otyłością. Nie wiadomo było jednak, jak na zjawisko to wpływa mózg. Współautor badań doktor Fabien Naneix mówi: Odkryliśmy, że zmniejszenie podaży białka zwiększyło preferencje ku żywności, w której jest więcej białka niż węglowodanów. Ta preferencja ku białkom jest powiązana z większą odpowiedzią VTA i gdy zwierzęta przestawia się z normalnej zbilansowanej diety na dietę niskobiałkową, dochodzi do indukowania preferencji ku białkom, jednak zmiany w VTA wymagają intensywnego procesu uczenia się. Nasze badania są pierwszymi, łączącymi preferencje ku białkom ze specyficzną aktywnością mózgu. Wiemy,że VTA odgrywa kluczową rolę w procesach pobierania innych składników odżywczych. Teraz wykazaliśmy, że dotyczy to również białek. « powrót do artykułu
  8. Po porównaniu masy mózgów i ciał 1400 żyjących i wymarłych gatunków ssaków naukowcy doszli do wniosku, że mózgi ssaków nie powiększały się liniowo. Grupa 22 naukowców, w tym biologów, antropologów i statystyków ewolucyjnych, wykorzystała w swoich badaniach m.in. skamieniałości 107 ssaków, w tym najstarszej małpy Europy czy prehistorycznych waleni. Okazało się, że zwierzęta o dużych mózgach, jak słonie czy delfiny, powiększały ten organ w różny sposób. Na przykład w przypadku słoni w toku ewolucji dochodziło do zwiększania rozmiarów ciała, ale jeszcze szybciej zwiększały się rozmiary mózgu. Tymczasem delfiny zmniejszały swoje ciała, jednocześnie zwiększając mózg. U wielkich małp, wśród których widzimy bardzo duże zróżnicowanie stosunku wielkości mózgu do ciała, generalny trend ewolucyjny prowadził do zwiększania i rozmiarów ciała i rozmiarów mózgu. Jednak u homininów było inaczej. W przypadku naszych kuzynów widzimy relatywne zmniejszenie rozmiarów ciała i zwiększenie rozmiarów mózgu w porównaniu do wielkich małp. Autorzy badań uważają, że te złożone wzorce ewolucji mózgu wskazują na konieczność przemyślenia paradygmatu mówiącego, iż porównanie stosunku wielkości mózgu do wielkości ciała wskazuje na stopień rozwoju inteligencji. Wiele zwierząt o dużych mózgach, jak słonie, delfiny czy wielkie małpy mają wysoki stosunek wielkości mózgu do wielkości ciała. Ale nie zawsze wskazuje to na inteligencję. Na przykład uszanka kalifornijska ma dość niską masę mózgu w stosunku do masy ciała, a wykazuje się wysoką inteligencją, mówi biolog ewolucyjny Jaroen Smaers ze Stony Brook University. Jeśli weźmiemy pod uwagę historię ewolucyjną uszanki zauważymy, że w jej przypadku istniała silna presja na zwiększanie rozmiaru ciała, prawdopodobnie ze względu na zróżnicowanie morskich mięsożerców i przystosowanie do częściowego życia na lądzie. Zatem w przypadku uszanki niski stosunek masy mózgu do masy ciała wynika nie z presji na zmniejszanie rozmiarów mózgu, a na zwiększanie rozmiarów ciała. Obaliliśmy dogmat, że ze stosunek rozmiarów mózgu do reszty organizmu można wnioskować o inteligencji. Czasem duże mózgi to wynik stopniowego zmniejszania rozmiarów ciała, co miało pomóc w dostosowaniu się w nowego habitatu czy sposobu poruszania się. Nie ma to więc nic wspólnego z inteligencją. Jeśli chcemy wykorzystywać relatywnym rozmiar mózgu do wnioskowania o zdolnościach poznawczych, musimy przyjrzeć się też historii ewolucyjnej gatunku i sprawdzić, jak rozmiary mózgu i ciała zmieniały się w czasie", wyjaśnia Kamran Safi z Instytutu Zachowania Zwierząt im. Maxa Plancka. Autorzy badań wykazali też, że do największych zmian w mózgach ssaków doszło po dwóch wielkich kataklizmach – masowym wymieraniu sprzed ok. 66 milionów lat i zmianie klimatu sprzed 23–33 milionów lat. Gdy 66 milionów lat temu wyginęły dinozaury widoczna jest radykalna zmiana rozmiarów mózgu u takich ssaków jak gryzonie, nietoperze i mięsożercy, którzy wypełnili nisze po dinozaurach. Mniej więcej 30 milionów lat później, podczas ochłodzenia klimatu w oligocenie doszło do jeszcze głębszych zmian w mózgach niedźwiedzi, waleni, fok i naczelnych. Olbrzymim zaskoczeniem było zauważenie, że do największych zmian w relatywnej wielkości mózgów dzisiejszych ssaków doszło w wyniku katastrofalnych wydarzeń, z którymi mieli do czynienia ich przodkowie, mówi Smaers. Mózgi delfinów, słoni i wielkich małp wyewoluowały do dużych rozmiarów względem rozmiarów ich ciał po przemianach klimatycznych sprzed 23–33 milionów lat. Stosunek rozmiarów mózgu do rozmiarów ciała nie jest bez związku z ewolucją inteligencji. Jednak często może w większym stopniu wskazywać na dostosowanie się do presji środowiskowej niż na sam rozwój inteligencji, mówi Smaers. Szczegóły badań opublikowano w artykule The evolution of mammalian brain size. « powrót do artykułu
  9. Nastolatkowie, którzy przerwali naukę matematyki wykazują słabszy poziom rozwoju mózgu i funkcji poznawczych, niż ich rówieśnicy, którzy naukę matematyki kontynuowali, czytamy na łamach Proceedings of the National Academy of Sciences. W badaniach zorganizowanych przez Wydział Psychologii Eksperymentalnej Uniwersytetu Oksfordzkiego, wzięło udział 133 osób w wieku 14–18 lat. W Wielkiej Brytanii, w przeciwieństwie do wielu krajów świata, już 16-latkowie mogą stwierdzić, że nie chcą więcej uczyć się matematyki. Ta wyjątkowa sytuacja pozwoliła zbadać, czy ma to jakiś wpływ na rozwój mózgu. Badania wykazały, że w kluczowych regionach mózgów osób, które wcześniej przerwały naukę matematyki, występuje mniej kwasu gamma-aminomasłowego, który nadaje mózgowi plastyczności. Jego mniejszą zawartość odnotowano w obszarach odpowiedzialnych za tak istotne funkcje poznawcze, jak rozumowanie, rozwiązywanie problemów, pamięć, uczenie się i działania matematyczne. To jednak nie wszystko. Opierając się na ilości kwasu gamma-aminomasłowego u każdego z badanych naukowcy byli w stanie odróżnić – niezależnie od ich zdolności poznawczych – tych, którzy szybciej porzucili naukę matematyki, od tych, którzy uczyli się jej dłużej. Co więcej, poziom tego kwasu pozwalał również na przewidzenie zmian w liczbie punktów zdobytych w teście matematycznym wykonanym 19 miesięcy po badaniach. Umiejętności matematyczne są powiązane z szeroką gamą korzyści, takimi jak zdobycie lepszej pracy, lepszy status społeczny i ekonomiczny, lepsze zdrowie fizyczne i psychiczne. Wiek nastoletni to bardzo ważny okres życia, w którym dokonują sie istotne zmiany w mózgu i zdolnościach poznawczych. Niestety możliwość zaprzestania nauki matematyki w tym wieku prowadzi do pojawienia się różnic, pomiędzy tymi, którzy przestali się uczyć matematyki, a tymi, którzy naukę kontynuowali. Nasze badania pozwalają nam lepiej zrozumieć biologiczne podstawy wpływu edukacji na rozwijający się mózg oraz na wzajemny wpływ biologii i edukacji, mówi główny autor badań, profesor Roi Cohen Kadosh. Naukowiec zauważa, że nie każdego młodego człowieka interesuje matematyka i chce się jej uczyć. Dlatego profesor Kadosh chciałby opracować alternatywne sposoby na osiągnięcie przez nastolatków takich korzyści, jakie daje dłuższa nauka matematyki. Być może alternatywą taką będzie logika i ćwiczenie logicznego rozumowania. « powrót do artykułu
  10. Zaburzenia neurologiczne, jak choroba Parkinsona czy epilepsja, są częściowo leczone poprzez głęboką stymulację mózgu. Jednak taka metoda wymaga chirurgicznego wszczepienia implantów. Naukowcy z Washington University poinformowali o opracowaniu nowej techniki precyzyjnego stymulowania wybranych obszarów mózgu za pomocą ultradźwięków. Mogli dzięki niej włączać i wyłączać wybrane neurony, kontrolując motorykę organizmu, bez potrzeby chirurgicznej implementacji urządzenia. Zespół pracujący pod kierunkiem profesor Hong Chen wykazał, że możliwe jest aktywacji konkretnych rodzajów neuronów za pomocą indukowanych ultradźwiękami zmian temperatury i genetyki. Twórcy nowej techniki nazwali ją sonotermogenetyką. W trakcie naszych badań dostarczyliśmy dowodów na to, że sonotermogenetyka – biorąc na cel głębokie struktury mózgu – wywołuje reakcję behawioralną u swobodnie przemieszczającej się myszy. Sonotermogenetyka może zmienić nasze podejście do badań neurologicznych i ułatwi opracowanie nowych metod rozumienia i leczenia schorzeń mózgu, mówi Chen. Najpierw naukowcy, za pomocą wektora wirusowego, dostarczyli do neuronów, wybranych na podstawie cech genetycznych, receptor TRPV1. Następnie za pomocą ultradźwięków o niskiej częstotliwości zmienili temperaturę tych neuronów. Ciepło, o kilka stopni wyższe niż temperatura organizmu, doprowadziło do aktywacji kanału jonowego TRPV1, który zadziałał jak przełącznik umożliwiający aktywowanie i dezaktywowanie neuronów. Możemy swobodnie przesuwać urządzenie umieszczone na głowie myszy tak, by brać na cel różne miejsca w mózgu. To nieinwazyjna technika, którą można skalować na większe zwierzęta, w tym na człowieka, mówi Yaoheng Yang, główny autor artykułu. Twórcy sonotermogenetyki już teraz zapewniają, że ich technika jest w stanie brać na cel milimetrowej wielkości struktury w całym mózgu, nie czyniąc przy tym żadnej szkody.   « powrót do artykułu
