Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' mózg'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 48 results

  1. Wyjście z łóżka w ciemny zimowy poranek jest dla wielu nie lada wyzwaniem. Nie ma jednak co robić sobie z tego powodu wyrzutów. Neurobiolodzy z Northwestern University odkryli właśnie mechanizm wskazujący, że zachowanie takie ma biologiczne podstawy. Naukowcy zauważyli otóż, że muszki owocówki posiadają rodzaj termometru, który przekazuje informacje o temperaturze z czułków zwierzęcia do bardziej rozwiniętych części mózgu. Wykazali też, że gdy jest ciemno i zimno sygnały te tłumią działanie neuronów odpowiedzialnych za przebudzenie się i aktywność, a tłumienie to jest najsilniejsze o poranku. To pomaga wyjaśnić dlaczego, zarówno w przypadku muszek owocówek jak i ludzi, tak trudno jest obudzić się w zimie. Badając zachowanie muszek możemy lepiej zrozumieć jak i dlaczego temperatury są tak ważne dla regulacji snu, mówi profesor Marco Gallio z Winberg College of Arts and Sciences. W artykule opublikowanym na łamach Current Biology autorzy badań jako pierwsi opisali receptory „absolutnego zimna” znajdujące się w czułkach muszki. Reagują one wyłącznie na temperatury poniżej strefy komfortu termicznego zwierzęcia, czyli poniżej 25 stopni Celsjusza. Po zidentyfikowaniu tych neuronów uczeni zbadali ich interakcję z mózgiem. Okazało się, że głównym odbiorcą przesyłanych przez nie informacji jest mała grupa neuronów mózgu, która jest częścią większego obszaru odpowiedzialnego za kontrolę rytmu aktywności i snu. Gdy obecne w czułkach receptory zimna zostają aktywowane, wówczas komórki w mózgu, które zwykle są aktywowane przez światło, pozostają uśpione. Odczuwanie temperatury to jeden z najważniejszych stymulantów. Podstawy jego działania, jakie znaleźliśmy u owocówki, mogą być identyczne u ludzi. Niezależnie bowiem od tego, czy mamy do czynienia z człowiekiem czy z muszką, narządy zmysłów mają do rozwiązania te same problemy i często jest to robione w ten sam sposób, dodaje Gallio. « powrót do artykułu
  2. Lekka silikonowa opaska może być zakładana pod kask w czasie uprawiania sportu. Wynalazek mierzy przyspieszenia działające na głowę człowieka i aktywność elektryczną kory mózgowej. Dzięki niemu od razu wiadomo, co dzieje się w mózgu, gdy dochodzi do upadku albo zderzenia. Nad opaską pracuje zespół naukowców z Wydziału Mechanicznego Politechniki Wrocławskiej i dwaj neurochirurdzy – z Wrocławia i Legnicy. Ich urządzenie składa się z kilkunastu czujników – akcelerometrów (mierzących przyspieszenia działające na głowę) oraz czujników pulsu, temperatury ciała, stopnia natlenienia krwi i kwasowości wydzielanego potu. Są tam także elektrody, dzięki którym możliwa jest elektroencefalografia, czyli EEG – pomiar aktywności elektrycznej kory mózgowej. Wszystkie te dane są zapisywanie na karcie pamięci, a potem przetwarzane przez komputer. Sama opaska jest wykonana z lekkiego i przyjemnego dla skóry silikonu i ma (opcjonalne) paski przechodzące przez środek głowy i wkładki douszne z czujnikami ruchu (IMU). Nikt do tej pory nie mierzył, co dzieje się z korą mózgową w czasie uderzenia głowy – podkreśla dr hab. inż. Mariusz Ptak z Katedry Konstrukcji Badań Maszyn i Pojazdów na Wydziale Mechanicznym, kierownik projektu. Zwykle gdy dochodzi do poważniejszego wypadku, EEG jest wykonywane kilkadziesiąt minut po takim zdarzeniu w szpitalu. My mamy szansę zobaczyć, jak zmienia się potencjał elektryczny w mózgu w czasie rzeczywistym. Przylegające do skóry elektrody są jednym z najważniejszych elementów naszej opaski. Każdy organizm jest bowiem inny i u niektórych ludzi nawet mały uraz może być przyczyną bardzo poważnych powikłań. Dlatego sam pomiar sił działających na głowę mógłby być niewystarczającym wskaźnikiem dla określenia ryzyka poważnego urazu. EEG pozwala nam bardzo dokładnie przyjrzeć się wszystkiemu, co dzieje się w głowie człowieka. Badania na zawodniku futbolu amerykańskiego Do tej pory badania na ludzkim mózgu związane z uderzeniami w czasie rzeczywistym – z oczywistych powodów – prowadzono na ciałach zmarłych. Nie wiemy natomiast, co dzieje się w mózgu osoby żyjącej. Wyniki mogą być zupełnie inne od tych dostępnych w literaturze, bo przecież wiele parametrów jest skrajnie odmiennych, jak choćby stopień nawodnienia organizmu – tłumaczy Johannes Wilhelm, doktorant na Wydziale Mechanicznym uczestniczący w tym projekcie. Dzięki opasce możemy dowiedzieć się np., co prowadzi do utraty świadomości człowieka. Będziemy mogli przeanalizować, jakie fale przechodzą przez mózg i jak on na nie reaguje. Naukowcy nie zamierzają oczywiście doprowadzać do wypadków osób zakładających zaprojektowaną i zbudowaną przez nich opaskę. Chcą przeprowadzić dużą liczbę badań, licząc na to, że przy okazji uda się zarejestrować także upadki czy zderzenia, które są nieuniknione przy aktywności fizycznej. Do udziału zaprosili więc wolontariuszy uprawiających różne dyscypliny sportu, w tym m.in. studenta naszej uczelni, który jest zawodowym graczem wrocławskiego zespołu futbolu amerykańskiego. Mamy już sporo danych dotyczących codziennej aktywności ludzi, np. podskakiwania czy biegania, które też są dla nas istotne, bo wiemy już, jak zachowuje się wtedy mózg i jakie naprężenia przez niego przechodzą – opowiada Marek Sawicki, doktorant na Wydziale Mechanicznym i współautor pomysłu. Naukowcy chcą stworzyć model pokazujący, jak rozchodzą się przyspieszenia w głowie człowieka przy konkretnym uderzeniu. Stąd potrzeba jak największej ilości danych, by model był wiarygodny. Chcemy zarejestrować dane od osób jeżdżących na rowerze, nartach, snowboardzie itd. Im większe zróżnicowanie, tym lepiej dla naszych badań – dodaje Johannes Wilhelm. Interesujące dla nas mogą być nawet dane z opaski osoby bawiącej się na