  11. Studia nad snem są prowadzone zwykle pod kątem badań neurologicznych i tak też jest postrzegana rola snu. Tymczasem badania nad jednymi z najprostszych zwierząt – hydrami – wskazują, że sen pojawił się na długo przed pojawieniem się mózgu. A pojawił się z powodów metabolicznych. Hydry (stułbie) to niezwykle proste zwierzęta. To polipy oddychające całą powierzchnią ciała. Żyją przyczepione do podłoża za pomocą stopy. Po drugiej stronie ciała mają otwór gębowy pełniący też rolę odbytu. Otoczony jest on ramionami, za pomocą których stułbia chwyta przepływające zwierzęta. Stułbie nie posiadają mózgu, a jedynie bardzo prosty bardzo rozproszony układ nerwowy. A mimo to, jak właśnie wykazał koreańsko-japońs zespół, stułbie wchodzą w stan spoczynku, który spełnia podstawowe kryteria snu. Od ponad wieku naukowcy badają sen i jego wpływ na mózg i strukturę, rolę dla pamięci i uczenia się. Rejestrują fale mózgowe w różnych fazach snu czy aktywność poszczególnych komórek. Badania te skupiają się na mózgu i w odniesieniu do tego organu rozważana jest rola snu. Z czasem zaczęły pojawiać się doniesienia,że molekuły powstające w mięśniach i innych tkankach mogą regulować sen. Prowadzono kolejne badania wskazujące, że śpią też coraz prostsze zwierzęta z coraz prostszym mózgiem. A jako, że sen wpływa na metabolizm, pojawiły się sugestie, że jego znacznie wykracza poza funkcje neurologiczne. W 1913 roku Henri Pieron zauważył, że sen nie jest tym samym co hibernacja, śpiączka czy inny podobny stan. Badania nad snem prowadzono głównie za pomocą EEG, zatem na zwierzętach, którym można przyczepić elektrody. Dopiero pod koniec lat 70. zaczęto badać sen u bezkręgowców. Pionierka takich badań, Irene Tobler z Uniwersytetu w Zurichu, opracowała kryteria snu, które można było stosować bez EEG. Musiało minąć ponad 20 lat badań, by w roku 2000 niezależnie od siebie ukazały się dwa artykuły naukowe dowodzące, że muchy też śpią. Mimo to, środowisko naukowe przez kolejne lata ze sceptycyzmem podchodziło do takich twierdzeń. Obecnie ponad 50 laboratoriów na całym świecie wykorzystuje muchy do badania fenomenu snu. A kolejne artykuły naukowe dowodzą, że sen jest czymś powszechnym w świecie zwierząt. I na muchach się nie skończyło. Gdy już wykazaliśmy, że muchy śpią, możliwym stało się, że wszystko śpi, mówi Paul Shaw z Wydziału Medycyny Uniwersytetu Waszyngtońskiego, jeden z autorów artykułu z roku 2000. Zwierzęta nie zawsze jednak śpią tak, jak ludzie. Dotychczas dowiedzieliśmy się, że delfiny i ptaki migrujące potrafią wprowadzić w stan snu jedną półkulę mózgu, wydając się przy tym całkowicie rozbudzone. Słonie prawie nie śpią, tymczasem pewien gatunek nietoperzy śpi niemal w każdej godzinie doby. W 2008 roku David Raizen i jego zespół zauważyli sen u nicienia Caenorhabditis elegans, a pięć lat później doniesiono o śpiących krążkopławach z rodzaju Cassiopea. To wskazywało, że sen wyewoluował może nawet około miliarda lat temu u bardzo prostych zwierząt. Teraz naukowcy z Uniwersytetu Kiusiu w Fukuoce, Uniwersytetu Tokijskiego oraz Narodowego Instytutu Nauki i Technologii Ulsan poinformowali, że śpią też stułbie, organizmy pozbawione mózgu. A są to zwierzęta jeszcze bardziej proste niż Cassiopea. To zaś wskazuje, że sen pojawił się wiele milionów lat temu, nie wymaga mózgu, odgrywa zatem znacznie szerszą rolę, niż mu przypisujemy. Stułbie śpią w sposób szczególny. Dopamina, która zwykle powoduje, że zwierzęta śpią mniej, u stułbi wywołuje bezruch. Naukowcy zaobserwowali, że nie śpią one w cyklu 24-godzinnym, ale zasypiają co 4 godziny. Jednak na poziomie genetycznym ich sen jest podobny, do snu innych zwierząt. Co najmniej niektóre geny, występujące u innych zwierząt, są zaangażowane w regulowanie snu u stułbi, wyjaśnia jeden z liderów najnowszych badań, profesor Taichi Itoh z Uniwersytetu Kiusiu. Ostatnie odkrycia wskazują, że parzydełkowce, do których należą stułbiopławy i krążkopławy, posiadały pewne genetyczne składniki snu zanim jeszcze oddzieliły się od wspólnego przodka z innymi zwierzętami. Te inne zwierzęta z czasem wykształciły centralny układ nerwowy, a sen zaczął odgrywać w nim nową rolę. Pozostaje jednak pytanie o rolę snu u zwierząt, które nie posiadają mózgu. Część naukowców przypuszcza, że odgrywa on rolę metaboliczną, pozwalając na zachodzenie reakcji, które nie mogą pojawić się, gdy zwierzę znajduje się w stanie czuwania. Procesy takie wówczas nie zachodzą, gdyż wymagałyby użycia energii potrzebnej do innych czynności, jak poruszanie się, polowanie czy pozostanie czujnym. Na przykład w przypadku nicienia C. elegans wydaje się, że sen umożliwia mu rośnięcie i regenerację tkanek. U pozbawionych snu stułbi dochodzi do zatrzymania podziału komórkowego. Podobne zjawiska zauważono u pozbawionych snu szczurów i muszek owocówek. Niewykluczone zatem, że główną rolą snu jest zarządzanie przepływem energii. Powyższe badania każą też się nam zastanowić, jakie zwierzę spało jako pierwsze. Prawdopodobnie zniknęło ono z powierzchni Ziemi setki milionów lat temu. Jeśli było wspólnym przodkiem człowieka i stułbi, to prawdopodobnie posiadało neurony i coś w rodzaju mięśni. Sen mógł pomagać w utrzymaniu zaczątków układu nerwowego, ale mógł też mieć znaczenie dla metabolizmu i trawienia. Zanim pojawił się mózg, istniał układ trawienny, zauważa Michael Abrams z University of California, Berkeley. Pojawiają się też kolejne pytania. Jeśli sen wymaga obecności neuronów, to jaka jest minimalna liczba neuronów potrzebna, by sen wyewoluował. I czy sen może być wywoływany przez inne typy komórek, co sugerują badania nad komórkami mięśni i wątroby. W końcu powstaje pytanie, czy zwierzęta nie posiadające neuronów mogą spać. Takimi zwierzętami są płaskowce czy gąbki. Być może w przyszłości uda się to zbadać. « powrót do artykułu
  12. Całe pokolenia studentów dowiadywały się, że układ odpornościowy trzyma się z dala od mózgu. Wiedzę tę zyskaliśmy około 100 lat temu, gdy jeden z japońskich naukowców przeszczepił myszy tkankę nowotworową. Układ odpornościowy zwierzęcia potrafił zniszczyć tę obcą tkankę, jednak gdy została przeszczepiona do mózgu, guz rósł bez przeszkód. To sugerowało, że układ odpornościowy w mózgu nie działa. Jednak od pewnego czasu zauważamy, że tak nie jest. Teraz naukowcy z Wydziału Medycyny Washingon University w St. Louis sądzą, że odkryli, w jaki sposób układ odpornościowy wie, gdy coś złego dzieje się w mózgu. Ich zdaniem komórki tego układu znajdują się w oponach mózgowo-rdzeniowych i tam próbkują płyn mózgowo-rdzeniowy, który krąży w mózgu. Gdy wykryją w nim ślady infekcji lub uszkodzenia, przygotowują się do reakcji immunologicznej. Każdy organ w naszym ciele jest nadzorowany przez układ odpornościowy, mówi profesor Jonathan Kipnis. Jeśli pojawia się guz, uszkodzenie czy infekcja, układ odpornościowy musi o tym wiedzieć. Jednak do niedawna sądzono, że mózg jest tutaj wyjątkiem. Gdy coś tam się dzieje, układ odpornościowy nie reaguje. To nigdy nie miało dla mnie sensu. Odkryliśmy, że układ odpornościowy nadzoruje tez mózg, ale dzieje się to z zewnątrz. Teraz, gdy wiemy, gdzie ten proces przebiega, otwierają się nowe możliwości wpływania na reakcję układu odpornościowego w mózgu. W 2015 roku Kipnis i jego zespół odkryli sieć naczyń, przez które płyn i niewielkie molekuły przedostają się z mózgu do węzłów chłonnych, w których rozpoczyna się odpowiedź immunologiczna. Odkrycie to wykazało, że istnieje fizyczne połączenie pomiędzy mózgiem a układem odpornościowym. Jednak odkryte naczynia pozwalały na opuszczanie mózgu. Nie było jasne, czy komórki układu odpornościowego są w stanie się do niego dostać lub sprawdzać, co się w nim dzieje. Kipnis i doktor Justin Rustenhoven, główny autor artykułu opublikowanego w niedawnym numerze Cell, rozpoczęli poszukiwania miejsc, które dawałyby układowi odpornościowemu dostęp do mózgu. Kluczem do sukcesu okazał się fakt, że wspomniane naczynia odprowadzające płyn z mózgu biegły wzdłuż zatok opony twardej. Eksperymenty wykazały, że zatoki te są pełne molekuł i komórek odpornościowych, które zostały przyniesione z krwią. Znaleziono tak wiele różnych typów komórek odpornościowych. Odkrycie to sugeruje, że układ odpornościowy nadzoruje mózg z pewnej odległości i przystępuje do działania tylko wówczas, gdy wykryje niepokojące sygnały. To może wyjaśniać, dlaczego przez długi czas uważano, iż nie działa on w mózgu. Aktywność układu odpornościowego w mózgu mogłaby być bardzo szkodliwa. Mógłby zabijać neurony i powodować opuchliznę. Mózg nie toleruje zbyt dużej opuchlizny, gdyż otoczony jest sztywną czaszką. Dlatego też układ odpornościowy został wypchnięty poza mózg, gdzie może go nadzorować bez ryzyka spowodowania uszkodzeń, stwierdza Rustenhoven. Wyniki najnowszych badań mogą przydać się np. do leczenie stwardnienia rozsianego. Wiadomo bowiem, że choroba ta jest spowodowana atakiem układu odpornościowego na osłonkę neuronów. Podczas badań na modelu mysim udał się wykazać, że choroba ta prowadzi do akumulacji komórek układu odpornościowego w zatokach opony twardej. Nie można więc wykluczyć, że choroba zaczyna się właśnie tam i rozprzestrzenia się na cały mózg. Potrzebne są kolejne badania, które potwierdzą ewentualną rolę zatok opony twardej w chorobach neurodegeneracyjnych. Jeśli są one bramami do mózgu, możemy spróbować opracować terapie, które powstrzymają zbyt aktywne komórki układu odpornościowego przed dostaniem się do mózgu. Zatoki są blisko powierzchni, więc być może uda się nawet podawać leki przez czaszkę. Teoretycznie można by opracować maści lecznicze, które przedostawałyby się przez czaszkę i docierały do zatok. Być może właśnie znaleźliśmy miejsce, w którym rozpoczyna się stan zapalny powodujący wiele chorób neuroimmunologicznych i być może będziemy w stanie coś z tym zrobić, dodaje Kipnis. « powrót do artykułu
  13. Analiza skanów rezonansu magnetycznego dostarczyła dowodów, że u dzieci, które regularnie chrapią, występują strukturalne zmiany w mózgu. Mogą one odpowiadać za zmiany zachowania powiązane z chrapaniem, takie jak problemy ze skupieniem uwagi, nadaktywność i problemy z uczeniem się. Naukowcy z Wydziału Medycyny University of Maryland informują na łamach Nature Communications, że dzieci w wieku 9–10 lat, które chrapią co najmniej trzy razy w tygodniu, z większym prawdopodobieństwem mają cieńszą korę mózgową w licznych miejscach płatów czołowych. Tymczasem płaty czołowe są odpowiedzialne za wyższe procesy myślowe i kontrolę impulsów. Badania sugerują zatem związek pomiędzy zaburzeniami zachowania a cieńszą korą mózgową. To największe badania tego typu, pokazująca związek pomiędzy chrapaniem a nieprawidłowym rozwojem mózgu, mówi główny autor badań profesor Amal Isaiah. Te zmiany w mózgu są podobne do tego, co obserwuje się u dzieci z ADHD, mówi uczony. Jeśli dziecko chrapie częściej niż dwa razy w tygodniu, powinien je zobaczyć lekarz. Mamy tutaj silne dowody na występowanie u dzieci zmian strukturalnych mózgu w wyniku chrapania, radzi rodzicom. Związek pomiędzy chrapaniem u dzieci, a zmianami zachowania jest znany od dawna. Rodzice mówią o problemach z zachowaniem dzieci, które chrapią, przypominają autorzy badań. Dotychczas jednak słabo rozumieliśmy przyczynę istnienia tego związku. U dzieci najczęściej stosowanymi metodami leczenia bezdechu sennego jest tonsillektomia i adenotomia, czyli usunięcie migdałków. Jednak u wielu chrapiących dzieci błędnie diagnozuje się ADHD i niepotrzebnie poddaje się je leczeniu. Isaiah i jego zespół przeanalizowali obrazy MRI ponad 10 000 dzieci w wieku 9–10 lat, które brały udział w długoterminowym badaniu Adolescent Brain Cognitive Development (ABCD) Study. Jego celem jest określenie zdrowia oraz rozwoju mózgu u amerykańskich dzieci. Wykorzystali przy tym swoje wcześniejsze badania statystyczne, które potwierdziły występowanie korelacji pomiędzy chrapaniem u dzieci a zaburzeniami ich zachowania. Teraz naukowcy zauważyli, że chrapanie jest też związane z mniejszą ilością kory mózgowej w różnych obszarach płatów czołowych. I ponownie analiza statystyczna wykazała, że zmiany te mogą mieć związek z obserwowanymi problemami z zachowaniem. Do ostatecznego potwierdzenia tych obserwacji konieczne będą kolejne badania nad potwierdzeniem związku przyczynowo-skutkowego pomiędzy chrapaniem a zmianami w mózgu. Powyższe badania sugerują, że przyczyną – i do tego odwracalną – problemów behawioralnych u wielu dzieci może być występujący u nich bezdech senny. Wiemy, że mózg potrafi się naprawiać, szczególnie u dzieci. Zatem rozpoznanie i leczenie w odpowiednim czasie bezdechu sennego może odwrócić te zmiany w mózgu. Konieczne są dalsze badania potwierdzające istnienie mechanizmu za pomocą którego chrapanie wpływa na zmiany w mózgu, mówi współautorka gadań, profesor Linda Chang, która jest jednym z głównych naukowców projektu ABCD. « powrót do artykułu
  14. Jedną z przyczyn leukodystrofii – choroby istoty białej mózgu, która ma podłoże genetyczne – zidentyfikowali badacze z uniwersytetów we Wrocławiu, Getyndze, Jenie i Kolonii. Leukodystrofie to grupa genetycznie uwarunkowanych chorób istoty białej mózgu, w których dochodzi do zaburzeń wytwarza osłonki mielinowej na wypustkach neuronów. Prowadzą one do powstania zaburzeń poznawczych, upośledzenia funkcji ruchowych i wegetatywnych. Jedną z przyczyn leukodystrofii – związaną z mutacją w obrębie genu kodującego mięśniową izoformę fruktozo 1,6–bisfosfatazy (FBP2) – zidentyfikowali badacze z Katedry Fizjologii i Neurobiologii Molekularnej Uniwersytetu Wrocławskiego oraz Uniwersytetów w Goettinen, Jenie i Kolonii. Wyniki swojej pracy przedstawiają w publikacji na łamach Brain Communications. W informacji prasowej przesłanej PAP autorzy badania tłumaczą, że u heterozygotycznych osób, u których w genie FBP2 nastąpiła zamiana aminokwasu waliny (V) w pozycji 115 na metioninę (M), obserwuje się gwałtowny rozwój leukodystrofii – demielinizację neuronów. Zmiany te pojawiają się u jednorocznych dzieci i ustępują z wiekiem. Po osiągnięciu dojrzałości osoby cierpiące na taką leukodystrofię wykazują jedynie niewielkie zaburzenia natury psychicznej i ruchowej. Nie wiadomo jeszcze, czy mutacja ta odciska piętno na zdrowiu pacjentów mających dwadzieścia kilka – i więcej lat. Co ciekawe, dorosłe osoby będące nosicielami mutacji FBP2 V115M charakteryzują się nadprodukcją formy zmutowanej i jeszcze wyższą nadprodukcją formy natywnej – niezmutowanej. FBP2 to białko wielofunkcyjne, które poza regulacją glukostazy (gospodarki cukrowej organizmu), jest odpowiedzialne za prawidłowe działanie mitochondriów i przebieg cyklu komórkowego. Badania przeprowadzone w Katedrze Fizjologii i Neurobiologii Molekularnej UWr pokazały, że zmutowana FBP2 (V115M) ma zmienione właściwości kinetyczne oraz stabilność termodynamiczną, co jest przyczyną zaburzeń prawidłowego funkcjonowania mitochondriów i – prawdopodobnie – cyklu komórkowego. FBP2 jest homotetramerem – białkiem złożonym z czterech identycznych podjednostek. Okazuje się, że mutacja V115M sprawia, że zmutowana FBP2 tworzy nieprawidłowe tetrameryczne kombinacje z cząsteczkami natywnej, prawidłowej FBP2. Wydaje się więc, że bardzo wysoka nadekspresja natywnej FBP2 w wieku dorosłym jest mechanizmem pozwalającym komórkom na wytworzenie w pełni funkcjonalnego białka – natywnego tetrameru FBP2, a to z kolei umożliwia właściwe funkcjonowanie komórek. Jednocześnie powstają też jednak