dużym koncercie, stojącej niedaleko nagłośnienia. Członkowie zespołu sprawdzali wcześniej prototyp swojego wynalazku na manekinie o rozmiarach dziecka, służącym normalnie do laboratoryjnych badań zderzeniowych. Taką "lalkę" zrzucali z huśtawek i drabinek na placu zabaw, by porównywać zarejestrowane przyspieszenia. Przy okazji przekonaliśmy się, że zimą zabawa dziecka na placu pokrytym masą bitumiczną nie jest najlepszym pomysłem – opowiada dr hab. Ptak. Pomiary wykonywaliśmy przy temperaturze około 4 st. C. Podłoże, które normalnie służy do absorbowania części energii przy upadku, w takich warunkach jest twarde jak asfalt. Nasza opaska zarejestrowała, że na głowę manekina spadającego na podłoże z granulatu gumowego działało przyspieszenie 100 g, czyli naprawdę bardzo duże i grożące poważnymi konsekwencjami. W czym pomoże opaska? Twórcy opaski przekonują, że pozwoli ona nie tylko na dokładne prześledzenie, w jaki sposób dochodzi do uszkodzeń i dysfunkcji w mózgu w wyniku zderzeń i upadków, ale może pomóc np. w pracach nad sprzętem zabezpieczającym głowę (np. testach kasków). Naukowcy są także w kontakcie z neurobiologami z USA, zajmującymi się badaniami związanymi z poprawą pamięci poprzez oddziaływanie elektrodami na mózg. Być może opaska z Wrocławia będzie wykorzystywana również w tych badaniach. Mogłaby służyć także do monitorowania treningów profesjonalnych sportowców, pomagając w ocenie stanu skupienia i stresu, jakiemu te osoby są poddane w czasie przygotowań do sezonu zawodów swojej dyscypliny. Na razie zyskała uznanie w konkursie "Student-Wynalazca" organizowanym przez Politechnikę Świętokrzyską – nagrodzono ją wyróżnieniem w 2019 r. Opaska została też zgłoszona do tegorocznej siódmej edycji konkursu "Eureka! DGP. Odkrywamy polskie wynalazki" – jako jedno z 20 naukowych przedsięwzięć z całej Polski. Naukowcy chcą też ją opatentować – obecnie ich rozwiązanie jest na etapie zgłoszenia patentowego. Wynalazek jest częścią dużego projektu aHEAD  (z ang. advanced Head models for safety Enhancement And medical Development), realizowanego dzięki grantowi "Numeryczny system wielowariantowych modeli głowy człowieka do symulacji patofizjologii urazów czaszkowo-mózgowych" z programu "Lider" Narodowego Centrum Badań i Rozwoju. Nad opaską pracują: dr hab. inż. Mariusz Ptak (PWr), dr inż. Monika Ratajczak z Uniwersytetu Zielonogórskiego, dr inż. Fabio Fernandez z Uniwersytetu Aveiro w Portugalii, doktoranci Johannes Wilhelm, Marek Sawicki i Maciej Wnuk z Wydziału Mechanicznego PWr oraz neurochirurdzy dr Artur Kwiatkowski (Oddział Neurochirurgiczny Wojewódzkiego Specjalistycznego Szpitala w Legnicy) i Konrad Kubicki (Uniwersytecki Szpital Kliniczny we Wrocławiu – Klinika Neurochirurgii). W pracach informatycznych pomaga student W10 Oliwer Sobolewski. O projekcie można także przeczytać na jego stronie internetowej. « powrót do artykułu
  3. Studenci medycyny od dekad uczą się, że oczy komunikują się z mózgiem za pomocą jednego typu sygnałów, pobudzających. Jednak naukowcy z Northwestern University odkryli właśnie, że część neuronów siatkówki wysyła też sygnały hamujące. Naukowcy zauważyli również, że ten sam zestaw neuronów jest zaangażowany w takie działania jak synchronizacja rytmu dobowego z cyklem dnia oraz ze zwężaniem źrenicy w reakcji na jasne światło. Postanowili się więc przyjrzeć temu bliżej. Okazało się, że wysyłane z oka sygnały hamujące zapobiegają zresetowaniu się rytmu dobowego w reakcji na przytłumione światło i zapobiegają zwężaniu się źrenic, gdy jest mało światła. Oba te zjawiska zapewniają nam odpowiednie widzenie i funkcjonowanie za dnia. Sądzimy, że badania te mogą pomóc nam w zrozumieniu, dlaczego nasze oczy są tak wrażliwe na światło, ale podświadome reakcje naszego organizmu są stosunkowo niewrażliwe, mówi główna autorka badań, Tiffany Schmidt. W ramach badań Schmidt i jej zespół zablokowali u myszy neurony wysyłające sygnały hamujące. Wówczas za pomocą przytłumionego światła łatwiej było zmienić rytm dobowy myszy. To wskazuje, że sygnały z oczu w sposób aktywny powstrzymują nasz organizm przed zmianą rytmu dobowego w reakcji na przytłumione światło. To niespodziewane zjawisko. Ma to jednak sens, gdyż nie chcielibyśmy, by nasze organizmy zmieniały rytm dobowy w reakcji na zwykłe zmiany oświetlenia. Zmiana rytmu dobowego jest pożądana tylko wtedy, gdy rzeczywiście dochodzi do dużych zmian ilości dostępnego światła, stwierdziła Schmidt. Naukowcy zauważyli też, że po zablokowaniu sygnałów hamujących z oczu, źrenice myszy były znacznie bardziej wrażliwe na światło. Sądzimy, że mechanizm ten zapobiega kurczeniu się źrenic w słabym oświetleniu. Do rozszerzonej źrenicy wpada więcej światła, więc lepiej widzimy w takich warunkach. To częściowo wyjaśnia, dlaczego nasze źrenice zwężają się dopiero gdy jasne światło stanie się jeszcze jaśniejsze. Ze szczegółami badań można zapoznać się na łamach Science. « powrót do artykułu
  4. Kontakt z marihuaną w wieku nastoletnim może ułatwiać uzależnienie się od kokainy. Naukowcy z Columbia University i włoskiego Uniwersytetu w Cagliari jako pierwsi przeprowadzili badania na poziomie molekularnym obserwując, jak wczesne wystawienie na działanie marihuany wpływa na późniejszą reakcję mózgu na kontakt z kokainą. W ramach badań na gryzoniach uczeni obserwowali, jakie zmiany zachodzą w mózgach młodych (odpowiadających nastoletnim ludziom) i dorosłych osobników. I jednym i drugim podawano syntetyczne kannabinoidy, a następnie kokainę. Naukowcy zaobserwowali, że po podaniu narkotyków w mózgach młodych zwierząt – ale nie dorosłych – dochodziło do zmian molekularnych i epigenetycznych. Odkrycie pozwala dokładniej przyjrzeć się temu, w jaki sposób używanie kannabinoidów w wieku nastoletnim może zwiększyć podatność na kokainę i ułatwiać uzależnienie