tetrametry, w skład których wchodzą podjednostki zarówno natywnej, jak i zmutowanej FBP2 – czytamy w informacji prasowej z UWr. Takie tetrametry mają obniżoną stabilność termodynamiczną i jako niefunkcjonalne biologicznie, są one poddawane procesowi degradacji. Istnienie dużej frakcji nieprawidłowych tetramerów FBP2 ma odzwierciedlenie w bardzo wysokiej aktywności procesów degradacji białka, szczególnie tych, za które odpowiadają lizosomy. Nie wiadomo obecnie, czy tak wysoka aktywność systemów lizosomalnych (wzrost ilości lizosomów o 300 proc.) ma konsekwencje w późniejszych okresach życia osób, będących nosicielami mutacji V115M w genie FBP2. Wciąż nie potrafimy leczyć przyczynowo żadnych leukodystrofii, choć w kilku konkretnych przypadkach leczenie objawowe pozwala chorym w miarę dobrze funkcjonować – zaznacza jeden z autorów badania, dr n. biol. Przemysław Duda z UWr. – Natomiast odkrycie nowej przyczyny powstawania jakiejś choroby zawsze zwiększa możliwość przyszłych strategii terapeutycznych. Dodaje on, że leukodystrofie to choroby genetyczne, a terapia genowa w dobie COVID przestała być osiągnięciem ze sfery fiction. Zaczęto ją wykorzystywać w praktyce klinicznej na szeroką skalę, czego przykładem są szczepionki RNA. Niewykluczone, że kiedyś dużą część chorób genetycznych będziemy mogli leczyć podobnie – choć to wciąż raczej odległa przyszłość. Na obecnym etapie ważniejsze jest sprawdzenie, w ilu typach leukodystrofii – a być może także innych schorzeń, związanych np. z nieprawidłowościami mitochondrialnymi – przyczyną może być właśnie owa mutacja w obrębie FBP2 (V115M). Być może dotyczy ona części leukodystrofii – a być może i innych chorób, o których myślimy, że pierwotne przyczyny są znane. Tymczasem właściwą przyczyną może być właśnie owa mutacja, co nie było jednak sprawdzane – doprecyzowuje współautor badania, prof. dr hab. Dariusz Rakus z UWr. Eksperci z UWr zaznaczają, że jeśli chodzi o przyczyny (mutacje w konkretnych genach), leukodystrofie są niejednorodną grupą chorób. Dokładna liczba chorych na leukodystrofię nie jest znana, a dane z różnych krajów są niespójne – między innymi dlatego, że część osób, mimo objawów, nie doczekuje się konkretnej diagnozy. Dr Duda przywołuje szacunki, zgodnie z którymi częstość występowania leukodystrofii (wszystkich typów) na świecie zdarza się mniej więcej raz na 5 tys. – 50 tys. osób. W Polsce najczęściej występujące leukodystrofia metachromatyczna, którą diagnozujemy w jednym na 20 tysięcy urodzeń. Druga pod względem częstości w naszym kraju jest – dwa razy rzadsza – leukodystrofia Krabbego. Kolejną ujmowaną w statystykach jest leukodystorfia sprzężona z chromosomem X, tzw. adrenoleukodystrofia, która zdarza się raz na 20 tys. – 50 tys. urodzeń – wymienia naukowiec. « powrót do artykułu
  15. Pojedyncza zmiana genetyczna mogła zdecydować, że to Homo sapies wygrał rywalizację ewolucyjną z neandertalczykiem i denisowianinem. To fascynujące, że pojedyncza zmiana w ludzkim DNA mogło doprowadzić do zmiany połączeń w mózgu, mówi główny autor badań opublikowanych na łamach Science, profesor Alysson R. Muotri z Uniwersytetu Kalifornijskiego w San Diego (UCSD). Muotri, profesor pediatrii oraz medycyny komórkowej i molekulanej od dawna bada kwestie związane z rozwojem mózgu oraz nieprawidłowościami prowadzącymi do schorzeń neurologicznych. Interesuje go również ewolucja mózgu, a szczególnie to, co różni nasz mózg od mózgów najbliżej spokrewnionych z nami ludzi – neandertalczyków i denisowian. Badania nad ewolucją wykorzystują głównie dwa narzędzia – genetykę i badanie skamieniałości. Problem jednak w tym, że żadne z tych narzędzi nie mówi nam zbyt wiele o budowie i funkcjonowaniu mózgu. Mózg nie ulega bowiem fosylizacji, nie ma więc czego badać. Muotri zdecydował więc na wykorzystanie komórek macierzystych, narzędzia, które jest rzadko używane w rekonstrukcjach ewolucyjnych. Komórki macierzyste mogą zostać wykorzystane do tworzenia w laboratorium organoidów, czyli zminiaturyzowanej uproszczonej wersji badanego narządu. Muotri i jego zespół są pionierami w wykorzystywaniu komórek macierzystych do porównywania ludzi z innymi naczelnymi, jak szympansy czy bonobo. Dotychczas jednak uważana, że wykorzystanie tej techniki do porównania z gatunkami wymarłymi nie jest możliwe. W ramach najnowszych badań naukowcy katalogowali różnice genetyczne pomiędzy H. sapiens a neandertalczykami i denisowianami. Wykorzystując zmianę znalezioną w jednym tylko genie udało im się, za pomocą komórek macierzystych, uzyskać „neandertalski” organoid mózgu. Nie wiemy, kiedy i jak doszło do tej zmiany. Wydaje się jednak, że była ona znacząca i pozwala wyjaśnić umiejętności współczesnego człowieka dotyczące zachowań społecznych, języka, kreatywności, umiejętności adaptacji i wykorzystania technologii, Muotri. Naukowcy początkowo znaleźli 61 genów, których wersje odróżniały nas od naszych wymarłych kuzynów. Jednym z tych zmienionych genów był NOVA1. Przykuł on uwagę Muotriego, gdyż wiadomo, że jest to ważny gen regulatorowy, wpływający na wiele innych genów podczas wczesnych etapów rozwoju mózgu. Naukowcy wykorzystali więc technologię edytowania genów CRISPR do stworzenia współczesnych ludzkich komórek macierzystych zawierających neandertalską wersję genu NOVA1. Następnie pokierowali komórkami macierzystymi tak, by rozwijały się w komórki mózgowe, uzyskując w ten sposób „neandertalskie” organoidy mózgu. Organoidy mózgu to niewielkie grupy komórek mózgowych uzyskane z komórek macierzystych. Są one użytecznym modelem do badania genetyki, rozwoju chorób, reakcji mózgu na infekcje czy na leki. Stworzone przez kalifornijskich uczonych „neandertalskie” organoidy już na pierwszy rzut oka wyglądały inaczej. Miały wyraźnie inny kształt, co było wydać nawet gołym okiem. Gdy uczeni bliżej im się przyjrzeli okazało się, że organoidy H. sapiens i organoidy „neandertalskie” różnią się także sposobem proliferacji komórek oraz tworzenia synaps. Miały nawet odmienne proteiny biorące udział w tworzeniu synaps. A impulsy elektryczne generowane w „neandertalskich” organoidach były silniejsze na początkowym etapie rozwoju, jednak nie dochodziło w nich do takiej synchronizacji jak w organoidach H. sapiens. Zdaniem Muotriego, sposób działania i zmian w sieci neuronowej „neandertalskich” organoid jest podobny do działania, dzięki któremu noworodki naczelnych nieczłowiekowatych są w stanie nabywać nowe umiejętności znacznie szybciej niż ludzkie noworodki. Skupiliśmy się tylko na jednym genie, którego wersje różnią się pomiędzy człowiekiem współczesnym a wymarłymi kuzynami. Na następnych etapach badań chcemy skupić się na pozostałych 60 genach i sprawdzić, co dzieje się, gdy jeden, dwa lub więcej z nich, zostanie zmienionych, mówi Muotri. « powrót do artykułu
  16. Naturalne składniki jabłek i innych owoców stymulują wytwarzanie nowych komórek w mózgu, co może mieć znaczenie dla procesów uczenia się i zapamiętywania, informują naukowcy z australijskiego University of Queenland oraz Niemieckiego Centrum Chorób Neurodegeneracyjnych. Badania prowadzone in vitro oraz na myszach wskazują, że kwercetyna i podobne związki obficie występujące w jabłkach, wspomagają tworzenie komórek w mózgu. Nasza praca pokazuje, że zarówno flawonoidy jak i kwas 3,5-dihydroksybenzoesowy wspomagają neurogenezę nie tylko przez aktywację prekursorowej proliferacji komórek, ale również wpływając na przebieg cyklu komórkowego, przeżycie komórek i różnicowanie się neuronów, stwierdzają autorzy badań. To kolejne z całej serii badań pokazujących, jak istotne jest prawidłowe odżywianie się dla utrzymania zdrowia. Jak się okazuje, ważne dla zdrowia naszego mózgu. Neurogeneza w dorosłym hipokampie to szczególny przykład plastyczności mózgu. Mamy tutaj do czynienia z neurogenezą trwającą przez całe życie, w czasie której neurony włączane są w już istniejącą strukturę, co wpływa na uczenie się i pamięć, dodają naukowcy. A flawonoidy, które są obecne w warzywach i owocach, mogą wpływać na ścieżki sygnałowe procesów poznawczych. Jako, że jabłka są jednymi z najchętniej spożywanych owoców Tara Louise Walker i Gerd Kempermann postanowili sprawdzić, czy zawierają one jakieś związki wspomagające neurogenezę w dorosłym hipokampie. Najpierw przyjrzeli się kwercetynie, najbardziej rozpowszechnionemu flawonoidowi w skórce jabłek. Następnie rozszerzyli swoje badania na inne podobne związki obecne w jabłkach. Ich badania potwierdziły, że wysokie stężenie związków fitochemicznych obecnych w jabłkach stymuluje pojawianie się nowych neuronów. Najpierw badania in vitro wykazały, że w komórki z mysiego mózgu w obecności kwercetyny lub kwasu 3,5-dihydroksybenzoesowego (DHBA) tworzą więcej neuronów i są chronione przed śmiercią komórkową. Odkryliśmy, że 3,5-DHBA nie tylko zwiększa proliferację i neurogenezę neuralnych komórek progenitorowych, ale również zwiększa tempo dojrzewania tych komórek, czytamy w artykule Apple Peel and Flesh Contain Pro-neurogenic Compounds. Przeprowadzone następnie badania na myszach potwierdziły, że u zwierząt, którym podawano wysokie dawki kwercetyny lub DHBA, w strukturach mózgu odpowiedzialnych za uczenie się i pamięć pojawiło się więcej neuronów. Wpływ obu środków na mózg był podobny do wpływu ćwiczeń fizycznych, o którym wiadomo, że stymuluje neurogenezę. Później uczeni potwierdzili jeszcze, że wpływ kwercetyny na przeżycie i różnicowanie się neuralnych komórek progenitorowych w dorosłym hipokampie jet podobny do wpływu resweratrolu i EGCG. « powrót do artykułu
  17. Emocjonalne nagłówki prasowe wpływają na nasz osąd innych ludzi, nawet jeśli uważamy ich źródło za niewiarygodne, stwierdzili neuropsycholodzy z berlińskiego Uniwersytetu Humblodtów. Dzięki postępowi technologicznemu plotki, kłamstwa, półprawdy rozpowszechniają się błyskawicznie i bardzo szeroko. Są bez przerwy dostępne w sieci. Mimo, że ich prawdziwość można często łatwo zakwestionować, wpływają one na przekonania pojedynczych ludzi oraz na opinię społeczną. Do niedawna jednak niewiele wiedzieliśmy o tym, jak fałszywe informacje są przetwarzane w mózgu i na ich procesy neurologiczne wpływają na nasz osąd. Najnowsze badania na polu neuropsychologii wskazują, że emocjonalnie nacechowane nagłówki wywierają duży wpływ na sposób przetwarzania informacji i na nasz osąd na temat innych ludzi, nawet gdy uważamy, że źródło tych nagłówków jest niewiarygodne. Wydawałoby się, że to, na ile wiarygodne uważamy dane źródło informacji, powinno wpływać na to, jak oceniamy samą informację podawaną przez źródło. Naukowcy z Uniwersytetu Humboldtów postanowili sprawdzić, czy nasza ocena wiarygodności źródła informacji wpływa na naszą ocenę nacechowanych emocjonalnie nagłówków pochodzących z tego źródła. W tym celu skonfrontowali badane osoby z fikcyjnymi nagłówkami umieszczonymi na witrynach internetowych, które miały identyczny wygląd jak znane niemieckie witryny informacyjne. Badani mieli do czynienia z nagłówkami nacechowanymi emocjonalnie oraz z nagłówkami neutralnymi dotyczącymi fikcyjnych osób. Po przeczytaniu nagłówków robiono krótką przerwę, a następnie rejestrowano aktywność mózgu w czasie, gdy badani mieli wyrazić swoją opinię o opisanych fikcyjnych osobach na podstawie ich zdjęć. Mimo, że badani różnie oceniali wiarygodność witryn, to okazało się, że nie odgrywało to roli w formowanych przez nich opiniach. Okazało się za to, że wpływ na opinie miał ładunek emocjonalny zawarty w nagłówku. Nawet jeśli badany nie ufał danemu źródłu informacji, to pod wpływem emocjonalnego nagłówka wyrażał skrajne opinie o osobach, których negatywne lub pozytywne zachowanie zostało opisane w nagłówku. Gdy nagłówek opisywał zachowanie negatywne, badani uważali daną osobę za niesympatyczną i posiadającą cechy negatywne, gdy zaś w nagłówku opisano zachowania pozytywne, opinia na temat danej osoby była pozytywna. W czasie eksperymentu rejestrowano za pomocą EEG aktywność mózgu badanych. Pozwala to odróżnić szybkie emocjonalne reakcje, od odpowiedzi wolniejszych, przemyślanych. Naukowcy spodziewali się zobaczyć na wykresach EEG najpierw szybką emocjonalną reakcję na nagłówek, a następnie wolniejszą reakcję, świadczącą o tym, że badany rozważa wiarygodność źródła i zastanawia się nad oceną opisanej osoby. Jednak niczego takiego nie zauważono. Zarówno wczesna jak i późna reakcja mózgu była szybka, emocjonalna i niezależna od wiarygodności źródła. Uczeni doszli do wniosku, że nasze zastrzeżenia co do wiarygodności źródła nie wpływają na ocenę informacji gdy jest ona nacechowana emocjonalnie. « powrót do artykułu
  18. Samce i samice nie tylko wykazują różne zachowania seksualne, ale różnice te są ewolucyjnie zaprogramowane, dowiadujemy się z nowych badań przeprowadzonych na Uniwersytecie Oksfordzkim. Zespół pod kierownictwem doktora Tesuyi Noimy i doktor Anniki Rings wykazał, że układ nerwowy obu płci, pomimo bardzo podobnej budowy, przekazuje różne sygnały samcom, a różne samicom. Naukowcy z Wydziału Fizjologii, Anatomii i Genetyki stwierdzili, że samce i samice muszek owocówek, pomimo niezwykle podobnego genomu i systemu nerwowego różnią się głęboko w sposobie inwestowania w strategie rozrodcze, które wymagają odmiennych adaptacji behawioralnych, morfologicznych i fizjologicznych. U większości gatunków zwierząt występują międzypłciowe różnice w kosztach reprodukcji. Samice często odnoszą największe korzyści z wydania na świat młodych jak najwyższej jakości, podczas gdy samce często odnoszą korzyści z łączenia się z jak największą liczbą samic. W wyniku ewolucji pojawiły się więc głębokie różnice, służące zaspokojeniu tych potrzeb. Uczeni z Oxfordu chcieli odpowiedzieć na pytanie, w jaki sposób różnice w międzypłciowych strategiach rozrodczych objawiają się na poziomie układu nerwowego i jak się mają do ograniczeń fizycznych, w tym ograniczeń dotyczących rozmiaru ciała czy wydatkowania energii, które są spowodowane faktem posiadania przez obie płcie bardzo podobnego genomu. Naukowcy odkryli, że w mózgach samic i samców – pomimo podobieństw genetycznych – istnieją różnice w niektórych obszarach mózgu. Pozwalają one na istnienie znacząco odmiennych strategii, pomimo niewielkich różnic w samej architekturze połączeń pomiędzy neuronami. Samce muszek owocówek zdobywają samice poprzez odpowiednie zachowania godowe. Zatem w ich strategii rozrodczej dużą rolę odgrywa możliwość gonienia samicy. Dla samic takie zachowania praktycznie nie mają znacznia. W ich przypadku ważny jest sukces potomstwa, a tutaj bardzo ważną rolę odgrywa umiejętność wyboru jak najlepszego miejsca złożenia jaj. Brytyjscy uczeni badali różnice w działaniu czterech grup neuronów umieszczonych parami po jednej w każdej z półkul mózgu samców i samic. Odkryli, że połączenia pomiędzy neuronami w tych grupach przebiegają nieco inaczej, w zależności od płci badanego zwierzęcia. Okazało się, że dzięki tym różnicom samce odbierają więcej bodźców wzrokowych, a samice – węchowych. Co więcej, uczeni wykazali, że to właśnie te różnice odpowiadają za różnice w zachowaniu zwierząt. W przypadku samców jest to sterowana wzrokiem zdolność do podążania za samicą, w przypadku samic – zdolność do wspólnego składania jaj w najlepszych miejscach. Te niewielkie różnice w połączeniach pomiędzy neuronami pozwalają na istnienie specyficznej dla płci strategii ewolucyjnej. Ostateczny cel tych różnic jest taki sam – odniesienie sukcesu reprodukcyjnego, stwierdzają autorzy badań. To pierwsze badania, które wykazały istnienie bezpośredniego silnego związku pomiędzy różnicami w budowie mózgu, a zachowaniami typowymi dla danej płci. Wcześniejsze badania na ten temat sugerowały, że istnienie międzypłciowych różnic w przetwarzaniu informacji sensorycznych może prowadzić do zachowań typowych dla płci. Jednak badania te ograniczały się do wykazania istnienia różnic neuroanatomicznych i fizjologicznych, bez udowodnienia ich związku z zachowaniami. My poszliśmy dalej. Powiązaliśmy anatomiczne różnice z charakterystyczną dla płci fizjologią, zachowaniem i rolami płciowymi, mówi profesor Stephen Goodwin, w którego zespole pracują autorzy badań. Artykuł A sex-specific switch between visual and olfactory inputs underlies adaptive sex differences in behaviour jest dostępny na łamach Current Biology. « powrót do artykułu