od tego narkotyku. Nasze badania na szczurach są pierwszymi, podczas których zmapowano epigenetyczny i molekularny mechanizm, za pomocą którego kokaina oddziałuje na mózgi już wcześniej wystawione na działanie kannabinoidów. To daje nam lepsze pojęcie na temat biologicznych podstaw mechanizmów, które mogą zwiększać ryzyko nadużywania i uzależnienia się od narkotyków, mówi współautor badań, laureat nagrody Nobla, doktor Eric Kandel. Nie od dzisiaj wiadomo, że ludzie – i zwierzęta – różnie reagują na pierwszy kontakt z narkotykiem, a ta pierwsza reakcja pozwala przewidzieć dalsze zachowanie. Na przykład, jeśli pierwsze zetknięcie się człowieka z kokainą będzie odczuwane pozytywnie, to z większym prawdopodobieństwem ponownie zażyje on kokainę, czas do drugiego zażycia będzie krótszy i z większym prawdopodobieństwem się uzależni, czytamy w artykule opublikowanym na łamach PNAS. Mamy też coraz więcej dowodów łączących używanie kannabinoidów w wieku nastoletnim ze zwiększonym ryzykiem późniejszego używania kokainy oraz ze zwiększonym jej oddziaływaniem na człowieka. Również testy na zwierzętach pokazały, że kannabinoidy mogą uwrażliwiać na kokainę. Zwierzęta, które zetknęły się z kannabinoidami częściej samodzielnie podają sobie kokainę. Z badań epidemiologicznych wiemy, że wiele osób, które są uzależnione od kokainy, wcześniej używały marihuany, a ich pierwsze doświadczenie z narkotykami może mieć olbrzymi wpływ na to, czy będą ich nadal używali. Jednak wiele pytań pozostaje bez odpowiedzi. Dotyczą one na przykład wpływu konopi na mózg, mówi współautorka badań, doktor Denise Kandel. Dotychczas dysponowaliśmy danymi behawioralnymi, jednak nie mieliśmy neurobiologicznych dowodów wskazujących, że kannabinoidy mogą wpływać na reakcję mózgu na zetknięcie się z kokainą. Dotychczasowe badania ujawniły chemiczną stronę wpływu obu narkotyków na mózg. Badania nad uzależniającymi właściwościami kokainy koncentrowały się na mezolimbicznym szlaku dopaminergicznym. Odgrywa on ważną rolę w odczuwaniu nagrody i przyjemności. Jako, że marihuana zwiększa aktywność tego szlaku w sposób podobny do kokainy, wpływa też na cały rozległy system neurochemiczny zwany układem endokannabinoidowym. To kluczowy system dla rozwoju mózgu, który to proces wciąż trwa w wieku nastoletnim, dodaje doktor Philippe Melas. W ostatnich latach pojawiły się badania wskazujące, że rozwój uzależnienia od kokainy ma związek z układ glutaminianergiczny, a z kolei marihuana wpływ na przebieg sygnałów w tym układzie. Dlatego też włosko-amerykański zespół naukowy postanowił zbadać potencjalny związek pomiędzy oboma narkotykami. Uczeni sprawdzali, jak mózgi szczurów reagują najpierw na podanie syntetycznego kannabinoidu WIN, a następnie na podanie kokainy. Okazało się, że mózgi młodych szczurów, którym podano WIN mocniej reagowały na pierwszy kontakt z kokainą, niż mózgi szczurów, które z WIN się nie zetknęły. Co istotne, zjawisko to zaobserwowaliśmy u młodych szczurów, ale nie u dorosłych, mówi Melas. Gdy uczeni bliżej przyjrzeli się temu zagadnieniu, okazało się, że gdy młode szczury zetknęły się z kannabinoidem, to sposób, w jaki działała na nie następnie kokaina był związany z kluczowymi zmianami molekularnymi. Dotyczyły one zarówno zmian w receptorach glutaminergicznych, jak i znaczących zmian epigenetycznych. Co ciekawe, zespół z Columbia Univeristy wcześniej prowadził podobne badania nad epigenetycznymi zmianami dotyczącymi reakcji dorosłych mózgów na kontakt z nikotyną i alkoholem. Zmiany takie zaobserwowano. Tym razem jednak okazało się, że w przypadku marihuany zmiany takie zachodzą tylko w młodych mózgach. Występują one w korze przedczołowej, która odgrywa kluczową rolę w takich zadaniach jak planowanie długoterminowe czy samokontrola i jest jednym z ostatnich obszarów mózgu, który osiąga dojrzałość. Wyniki najnowszych badań sugerują, że wystawienie wciąż rozwijającego się mózgu na działanie kannabinoidu wpływa na wywoływaną przez kokainę hiperacetylację histonów w dorosłej korze przedczołowej. Jako, że acetylacja histonów zwiększa dostępność do chromatyny, powstało pytanie, czy zmiany obserwowane w młodym mózgu przekładają się na szeroką dostępność do chromatyny. Okazało się, że hiperacetylacja histonów nie prowadziła do ogólnych szerokich zmian w dostępności do chromatyny w skali całego genomu. Okazało się jednak, że powoduje to zwiększony dostęp do chromatyny i alternatywny splicing niektórych genów. W podsumowaniu badań naukowcy stwierdzili, że wystawienie na działanie kannabinoidów w wieku nastoletnim prowadzi do zmian w ekspresji genów wywołanych oddziaływaniem kokainy, pojawieniem się alternatywnego splicingu w genach powiązanych z receptorami neuroprzekaźników oraz zwiększonym wpływem kokainy na fosforylację protein. Innymi słowy, używanie marihuany w wieku nastoletnim większa prawdopodobieństwo, że pierwsze doświadczenie takiej osoby z kokainą będzie pozytywne, co z kolei może wzmocnić jej predyspozycję do używania i uzależnienia się od kokainy. « powrót do artykułu