  19. Badania prowadzone przez naukowców z Kanady sugerują, że rozwój glejaka wielopostaciowego – niezwykle agresywnego i śmiertelnego nowotworu mózgu – może być powiązany z procesem zdrowienia mózgu. Uraz, udar czy infekcja mogą napędzać nowotwór, gdy nowe komórki, mające zastąpić te zniszczone w czasie urazu, ulegną mutacjom. Odkrycie może doprowadzić do rozwoju nowych technik walki z glejakiem, jednym z najtrudniejszych w leczeniu nowotworów mózgu u dorosłych. Zdobyte przez nas dane wskazują, że odpowiednie mutacje w konkretnych komórkach mózgu mogą mieć swoją przyczynę w urazie i prowadzić do rozwoju nowotworu, mówi doktor Peter Dirks, ordynator oddziału neurochirurgii w Hospital for Sick Children (SickKids). W badaniach brali też udział naukowcy z University of Toronto oraz Princess Margaret Cancer Centre. Glejak może być postrzegany jako rana, która nigdy się nie goi. Jesteśmy podekscytowani naszym odkryciem, gdyż mówi nam ono, w jaki sposób nowotwór się zaczyna i jak rośnie. To zaś pozwala nam myśleć o nowych sposobach leczenia skoncentrowanych na ranie i odpowiedzi zapalnej, dodaje Dirks. Obecnie istnieją bardzo ograniczone możliwości leczenia glejaka, a pacjenci żyją średnio zaledwie 15 miesięcy od postawienia diagnozy. Niepowodzenie w leczeniu ma swoje korzenie w dużej różnorodności zarówno pomiędzy guzami, jak i pacjentami. Glejaki zawierają wiele różnych typów komórek, w tym rzadkie komórki macierzyste glejaka (GSC), które napędzają wzrost guza, wyjaśnia Dirks. Zespół Dirksa już wcześniej wykazał, że GSC zapoczątkowują glejaka i jego wznowę po leczeniu. Dlatego też postanowili bliżej przyjrzeć się tym komórkom. Wykorzystali w tym celu najnowsze techniki sekwencjonowania RNA oraz maszynowego uczenia się. Stworzyli na tej podstawie molekularną mapę GSC pobranych z guzów 26 pacjentów. Uzyskane wyniki potwierdziły istnienie olbrzymiego zróżnicowania, co wskazuje, że każdy z guzów zawiera wiele podtypów molekularnie zróżnicowanych GSC. To powoduje, że po leczeniu guz prawdopodobnie powróci, gdyż stosowane terapie nie są w stanie zabić wszystkich tych podtypów komórek. Naszym celem jest znalezienie leku, który zabije wszystkie rodzaje komórek macierzystych glejaka. By jednak tego dokonać musimy najpierw zrozumieć budowę molekularną tych komórek, mówi profesor Gary Bader z University of Toronto. Co interesujące, znaleziono liczne podtypy GSC, których budowa molekularna wskazywała na związki ze stanem zapalnym. To wskazywało, że przynajmniej niektóre glejaki rozpoczynają się w wyniku naturalnego procesu leczenia po urazie. Dirks mówi, że do takich mutacji rozpoczynających glejaka może dochodzić na wiele lat przed pojawieniem się choroby. Niewykluczone, że gdy w procesie leczenia mózgu po urazie pojawia się zmutowana komórka, nie może przestać się ona dzielić, gdyż nie działają jej mechanizmy kontrolne i w wyniku tego procesu dochodzi do rozwoju guza. Gdy uczeni jeszcze bliżej przyjrzeli się komórkom, okazało się, że każdy guz znajduje się w jednym z dwóch stanów molekularnych – roboczo nazwanych „rozwojowym” i „odpowiedzią na uraz” – lub gdzieś na gradiencie pomiędzy nimi. Stan „rozwojowy” to znak rozpoznawczy komórek macierzystych i przypomina stan, w którym komórki macierzyste mózgu bardzo szybko się dzielą przed urodzeniem. Drugi ze stanów był zaś dla naukowców niespodzianką. Nazwali go oni „odpowiedzią na uraz”, gdyż ma tam miejsce zwiększenie ekspresji szlaków immunologicznych i markerów zapalnych, takich jak interferon i TNFalfa. To wskaźniki toczącego się procesu zdrowienia. Zjawiska te udało się zauważyć dopiero teraz, dzięki nowoczesnym technikom sekwencjonowania RNA pojedynczych komórek. Dalsze eksperymenty pokazały, że oba te stany są wrażliwe na różne typy usunięcia genów. Ujawniono w ten sposób potencjalne metody leczenia, które dotychczas nie były brane pod uwagę przy glejaku. Badania pokazały też, że względny stosunek obu stanów jest cechą indywidualną każdego guza. Komórki każdego z nich mogą znajdować się w różnym miejscu na osi pomiędzy stanem „rozwojowym” a „odpowiedzią na uraz”. Podczas gdy GSC każdego pacjenta składają się z różnych populacji, wszystkie one znajdują się na jedne biologicznej osi pomiędzy dwoma stanami definiowanymi przez procesy neurorozwoju i zapalne, stwierdzają autorzy badań. Teraz Kanadyjczycy zastanawiają się nad metodami leczenia. Odkryta przez nas heterogeniczność komórek macierzystych wskazuje, że trzeba opracować terapie biorące na cel jednocześnie procesy rozwojowe i zapalne. Szukamy leków, które działają w różnych miejscach osi między oboma stanami. Istnieje tutaj potrzeba rozwoju zindywidualizowanego podejścia do pacjenta. Trzeba będzie wykonać badania guza na poziomie pojedynczej komórki i na tej podstawie przygotować koktajl leków, który w tym samym momencie będzie działał na różne podtypy komórek macierzystych, stwierdza doktor Trevor Pugh z Princess Margaret Cancer Centre. « powrót do artykułu
  20. Badacze z amerykańskich Narodowych Instytutów Zdrowia (NIH) donoszą, że skutkiem ubocznym COVID-19 może być uszkodzenie mózgu. Do takich wniosków doszli naukowcy, którzy zbadali mózgi zmarłych na COVID-19. W tkance 19 osób, które zmarły wkrótce po zarażeniu znaleźli ślady uszkodzeń spowodowanych zmniejszeniem grubości i przeciekaniem naczyń krwionośnych mózgu. Z wcześniejszych badań wynika, że wirus SARS-CoV-2 może zarówno uszkadzać barierę krew-mózg jak i przedostawać się do mózgu. Dlatego też naukowcy chcieli sprawdzić, jak COVID-19 wpływa na mózg. Okazało się jednak, że w uszkodzonej tkance nie znaleziono śladów samego wirusa, co wskazuje, że przyczyną uszkodzeń nie był jego bezpośredni atak na mózg. Stwierdziliśmy, że mózgi pacjentów zarażonych SARS-CoV-2 mogą być podatne na mikrouszkodzenia naczyń krwionośnych. Wyniki naszych badań sugerują, że mogą być one powodowane przez sam organizm, który na obecność wirusa reaguje stanem zapalnym, mówi jeden z autorów badań doktor Avindra Nath, dyrektor ds. klinicznych w Narodowym Instytucie Zaburzeń Neurologicznych i Udaru (NINDS). Mamy nadzieję, że badania te pomogą lepiej zrozumieć pełne spektrum problemów, z którymi borykają się pacjenci i pozwolą opracować lepsze metody leczenia. COVID-19 to przede wszystkim choroba układu oddechowego. Jednak pacjenci często doświadczają objawów neurologicznych, takich jak bóle głowy, utrata węchu, smaku, zmęczenie czy problemy poznawcze. Mogą też pojawiać się udary i inne stany patologiczne. Już wcześniejsze badania wykazały, że choroba może powodować stany zapalne i uszkodzenia naczyń krwionośnych. Specjaliści wciąż jednak próbują zrozumieć, jak wpływa ona na mózg. Nath i jego koledzy zbadali tkankę mózgową 19 osób, które zmarły pomiędzy marcem a lipcem 2020 roku w ciągu od kilku godzin po dwa miesiące od pojawienia się u nich pierwszych objawów COVID-19.Wiek pacjentów wahał się od 5 do 73 lat. U wielu z nich występował jeden lub więcej czynnik ryzyka, taki jak otyłość, cukrzyca czy choroba układu krążenia. Osiem osób zmarło w domach lub w miejscach publicznych, kolejnych trzech nagle przewróciło się i zmarło. Naukowcy rozpoczęli badania od obrazowania tkanki mózgowej za pomocą potężnego skanera do rezonansu magnetycznego (MRI), który jest od 4 do 10 razy bardziej czuły niż standardowe skanery MRI. Specjaliści sprawdzali próbki opuszek węchowych oraz pnia mózgu każdego z pacjentów. Wybrano te obszary, gdyż przypuszcza się, że są one szczególnie wrażliwe na COVID-19. Opuszki węchowe kontrolują zmysł węchu, a pień mózgu odpowiada za kontrolę oddychania i akcji serca. Skany ujawniły, że w obu miejscach występują liczne jasne punkty podwyższenia sygnału, wskazujące na stan zapalny, oraz ciemne punkty obniżenia sygnału, wskazujące na krwawienie. Gdy dzięki MRI zidentyfikowano problematyczne miejsca, zostały one poddane szczegółowym padaniom pod mikroskopem. Naukowcy stwierdzili, że miejsca podwyższenia sygnału zawierają ściany naczyń, które były cieńsze niż normalnie i czasem wyciekały z nich do mózgu białka krwi, takie jak fibrynogen. Wydaje się, że to powodowało reakcję zapalną. Punkty takie były bowiem otoczone limfocytami T z krwi oraz komórkami mikrogleju, który bierze udział w odpowiedzi immunologicznej mózgu. Z kolei tam, gdzie na MRI występowały ciemne obszary znajdowała się zakrzepła krew, nieszczelne naczynia krwionośne, ale nie było komórek odpornościowych. Byliśmy całkowicie zaskoczeni. Spodziewaliśmy się uszkodzeń spowodowanych niedotlenieniem. Tymczasem zobaczyliśmy wieloogniskowe uszkodzenia typowe dla udarów i chorób neurozapalnych. Uczeni wykorzystali też liczne metody wykrywania w tkance obecności materiału genetycznego i białek wirusa SARS-CoV-2, jednak okazało się, że wirusa w tkance nie było. Jak dotąd wydaje się, że zaobserwowane uszkodzenia nie zostały spowodowane bezpośrednim zainfekowaniem mózgu przez wirusa. W kolejnym etapie badań chcemy sprawdzić, jak COVID-19 uszkadza naczynia krwionośne mózgu i czy powoduje to obserwowane u pacjentów krótko- i długoterminowe objawy neurologiczne, mówi doktor Nath. « powrót do artykułu
  21. Ponad 30% osób chorujących na COVID-19 doświadcza objawów neurologicznych, takich jak utrata węchu i smaku, bóle głowy, zmęczenie, mdłości i wymioty. Do tego mogą dołączać ostra choroba naczyniowo-mózgowa czy zaburzenia świadomości. Objawy te sugerują, że wirus SARS-CoV-2 może przedostawać się do mózgu. I rzeczywiście, zarówno w mózgach zmarłych jak i w płynie mózgowo-rdzeniowym znaleziono RNA wirusa, nie wiadomo jednak, w jaki sposób on się tam znalazł. Niemiecki zespół naukowy z Charite, Wolnego Uniwersytetu Berlińskiego, Instytutu Roberta Kocha i innych instytucji badawczych, odkrył RNA oraz białka wirusa w różnych anatomicznie obszarach nosogardła i mózgu. Autopsje zmarłych sugerują, że wirus może przedostawać się do mózgu poprzez nos. Na łamach Nature Neuroscience, w artykule Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19 opisano badania, które przeprowadzono na 33 osobach zmarłych chorujących na COVID-19. Naukowcy zauważają, że wśród 7 koronawirusów, które infekują ludzi, co najmniej dwa endemiczne szczepy są w stanie przedostać się do centralnego układu nerwowego. Są to SARS-CoV oraz MERS-CoV, które ewolucyjnie są blisko spokrewnione z SARS-CoV-2. Teraz autorzy najnowszych badań donoszą, że RNA wirusa SARS-CoV-2 wykryli w centralnym układzie nerwowym 48% pacjentów, których poddali autopsji. Profesor Frank Heppner z Charité–Universitätsmedizin Berlin i jego zespół sprawdzili nosogardło – pierwsze miejsce, w którym może dochodzić do infekcji i replikacji wirusa – oraz mózgi 33 pacjentów (22 mężczyzn i 11 kobiet), które zmarły w czasie, gdy chorowały na COVID-19. Mediana wieku zmarłych wynosiła 71,6, a mediana czasu od wystąpienia objawów COVID-19 do zgonu to 31 dni. Autorzy badań odkryli RNA wirusa SARS-CoV-2 w nosogardle i mózgu wielu badanych. Najwięcej wirusowego RNA znajdowało się w błonie śluzowej nosa. Zauważyli też, że czas trwania choroby był ujemnie skorelowany z ilością wykrytego materiału wirusowego, co oznacza, że więcej śladów SARS-CoV-2 odkryto u osób, które chorowały krócej. Naukowcy donoszą też, że białko S wirusa, za pomocą którego infekuje on komórki, znajdowało się w pewnych typach komórek błony śluzowej. Nie można wykluczyć, że wirus wykorzystuje fakt, że komórki te sąsiadują z komórkami nabłonka i nerwowymi, dzięki czemu może dostać się do mózgu. U niektórych pacjentów białko S znaleziono w komórkach, w których dochodzi do ekspresji markerów neuronowych. Nie można więc wykluczyć, że wirus infekuje neurony węchowe oraz te obszary mózgu, do których docierają informacje o smaku i zapachu. Co więcej, ślady wirusa znaleziono też w innych obszarach mózgu, w tym w rdzeniu przedłużonym, w którym znajdują się m.in. ośrodek oddechowy, ośrodek sercowy czy ośrodki odpowiedzialne za wymioty. Spostrzeżenia niemieckich naukowców mogą wyjaśniać wiele objawów neurologicznych, które występują u chorujących na COVID-19. « powrót do artykułu
  22. Dimetylotryptamina (DMT), główny składnik psychodelicznego napoju ayahuasca, jest również naturalnie syntetyzowany w mózgu ssaków. Odkrycie zespołu z Michigan Medicine jest pierwszym krokiem w kierunku badania DMT w mózgach ludzi. Wyniki studium ukazały się w piśmie Scientific Reports. DMT nie występuje wyłącznie w roślinach [takich jak Mimosa hostilis, Diplopterys cabrerana czy Psychotria viridis]. Można ją wykryć także u ssaków - podkreśla dr Jimo Borjigin, która przed skoncentrowaniem się na psychodelikach zajmowała się szyszynką (wbrew pozorom, ma to spore znaczenie). W XVII w. Kartezjusz twierdził, że szyszynka jest siedzibą duszy. Nazywany przez niektórych trzecim okiem gruczoł długo był postrzegany jako tajemniczy, teraz wiadomo już jednak, że kontroluje produkcję melatoniny, która odgrywa ważną rolę w modulowaniu zegara biologicznego. Przeglądając Internet pod kątem prowadzonych zajęć, Borjigin zauważyła, że spora rzesza ludzi nadal jest przekonana co do mistycznych mocy szyszynki. Źródłem tego wydaje się dokument przedstawiający prace Ricka Strassmana ze Szkoły Medycznej Uniwersytetu Nowego Meksyku, który w połowie lat 90. XX w. przeprowadził pewien eksperyment. Ochotnikom podano wtedy dożylnie DMT i gdy psychodelik przestał już działać, przeprowadzono z nimi wywiady. W filmie Strassman stwierdzał, że wg niego, szyszynka produkuje i wydziela DMT. Powiedziałam do siebie: zaraz, zaraz, od lat zajmuję się szyszynką i nigdy o tym nie słyszałam. Zaintrygowana Borjigin skontaktowała się z Strassmanem i poprosiła o podanie źródeł/uzasadnienie tego stwierdzenia. Wtedy Strassman przyznał, że to tylko hipoteza. Niewiele myśląc, Borjigin zaproponowała współpracę i przetestowanie tego twierdzenia. Gdyby DMT była endogenną monoaminą, można by ją wykryć za pomocą fluorometru. Naukowcy pobrali próbkę z szyszynki szczura i potwierdzili obecność DMT. Wyniki tego badania opublikowano w 2013 r. Borjigin nie była jednak usatysfakcjonowana. Musiała się dowiedzieć, jak i gdzie DMT jest syntetyzowana. Jej student Jon Dean przeprowadził eksperyment z wykorzystaniem fluorescencyjnej hybrydyzacji in situ, FISH (od ang. fluorescent in situ hybridization), gdzie za pomocą fluorescencyjnych sond DNA w materiale genetycznym wycinka szuka się określonej sekwencji DNA. Dzięki tej technice znaleźliśmy neurony z 2 enzymami koniecznymi do produkcji DMT. Występowały one nie tylko w szyszynce, ale i w innych częściach mózgu, w tym w korze nowej i hipokampie, które odpowiadają m.in. za uczenie i pamięć. Zespół Borjigin zademonstrował także, że poziom DMT rośnie u niektórych szczurów doświadczających zatrzymania krążenia. W tym miejscu warto przypomnieć, że w artykule opublikowanym w sierpniu zeszłego roku naukowcy z Imperial College London napisali, że DMT stymuluje w mózgu zjawiska, które przypominają te związane z doświadczeniami z pogranicza śmierci (ang. near-death experiences, NDE). Amerykanie chcą dalej badać funkcję naturalnego DMT. Nie mamy pojęcia, za co odpowiada. Odkryliśmy tylko neurony, które ją wytwarzają i wiemy, że stężenie produkowanej DMT przypomina poziomy innych neuroprzekaźników monoaminowych. « powrót do artykułu