  5. Dotychczas sądzono, że struktury w naszym mózgu, które umożliwiły rozwój mowy, pojawiły się w nim przed 5 milionami lat. Teraz międzynarodowy zespół naukowy przesunął ten termin i to znacznie. Europejscy i amerykańscy uczeni twierdzą, że początków takich struktur należy szukać co najmniej 25 milionów lat temu. Odkrycie opisano na łamach Nature. Znalezienie takiej struktury jest dla neurologów jak znalezienie skamieniałości, która rzuca nowe światło na ewolucję. Musimy jednak pamiętać, że mózgi nie ulegają fosylizacji. Dlatego też eksperci muszą próbować odtwarzać ewolucję mózgu porównując mózgi obecnie żyjących naczelnych i człowieka. Kluczową strukturą dla rozwoju mowy jest pęczek łukowaty (AF). To wiązka włókien kojarzeniowych rozciągających się od płata skroniowego po płat czołowy. Zespół z USA, Wielkiej Brytanii i Niemiec wykorzystał ogólnodostępne skany mózgu człowieka, szympansa i makaka królewskiego, a następnie przeprowadził analizę odpowiednich obszarów. Uczeni odkryli istnienie homologicznej struktury rozpoczynającej się w korze słuchowej. Wiadomo, że szympansy posiadają strukturę homologiczną (czyli mającą wspólne z człowiekiem pochodzenie ewolucyjne) do ludzkiego pęczka łukowatego, ale istnieją już spory co do tego, że podobna struktura występuje u makaków. Ostatnie dowody naukowe wskazują, że różnicowanie się pęczka łukowatego jest związane z rozrastaniem się zakrętu skroniowego środkowego (MTG). To wyróżniająca się struktura u ludzi, która jest wyraźnie widoczna też u szympansów, ale nie stwierdzono jej u nieczłowiekowatych. Autorzy najnowszych badań postanowili sprawdzić, czy struktura homologiczna do AF może u nieczłowiekowatych istnieć pomimo braku u nich MTG. Mogliśmy tylko przypuszczać, ale nie byliśmy pewni, czy u nieczłowiekowatych istnieją homologiczne struktury, co u człowieka. Przyznam, że byłem zaskoczony ich odkryciem, mówi profesor Chris Petkov z Newcastle University. Badania te rzucają nowe światło na ewolucyjne początku AF. Wskazują na fragment AF związany ze zmysłem słuchu i dowodzą istnienia homologicznej struktury u szympansów i makaka królewskiego, czytamy w opublikowanej pracy. Okazało się też, że o ile u małp nieczłowiekowatych AF jest dość symetryczna, to u ludzi występuje silna asymetria, z bardziej rozwiniętą lewą stroną struktury, która odgrywa zasadniczą rolę w rozwoju mowy. Biorąc pod uwagę fakt, że asymetria taka występuje też u szympansów, można stwierdzić, że struktury w mózgu potrzebne do pojawienia się mowy zaczęły przybierać ostateczną formę u wspólnego przodka człowieka i małp człowiekowatych, z późniejszym jeszcze różnicowaniem u naszych bezpośrednich przodków. Jednak obecne badania wskazują, że wspólni przodkowie małp i małp człekokształtnych posiadali symetryczną strukturę łączącą części płata skroniowego odpowiedzialne za słuch z dolną częścią płata czołowego. U ludzi w tych obszarach znajdują się dwie niezwykle ważne dla rozwoju mowy struktury – ośrodek Wernickiego i ośrodek Broki. Nasze badania przesunęły pojawienie się prototypu AF odpowiedzialnego za rozpoznawanie mowy do czasu ostatniego wspólnego przodka ludzi i makaków (około 25 milionów lat temu), podczas gdy do niedawna sądzono, że początków tych struktur należy szukać u ostatniego wspólnego przodka ludzi i szympansów sprzed około 5 milionów lat, stwierdzili autorzy odkrycia. Nasze obserwacje zgadzają się też z hipotezą, że zdolność do przetwarzania języka rozwinęła się ze struktur odpowiedzialnych za słuch, dodają. « powrót do artykułu
  6. Czternastego lutego podczas wyrywkowej kontroli przeprowadzanej za Blue Water Bridge, który łączy amerykańskie miasto Port Huron (Michigan) i Sarnię w Kanadzie (Ontario), w ciężarówce poczty kanadyjskiej znaleziono przesyłkę z ludzkim mózgiem. Przesyłka była opisana jako "Zabytkowa pomoc naukowa" (Antique Teaching Specimen) i miała zostać przetransportowana z Toronto do Kenoshy w Wisconsin. Po otwarciu paczki celnicy stwierdzili, że w środku znajduje się słój, a w nim ludzki mózg. Nie było żadnej [...] dokumentacji, która potwierdzałaby legalność wwozu do USA - napisano w komunikacie US Customs and Border Protection (CBP). Michael Fox z CBP podkreśla, że ludzie muszą pamiętać, że amerykańskie Centra Kontroli i Prewencji Chorób (CDC) mają ścisłe zasady dot. pozwoleń na sprowadzanie takich materiałów (Import Permit Program). Obecnie trwają konsultacje CBP i CDC. Dotyczą one regulacji importowych (42 CFR 71.54, Import regulations for infectious biological agents, infectious substances, and vectors). « powrót do artykułu
  7. Olbrzymie temperatury, jakie panowały podczas eksplozji Wezuwiusza (79 r. n.e.) zamieniły mózg jednej z ofiar w szkło. Naukowcy po raz pierwszy potwierdzili pojawienie się takiego zjawiska w wyniku eksplozji wulkanu. Jak czytamy w New England Journal of Medicine, archeolodzy rzadko mają do czynienia z zachowanymi mózgami zmarłych. Tymczasem właśnie udało się potwierdzić, że u jednej z ofiar Wezuwiusza, mężczyzny z Herkulaneum, doszło do witryfikacji mózgu, czyli przejścia tkanki w stan szklisty. Proces taki może zachodzić pod wpływem szybkiego dostarczenia ciepła. Szczątki mężczyzny leżącego w łóżku zostały odkryte w Herculaneum w latach 60. ubiegłego wieku. Specjaliści sądzą, że był to strażnik miejsca kultu, Collegium Augustalium. Teraz naukowcy z zespołu Piera Paolo Petrone z Uniwersytetu Fryderyka II w Neapolu zauważyli, że ciemna materia wystająca z pozostałości czaszki mężczyzny to zeszklony mózg. Badania znajdującego się w pobliżu drewna wykazały, że panowała tam wówczas temperatura nie wyższa niż 520 stopni Celsjusza. Zdaniem naukowców temperatura taka zapaliła tłuszcz w ciele ofiary i spowodowała odparowanie tkanki miękkiej. W wyniku tego procesu doszło nie tylko do zeszklenia mózgu. W kościach klatki piersiowej mężczyzny znaleziono też zestaloną gąbczastą tkankę. To również unikatowe znalezisko archeologiczne. Podobne tkanki znajdowano u ofiar nalotów dywanowych z czasów II wojny światowej. W przypadku wspomnianej ofiary Wezuwiusza najpierw doszło do gwałtownego wzrostu temperatury, a następnie do szybkiego jej spadku. Mózg mężczyzny najpierw zagotował się, ciśnienie rozsadziło czaszkę, a następnie doszło do gwałtownego spadku temperatury i zeszklenia tkanki mózgowej. To pierwszy przypadek znalezienia zeszklonego ludzkiego mózgu u ofiary erupcji wulkanicznej, oświadczyli naukowcy. « powrót do artykułu
  8. Psy spontanicznie przetwarzają liczby w wydzielonym obszarze mózgu, który blisko odpowiada obszarowi mózgu odpowiedzialnemu za przetwarzanie liczb u ludzi, wykazali naukowcy z Emory University. Nasze badania nie tylko wykazały, że do przetwarzania liczb psy wykorzystują te same obszary mózgu co ludzie, ale pokazały również, że nie muszą być w tym celu szkolone, mówi profesor Gregory Berns. Zrozumienie tego mechanizmu, zarówno u ludzi jak i u zwierząt, daje nam wgląd w ewolucje mózgu i jego obecne funkcjonowanie, dodaje współautorka badań, profesor Stella Lourenco. Jak zauważa uczona, dzięki takim badaniom możemy w przyszłości leczyć różne choroby nózgu czy udoskonalać systemy sztucznej inteligencji. Eksperyment polegał na obrazowaniu mózgu psów za pomocą funkcjonalnego rezonansu magnetycznego (fMRI) podczas gdy zwierzętom wyświetlano na ekranie rożną liczbę kropek. Badania wykazały istnienie reakcji w korze ciemieniowo-skroniowej w odpowiedzi na zmieniającą się liczbę kropek. Kropki, niezależnie od ich liczby, miały zawsze taką samą powierzchnię, dzięki czemu wiadomo było, że mózg reaguje na zmiany liczby, a nie powierzchni. Mózg potrafi zgrubnie oszacować liczbę przedmiotów, dzięki czemu można np. ocenić liczbę zbliżających się drapieżników czy ilość jedzenia. Mamy dowody, że tego typu reakcja zachodzi już u ludzkich niemowląt. Teraz widzimy, że wykazują ją też psy i to w podobnym obszarze mózgu. Podstawowa umiejętność oceny liczby przedmiotów nie opiera się na myśleniu symbolicznym ani treningu i wydaje się powszechnie występować u zwierząt. Jednak dotychczas większość badań prowadzono na zwierzętach, które przed eksperymentami były intensywnie trenowane. Wiele takich badań prowadzono np. na małpach, ale nie było wiadomo, czy podobne zdolności wykazują inne zwierzęta poza naczelnymi nieczłowiekowatymi, gdyż małpy były wcześniej trenowane i nagradzane za wybranie obrazka z większą liczbą kropek. Podobne badania na psach wykazały, że i one potrafią odróżniać liczbę przedmiotów. Jednak również w tym wypadku psy były wcześniej trenowane. Berns to pomysłodawca Dog Project, w ramach którego badane są różne mechanizmy ewolucyjne u psów. To właśnie w ramach tego projektu przeprowadzono obecne badania. Pierwsze, podczas których kwestię odróżniania liczby przez psy postanowiono sprawdzić za pomocą rezonansu magnetycznego u zwierząt, których wcześniej nie uczono. W eksperymencie wzięło udział 11 psów różnych ras. Nauczono je jedynie wchodzenia do maszyny i pozostawania w niej bez ruchu. Następnie zwierzętom wyświetlano różną liczbę kropek. U 8 z 11 psów zauważono większą aktywność kory ciemieniowo-skroniowej w reakcji na zmieniającą się liczbę kropek. Odwołaliśmy się do źródła, obserwując bezpośrednio mózgi psów i sprawdzaliśmy, jak reagują neurony na zmiany liczby kropek. Pozwoliło nam to na wyeliminowanie słabości poprzednich badań behawioralnych nad psami i innymi zwierzętami, mówi główna autorka badań, Lauren Aulet. Psy i ludzi dzieli 80 milionów lat ewolucji. Badania te dowodzą, że zdolność do postrzegania liczb jest co najmniej tak stara, dodaje Berns. Jesteśmy zdolni do przeprowadzania skomplikowanych obliczeń właśnie dlatego, że posiadamy podstawową zdolność do postrzegania liczby. Zdolność, którą dzielimy z innymi zwierzętami. Chciałabym się dowiedzieć, jak wyewoluowaliśmy umiejętność przeprowadzania złożonych obliczeń i jak zdolność ta rozwija się u każdego z osobna, dodaje Aulet.   « powrót do artykułu
  9. Potrząsanie głową w celu pozbycia się wody, która nalała się do ucha, może prowadzić do... uszkodzenia mózgu. Do takich wniosków doszli naukowcy z Cornell University i Virginia Tech, którzy zbadali przyspieszenie potrzebne do wyrzucenia wody z kanału słuchowego. O wynikach swoich badań poinformowali podczas odbywającego się właśnie 72. Dorocznego Spotkania Wydziału Dynamiki Płynów Amerykańskiego Towarzystwa Fizycznego. W opublikowanym abstrakcie pracy czytamy: jeden z końców zamkniętej szklanej hydrofobowej tuby o różnej średnicy został użyty jako uproszczony model kanału słuchowego. Tuba została umieszczona na strunie i symulowaliśmy potrząsanie głowy. Badania wykazały, że krytyczne przyspieszenie potrzebne do pozbycia się wody zależy w dużej mierze od ilości wody i jej pozycji w kanale. Stwierdziliśmy, że krytyczne przyspieszenie dochodzi do 10g, co może spowodować poważne uszkodzenie ludzkiego mózgu. Krytyczne przyspieszenie jest znacznie wyższe w tubach o małym przekroju, co oznacza, że pozbycie się wody z ucha poprzez potrząsanie jest trudniejsze dla dzieci niż dla dorosłych. To właśnie w przypadku dzieci do wytrząśnięcia wody potrzebne jest przyspieszenie nawet 10-krotnie przekraczające przyspieszenie ziemskie. Na potrzeby badań naukowcy wykorzystali druk 3D za pomocą którego stworzyli model ludzkiego kanału słuchowego opierając się przy tym na danych z tomografu komputerowego. Szklany model został pokryty od wewnątrz krzemowodorem, który dobrze symuluje stopień hydrofobowości jaki panuje wewnątrz ludzkiego ucha. Z naszych eksperymentów oraz modelu teoretycznego wynika, że jednym z czynników decydujących o wypłynięciu płynu z ucha jest jego napięcie powierzchniowe, mówi Baskota. Zamiast więc potrząsać głową można do ucha wprowadzić coś, co obniży napięcie powierzchniowe. Prawdopodobnie wpuszczenie kilku kropli płynu u niższym napięciu powierzchniowym niż woda, takiego jak alkohol czy ocet, pozwoli zmniejszyć napięcie powierzchniowe i spowoduje wypłynięcie wody z ucha, stwierdził Baskota. « powrót do artykułu