  23. Osoby, które nieświadomie postrzegają w swoim otoczeniu złożone wzorce – a zatem mają zdolność do bezwarunkowego uczenia się wzorców (implicit pattern learning) – z większym prawdopodobieństwem są osobami silnie wierzącymi, że istnieje istota wyższa, która wzorce te stworzyła, informują neurolodzy z Georgetown University. Przeprowadzili oni pierwsze badania nad wpływem bezwarunkowego uczenia się na wierzenia religijne. Uczenie bezwarunkowe to zdobywanie wiedzy niezależnie od świadomych prób i w nieświadomości tego, czego się nauczyliśmy. Jest ono też zwane „milczącą wiedzą”. Naukowcy z Georgetown chcieli zbadać, czy bezwarunkowe uczenie się wzorców leży u podstaw wiary, a jeśli tak, to czy zjawisko to jest niezależne od kręgu kulturowego czy wyznawanej religii. Dlatego też przeprowadzili badania wśród dwóch grup religijnych: jednej w USA i drugiej w Afganistanie. Istnienie boga lub bogów, którzy interweniują w naszym świecie, by wprowadzić w nim porządek, jest kluczowym elementem wielu religii. Nasze badania nie dotyczą tego, czy Bóg istnieje. To badania mające na celu znalezienie odpowiedzi na pytanie jak i dlaczego nasze mózgi wierzą w bogów. Postawiliśmy hipotezę, że osoby, których mózgi są dobre w podświadomym postrzeganiu wzorców w otoczeniu, mogą przypisywać te wzorce działaniom siły wyższej, mówi jeden z głównych autorów badań, profesor Adam Green, dyrektor Georgetown Laboratory for Relational Cognition. Naukowcy zauważyli, że wiele interesujących procesów ma miejsce pomiędzy dzieciństwem a dorosłością. Ich badania sugerują, że jeśli dziecko nieświadomie dostrzega wzorce w otoczeniu, w miarę dorastania jego wiara z większym prawdopodobieństwem będzie coraz silniejsza. Z drugiej strony, jeśli takich wzorców nie dostrzega, to jego wiara prawdopodobnie będzie coraz mniejsza, nawet jeśli wychowuje się w religijnej rodzinie. Podczas badań naukowcy wykorzystali znany test sprawdzający zdolność do bezwarunkowego uczenia się wzorców. Uczestnikom testu pokazywano na ekranie sekwencje kropek, które ukazywały się i znikały. Zadaniem badanych było jak najszybsze naciśnięcie przycisku odpowiadającego położeniu kropki. Kropki pojawiały się i znikały szybko, ale niektórzy z uczestników – osoby o największej zdolności do bezwarunkowego uczenia się wzorców – zaczęli po pewnym czasie nieświadomie uczyć się wzorców pojawiania się kropek i naciskali odpowiedni przycisk zanim jeszcze kropka się pojawiła. Amerykańska grupa badanych składała się ze 199 osób, głównie chrześcijan, mieszkających w stolicy kraju. Grupa afgańska to mieszkańcy Kabulu. Składała się ona ze 149 muzułmanów. Najbardziej interesującym aspektem badań, zarówno dla mnie jak i dla moich afgańskich kolegów, było spostrzeżenie, że zarówno proces poznawczy jak i jego znaczenie dla religijności, były takie same w obu grupach, mówi współautor badań, Zachery Warren. Mózg, który ma większe predyspozycje do bezwarunkowego uczenia się wzorców może mieć też większe skłonności do wiary w boga, niezależnie od tego, w jakim miejscu na świecie i w jakim kontekście religijnym mieszka dana osoba, dodaje profesor Green. « powrót do artykułu
  24. Po raz pierwszy w historii udowodniono istnienie świadomych procesów u ptaków. Naukowcy z Uniwersytetu w Tybindze dokonali pomiarów sygnałów z mózgów krukowatych i wykazali, że zwierzęta te doświadczają subiektywnych doznań. Dzięki jednoczesnej rejestracji zachowania i fal mózgowych zespół profesora Andreasa Niedera wykazał, że krukowate świadomie przetwarzają bodźce. Dotychczas tego typu zjawiska obserwowano jedynie u ludzi i innych naczelnych, czyli u stworzeń o budowie mózgu całkowicie odmiennej niż u ptaków. Nasze badania to początek zupełnie nowego spojrzenie na ewolucję świadomości i związanych z nią procesów neurologicznych, mówi Nieder. U ludzi i naszych najbliższych krewnych świadome przetwarzanie sygnałów odbywa się w korze mózgowej. Od wielu lat trwała wśród specjalistów dyskusja, czy zwierzęta o zupełnie innej strukturze mózgu, nie posiadające kory mózgowej, posiadają świadomość. Dotychczas jednak nikt nie przeprowadził eksperymentów, które by wykazały istnienie takiej świadomości. Naukowcy z Tybingi wytresowali dwa kruki. Ptaki nauczono, by na widok stymulantu wyświetlanego na ekranie, poruszały głowami. Większość sygnałów była jednoznaczna. Podczas sesji zwierzętom pokazywano na ekranie albo jaskrawą figurę, albo nie wyświetlano niczego. Kruki zawsze prawidłowo sygnalizowało. Jednak czasem wyświetlano tak słaby stymulant, że był on na granicy percepcji. Wtedy okazywało się, że kruki czasem widział stymulant i sygnalizowały jego obecność, a czasem go nie widziały. To pokazuje, że ma u nich miejsce subiektywne postrzeganie rzeczywistości. Podczas badań naukowcy rejestrowali też aktywność indywidualnych komórek nerwowych w mózgu ptaków. Gdy kruki informowały, że coś widzą, komórki nerwowe w ich mózgach były aktywne pomiędzy pokazaniem stymulantu, a bahawioralnej reakcji u ptaków. Gdy ptak niczego nie widział, komórki nerwowe były nieaktywne. Co zaskakujące, możliwe było przewidzenie subiektywnej reakcji ptaków na podstawie aktywności komórek nerwowych. Należałoby się spodziewać, że komórki nerwowe, które po prostu reagują na bodziec wzrokowy, będą zawsze tak samo reagowały na bodźce o identycznej intensywności. Okazało się jednak, że komórki na wyższych poziomach przetwarzania sygnałów ulegają wpływowi czynników subiektywnych, zatem tworzą subiektywne doznania, stwierdzają naukowcy. Wyniki badań oznaczają, że świadomość jest znacznie starsza i bardziej rozpowszechniona w królestwie zwierząt, niż nam się wydaje. Ostatni wspólny przodek człowieka i krukowatych żył 320 milionów lat temu. Możliwe więc, że od tamtego czasu świadomość jest przekazywana kolejnym pokoleniom zwierząt, mówi Nieder. Alternatywnie można stwierdzić, że świadomość pojawiła się niezależnie u tak różnych gatunków jak ludzie i kruki. Niezależnie jednak od tego, widzimy, że świadomość może istnieć w mózgach o bardzo różnej budowie i niezależnie od istnienia kory mózgowej, dodaje uczony. « powrót do artykułu
  25. Jedną z przyczyn, dla której nie udało się dotychczas stworzyć maszyny o możliwościach obliczeniowych mózgu jest brak urządzenia, które działałoby jak neuron. Jednak dzień powstania sztucznego mózgu właśnie znacznie się przybliżył. Troje naukowców poinformowało na łamach Nature o stworzeniu pojedynczego urządzenia zachowującego się jak neuron. W reakcji na przyłożenie prądu stałego urządzenie reaguje podobnie jak neuron: pojawiają się w nim serie wyładowań, samopodtrzymujące się oscylacje i inne procesy, które możemy obserwować w mózgu. Urządzenie łączy w sobie funkcje opornika, kondensatora i memrystora Motta. Memrystory to urządzenia, które przechowują dane w postaci pamięci o oporze. Memrystory Motta mają dodatkową możliwość zapamiętania zmian w oporności powodowanych temperaturą. Dzieje się tak, gdyż materiały, z których zbudowany jest memrystor Motta są izolatorami lub przewodnikami w zależności od temperatury. Do zmian takich dochodzi z nanoskalowej warstwie ditlenku niobu. Po przyłożeniu napięcia NbO2 rozgrzewa się, zmieniając właściwości z izolujący w przewodzące. Po takiej zmianie prąd może przepłynąć przez urządzenia. Następnie urządzenie się chłodzi, a ditlenek niobu staje się ponownie izolatorem. W efekcie takich działań pojawia się wyładowanie podobne do tego, obserwowanego w neuronach. Przez pięć lat nad tym pracowaliśmy. W małym nanoskalowym kawałku materiału dzieje się bardzo wiele, mówi jeden z autorów badań, R. Stanley Williams z Texas A&M University. Drugi z autorów badań, Suhas Kumar z Hewlett Packard Laboratories, przypomina, że wynalazca memrystora, Leon Chua, przewidywał, iż w urządzeniu tym pomiędzy dwoma stabilnymi regionami znajduje się region chaotycznych zjawisk. Na krawędzi takiego regionu urządzenie może zaś wykazywać zachowania podobne do zachowań neuronów. Uzyskanie odpowiednich zjawisk nie jest jednak łatwe. Williams chwali Kumara za wysiłek, jaki włożył w to, by precyzyjnie dobrać parametry pracy urządzenia. Tego się nie odkrywa przypadkiem. Wszystkie parametry muszą być perfekcyjnie dobrane zanim zauważysz zjawiska, których poszukujesz. Gdy już jednak uda się tego dokonać okazuje się, że całość pracuje bardzo stabilnie i łatwo jest to powielać, stwierdza uczony. Naukowcy przetestowali swoje urządzenie budując z nich bramki logiczne NAND i NOR oraz niewielki analogowy obwód optymizujący pracę całości. Naukowcy przyznają, że potrzeba jeszcze wiele pracy, by całość zmienić w praktyczne urządzenie i skalować je tak, by mogły z nich powstać systemy zdolne do rzucenia wyzwania współczesnym komputerom. Kumar i Williams mają zamiar poszukać innych materiałów, nadających się do budowy sztucznego neuronu. Przemiany zachodzące w NbO2 mają bowiem miejsce w temperaturze 800 stopni Celsjusza. Można ją osiągnąć w warstwach o grubości liczonej w nanometrach. Jednak przeskalowanie całości na miliony takich neuronów i uzyskanie podobniej wydajności może być problemem. Stąd m.in. potrzeba znalezienia innego materiału. « powrót do artykułu
×
×
  • Create New...