  10. Posługując się rezonansem magnetycznym (MRI), naukowcy wykryli w mózgach otyłych nastolatków oznaki uszkodzeń, które mogą być powiązane ze stanem zapalnym mózgu. Wyniki badań zostaną zaprezentowane na dorocznej konferencji Towarzystwa Radiologicznego Ameryki Północnej. Dane WHO wskazują, że na świecie liczba niemowląt i dzieci w wieku 5 lat bądź młodszych z nadwagą lub otyłością wzrosła z 32 mln w 1990 r. do 41 mln w roku 2016. Bezpośrednie badanie uszkodzeń zapalnych w mózgach pacjentów z otyłością umożliwił rozwój metod MRI, np. rezonansu tensora dyfuzji (ang. diffusion tensor imaging, DTI). W ramach najnowszego studium zespół porównał wyniki DTI 59 otyłych i 61 zdrowych nastolatków w wieku 12-16 lat. Naukowcy opierali się na wskaźniku anizotropii frakcyjnej (FA), który koreluje z kondycją istoty białej; zmniejszenie FA wskazuje na narastające uszkodzenie (spadek integralności) substancji białej. Naukowcy wykazali, że u otyłych nastolatków występują spadki FA w obrębie ciała modzelowatego (łac. corpus callosum), czyli najsilniej rozwiniętego spoidła (pasma istoty białej) łączącego półkule mózgu. Zmniejszenie FA wykazano także w środkowym zakręcie okołooczodołowo-czołowym, a więc w regionie mózgu związanym z kontrolą emocjonalną i układem nagrody. Związane z leptynoopornością i stanem zapalnym zmiany w mózgach otyłych nastolatków dotyczyły ważnych regionów, odpowiedzialnych za kontrolę apetytu, emocji i funkcji poznawczych - opowiada Pamela Bertolazzi, doktorantka z Uniwersytetu w São Paulo. Jak wyjaśniają naukowcy, stwierdzono, że istnieje ujemna korelacja m.in. między TNF-ß i FA w zgrubiałej części tylnej ciała modzelowatego (spelnium corporis callosi) czy między IL6 i FA w środkowym zakręcie okołooczodołowo-czołowym. Brazylijka tłumaczy, że leptyna to hormon wydzielany głównie przez komórki tłuszczowe (adipocyty), który spełnia ważną rolę w regulacji spożywania pokarmu i gospodarki energetycznej organizmu. U niektórych ludzi z otyłością mózg nie reaguje na leptynę (jest leptynooporny). Prowadzi to do wytwarzania zwiększonych ilości tego białka i jedzenia mimo adekwatnych, a nawet nadmiernych zapasów tłuszczu. A że leptynę powiązano z neurozapaleniem, można przypuszczać, co się w takiej sytuacji dzieje. Po zakończeniu wielospecjalistycznego leczenia odchudzającego chcielibyśmy powtórzyć MRI u tych nastolatków, by sprawdzić, czy [zaobserwowane] zmiany w mózgu są odwracalne, czy nie.   « powrót do artykułu
  11. Sok z granatów może pomóc w ochronie mózgu dzieci z hipotrofią wewnątrzmaciczną (zahamowaniem wzrostu). Naukowcy z Brigham and Women's Hospital prowadzili pilotażowe badania z udziałem 78 ciężarnych. Wyniki ukazały się właśnie w piśmie PLoS ONE. Obecnie trwają badania kliniczne na większej próbie. Rezultaty wskazywały m.in. na lepszą łączność funkcjonalną (ang. functional connectivity) u dzieci matek pijących codziennie sok z granatów. Dają one podstawy do dalszego eksplorowania potencjalnych neuroochronnych oddziaływań polifenoli na noworodki z grup ryzyka, np. z urazem niedotlenieniowo-niedokrwiennym - podkreśla Terrie Inder. W przypadku hipotrofii wewnątrzmacicznej (ang. Intrauterine Growth Restriction, IUGR) dziecko jest małe jak na wiek ciąży, często przez problemy związane z łożyskiem, które odpowiada za transport składników odżywczych i tlenu. Poród może w jeszcze większym stopniu zmniejszyć dostawy tlenu (m.in. do mózgu dziecka). Niedotlenienie okołoporodowe powstaje w wyniku hipoksemii, czyli zmniejszonego stężenia tlenu we krwi lub ischemii, a więc niedostatecznego dopływu krwi do mózgu w czasie 1. lub 2. okresu porodu, a także w ciągu doby po porodzie. Niedotlenienie mózgu prowadzi do rozwoju zespołu encefalopatii niedotlenieniowo-niedokrwiennej. Polifenole, do których zaliczają się np. kwas taninowy czy elagotaniny, są przeciwutleniaczami występującymi w wielu napojach i pokarmach, np. w orzechach, jagodach, czerwonym winie i herbatach. Szczególnie bogatym ich źródłem jest sok z granatów. Polifenole pokonują barierę krew-mózg, a badania na zwierzętach wykazały, że chronią przed chorobami neurodegeneracyjnymi. Dotąd jednak nikt nie sprawdzał, czy podawanie soku z granatów ciężarnym wpłynie zabezpieczająco na mózg dzieci. W badaniu z losowaniem do grup i grupą kontrolną, gdzie ani ochotniczki, ani naukowcy nie widzieli, kto trafił do jakiej grupy, wzięło udział 78 pacjentek kliniki ginekologii Barnes-Jewish Hospital. IUGR zdiagnozowano u nich w 24.-43. tygodniu ciąży. Od momentu zakwalifikowania do studium do porodu panie miały pić ok. 237 ml soku z granatów albo dopasowany pod względem smaku i kaloryczności napój bez polifenoli. Później naukowcy oceniali parę aspektów rozwoju mózgu dziecka, w tym jego makrostrukturę czy łączność funkcjonalną. Choć nie stwierdzono różnic w zakresie makrostruktury, wykryto regionalne różnice w mikrostrukturze istoty białej i łączności funkcjonalnej. Te wskaźniki sygnalizują nam, jak mózg rozwija się funkcjonalnie. Nie widać różnic we wzroście mózgu i dziecka, ale widać poprawę "okablowania" i rozwoju mózgu wyrażonego synchronicznym przepływem krwi [...]. « powrót do artykułu
  12. Kiedyś sądzono, że najstarszymi komórkami w organizmie człowieka są neurony i, być może, komórki serca. Teraz naukowcy z Salk Institute udowodnili, że u myszy komórki oraz białka mózgu, wątroby i trzustki są także bardzo stare. Niektóre równie stare co neurony. Metoda wykorzystana w Salk może zostać użyta do zdobycia bezcennych informacji na temat funkcji niedzielących się komórek oraz o tym, jak z wiekiem tracą one kontrolę nad jakością i integralnością protein oraz innych ważnych struktur komórkowych. Byliśmy zaskoczeni faktem, że odnaleźliśmy struktury komórkowe równie stare co organizm. To sugeruje, że złożoność komórkowa jest większa niż sobie to wyobrażaliśmy, co niesie ze sobą intrygujące implikacje dotyczące naszej wiedzy o starzeniu się organów takich jak mózg, serce czy trzustka, mówi dyrektor ds. naukowych Salk Institute profesor Martin Hetzer. Większość neuronów w mózgu nie ulega w życiu dorosłym podziałowi, zatem doświadczają starzenia się i związanego z tym spadku jakości. Dotychczas jednak naukowcy mieli problemy z określeniem czasu życia komórek znajdujących się poza mózgiem. Biolodzy zadawali sobie pytanie, jak stare są komórki w organizmie. Istnieje powszechne przekonanie, że neurony są stare, ale inne komórki są stosunkowo młode, gdyż ulegają regeneracji, stwierdził Rafael Arrojo e Drigo, główny autor najnowszych badań. Uczeni wykorzystali neurony jako punkt odniesienia dla określenia wieku innych komórek. Wykorzystali technikę oznaczania izotopami w połączeniu z hybrydową metodą obrazowania MIMS-EM do wizualizacji i oceny komórek oraz białek w móżgu, trzustce i wątrobie u młodych i starych myszy. Na samym początku ocenie poddali wiek neuronów i, jak się spodziewali, stwierdzili, że są one w tym samym wieku co sam organizm. Później jednak ze zdumieniem zauważyli, że w nabłonku naczyń krwionośnych występują równie stare komórki. To zaś oznaczało, że poza neuronami istnieją komórki, które się nie dzielą i nie zostają zastąpione. Również w trzustce zauważono komórki w różnym wieku. Najbardziej zdziwiły naukowców wysepki Langerhansa, które są mieszaniną starych i młodych komórek. Niektóre z komórek beta były młode, ulegały podziałowi, inne zaś były równie stare co neurony. Z kolei komórki delta w ogóle się nie dzieliły i wszystkie były stare. Trzustka okazała się zdumiewającym przykładem mozaicyzmu wiekowego, czyli organem, w którym identyczne komórki są w bardzo różnym wieku. Jako, że wiemy, iż wątroba potrafi się regenerować nawet w dorosłości, naukowcy zwrócili uwagę również na ten organ. Ku ich zdumieniu okazało się, że większość komórek wątroby jest w tym samym wieku, co sama mysz, podczas gdy komórki układu krwionośnego wątroby są znacznie młodsze. Mozaicyzm wiekowy wątroby może prowadzić do opracowania nowych metod regeneracji tego organu. Dzięki nowej technice wizualizacji jesteśmy w stanie określić wiek komórek i ich złożoność molekularnych lepiej, niż wcześniej. To otwiera nowe drzwi w badaniu komórek, tkanek i organów oraz trapiących je chorób, stwierdził współautor badań profesor Mark Ellisman z Uniwersytetu Kalifornijskiego w San Diego. Na następnym etapie badań naukowcy chcą zbadać różnice w długości życia kwasów nukleinowych i lipidów. Spróbują też zrozumieć, jak mozaicyzm wiekowy wpływa na zdrowie i na choroby takie jak cukrzyca typu 2. « powrót do artykułu
  13. Związanym z wiekiem spadkom dopływu krwi do mózgu i pogorszeniu pamięci można zapobiegać za pomocą sirolimusa (rapamycyny), leku immunosupresyjnego stosowanego w transplantologii. Zespół z Centrum Nauk o Zdrowiu Uniwersytetu Teksańskiego w San Antonio zaczął aplikować szczurom sirolimus, gdy miały 19 miesięcy. Niewielką dawkę leku dodawano do jedzenia do momentu, aż gryzonie skończyły 34 miesiące i były w naprawdę podeszłym wieku. [...] Osobniki te osiągnęły sędziwy wiek, ale ich krążenie w mózgu było dokładnie takie samo, jak wtedy, gdy zaczynały terapię - opowiada prof. Veronica Galvan. Niepoddawane terapii szczury przechodziły zmiany obserwowane u starszych dorosłych: widoczne były spadki dopływu krwi do mózgu i pogorszenie pamięci. [...] Stare szczury leczone rapamycyną przypominały zaś szczury w średnim wieku z naszego studium - dodaje dr Candice Van Skike. Starzenie to najsilniejszy czynnik ryzyka demencji, ekscytująco jest więc stwierdzić, że rapamycyna, substancja znana z wydłużania życia, może też pomóc w zachowaniu integralności krążenia mózgowego i osiągów pamięciowych starszych dorosłych. Obecnie badamy bezpieczeństwo leku u osób z łagodnymi zaburzeniami poznawczymi (MCI) - wyjaśnia prof. Sudha Seshadri. Trzeba podkreślić, że przyglądano się zwykłemu starzeniu. Szczury doświadczały naturalnego spadku możliwości poznawczych, który nie był wymuszony żadnym procesem chorobowym - zaznacza Van Skike. Sirolimus należy do inhibitorów mTOR. Szlak mTOR odgrywa istotną rolę w kontroli cyklu komórkowego. Jego aktywacja bierze udział w patogenezie niektórych chorób, a także jak sądzą Amerykanie, napędza utratę synaps i przepływu krwi do mózgu w czasie starzenia. Z tego powodu długotrwałe podawanie rapamycyny szczurom skutkowało ograniczeniem deficytów uczenia i pamięci, zapobiegało zanikowi sprzężenia naczyniowo-nerwowego, a także korzystnie wpływało na perfuzję mózgową. « powrót do artykułu
  14. Długa ekspozycja na niebieskie światło, takie jak emitowane przez ekrany smartfonów i komputerów, może negatywnie wpływać na długość życia. Naukowcy z Oregon State University zauważyli, że niebieskie długości fali emitowane przez LED niszczą komórki w mózgu i siatkówce muszki owocówki. W artykule, opublikowanym na łamach Nature Aging and Mechanisms of Disease, czytamy, że muszki, które codziennie przez 12 godzin przebywały w niebieskim świetle i 12 godzin w ciemności, żyły znacznie krócej niż muszki, które były stale utrzymywane w ciemności lub stale w białym świetle z zablokowanym pasmem niebieskim. Ekspozycja dorosłych muszek na 12 godzin światła niebieskiego dziennie prowadziła do przyspieszenia starzenia się, powodując uszkodzenie komórek siatkówki, degenerację mózgu oraz upośledzała zdolności ruchowe. Uszkodzenie mózgu oraz funkcji motorycznych nie było związane z degeneracją siatkówki, gdyż zjawiska te obserwowano również u muszek, które genetycznie zmodyfikowano tak, by nie wykształcały się u nich oczy. Niebieskie światło prowadziło też do ekspresji genów stresu u starszych muszek, ale nie u młodych. To sugeruje, że zbiorcza ekspozycja na niebieskie światło działa jak czynnik stresowy w miarę starzenia się. Muszki owocówki to ważny organizm modelowy, gdyż wiele występujących u nich mechanizmów komórkowych i rozwojowych jest takich samych, jak u ludzi i innych zwierząt. Badania prowadził zespół pracujący pod kierunkiem profesor Jagi Giebultowicz, która specjalizuje się w badaniu zegara biologicznego. Zaskoczył nas fakt, że światło przyspiesza starzenie się muszek. Zbadaliśmy ekspresję niektórych genów u starych muszek i stwierdziliśmy, że gdy muszki są poddawane działaniu światła, to dochodzi do ekspresji genów odpowiedzialnych za ochronę organizmu. Wysunęliśmy hipotezę, że światło im szkodzi i postanowiliśmy znaleźć tego przyczynę. Okazało się, że o ile światło pozbawione pasma niebieskiego w niewielkim stopniu skraca życie, to niebieskie światło skraca je w sposób dramatyczny, mówi Giebultowicz. Wiadomo, że naturalne światło jest bardzo ważnym czynnikiem regulującym rytm dobowy i związane z nim procesy fizjologiczne jak aktywność fal mózgowych, produkcję hormonów, regenerację komórek. Istnieją też dowody sugerujące, że zwiększona ekspozycja na sztuczne światło jest czynnikiem zaburzającym sen i rytm całodobowy. Coraz większa obecność oświetlenia LED i ekranów powoduje, że w coraz większym stopniu jesteśmy narażeni na oddziaływanie światła niebieskiego, gdyż to właśnie spektrum jest w dużej mierze emitowane przez LED-y. Dotychczas jednak zjawiska tego nie zauważono, gdyż nawet w krajach rozwiniętych oświetlenie LED nie jest używane do wystarczająco długiego czasu, by skutki jego negatywnego oddziaływania były już widoczne w badaniach epidemiologicznych. Okazuje się, że muszki owocówki są mądrzejsze od ludzi. Gdy tylko mogą, unikają niebieskiego światła. Giebultowicz chce teraz sprawdzić, czy za unikanie niebieskiego światła jest odpowiedzialny ten sam szlak sygnałowy, który jest zaangażowany w długość życia owadów. « powrót do artykułu
  15. Naukowcy z Uniwersytetu Johnsa Hopkinsa wykorzystali pewną cechę układu odpornościowego, dzięki czemu otworzyli drogę dla użycia komórek do naprawienia mózgu. Podczas eksperymentów na myszach zwierzętom przeszczepiono komórki nerwowe bez konieczności długotrwałego podawania im środków immunosupresyjnych. W szczegółowym artykule, opublikowanym w piśmie Brain, czytamy, jak uczeni selektywnie ominęli mechanizmy obrony układu odpornościowego przeciwko obcym komórkom i wszczepili komórki, które przetrwały, rozwijały się i chroniły mózg na długo po zaprzestaniu podawania leków. Możliwość przeszczepienia zdrowych komórek do mózgu bez konieczności stosowania leków immunosupresyjnych może znacząco udoskonalić terapie leukodystrofii, grupy chorób istoty białej, w których następuje postępująca utrata mieliny. Jako, że choroby tego typu są zapoczątkowywane przez mutację powodującą dysfunkcję jednego typu komórek, są dobrym celem dla terapii, w czasie których przeszczepia się zdrowie komórki lub powoduje, by zmodyfikowane genetycznie komórki przeważyły nad komórkami chorymi, mówi Piotr Walczak, profesor radiologii na Wydziale Medycyny Uniwersytetu Johnsa Hopkinsa. Główną przeszkodą utrudniającą wykorzystanie zdrowych komórek do zastąpienia nimi chorych jest nasz układ odpornościowy, który atakuje obce komórki. To chroni nas przed bakteriami czy wirusami, ale znakomicie utrudnia przeszczepy. Dlatego też stosuje się leki immunosupresyjne, które tłumią reakcję układu odpornościowego. Obca tkanka nie jest odrzucana, ale pacjent – który musi przyjmować takie leki do końca życia – jest narażony na choroby zakaźne i inne skutki uboczne. Naukowcy z Johnsa Hopkinsa, chcąc powstrzymać układ odpornościowy bez konieczności stosowania leków immunosupresyjnych, wzięli na cel limfocyty T, a konkretnie na sygnałach, które wywołują atak limfocytów T. Te sygnały są potrzebne, by limfocyty T nie zaatakowały własnej zdrowej tkanki organizmu, do którego należą, wyjaśnia profesor Gerald Brandacher. Naukowcy postanowili tak wpłynąć na te sygnały, by za ich pomocą wytrenować układ immunologiczny, by na stałe uznał przeszczepione komórki za własne. W tym celu wykorzystali przeciwciała CTLA4-Ig oraz anty-CD154, które łączą się z powierzchnią limfocytów T, blokując sygnały zachęcające do ataku. Wcześniej taka kombinacja przeciwciał była z powodzeniem używana do zablokowania odrzucenia przeszczepionych organów u zwierząt, jednak nie testowano jej na komórkach mających za zadanie naprawę otoczki mielinowej w mózgu. Podczas serii eksperymentów Walczak i jego zespół wstrzykiwali to mózgów myszy chroniące je komórki gleju, które wytwarzają otoczkę mielinową wokół neuronów. Wszczepione komórki zmodyfikowano tak, by były fluorescencyjne, dzięki czemu naukowcy mogli je śledzić. Komórki wszczepiano trzem grupom myszy. Jedna, która była genetycznie zmodyfikowana tak, by nie wytwarzały się u niej komórki gleju, druga grupa składała się ze zdrowych myszy, a trzecia z myszy u których nie działał układ odpornościowy. Czwartą grupą była grupa kontrolna. Po sześciu dniach od przeszczepu obcych komórek zwierzętom przestano podawać przeciwciała i śledzono, co dzieje się z komórkami. W grupie kontrolnej obce komórki zostały zaatakowane natychmiast po przeszczepie i wszystkie zginęły w ciągu 21 dni. Natomiast u myszy, którym podawano przeciwciała, wysoki poziom przeszczepionych komórek wciąż utrzymywał się po 203 dniach od przeszczepu. To pokazuje, że komórki przetrwały, nawet na długo po zaprzestaniu leczenia. Naszym zdaniem oznacza to, że udało się selektywnie zablokować limfocyty T tak, by nie atakowały przeszczepionych komórek, mówi Shen Li, jeden z autorów badań. Kolejnym krokiem było zbadanie, czy przeszczepione komórki wykonały pracę, której od nich oczekiwano, zatem czy wytworzyły chroniącą neurony mielinę. W tym celu użyto rezonansu magnetycznego, by zbadać różnice pomiędzy myszami z komórkami gleju i ich pozbawionymi. Okazało się, że wszczepione komórki gleju kolonizowały te obszary mózgu, które powinny. To potwierdza, że przeszczepione komórki namnażały się i podjęły swoje normalne funkcjonowanie. Profesor Walczak podkreśla, że na razie uzyskano wstępne wyniki. Udowodniono, że komórki można przeszczepić i że kolonizują one te obszary mózgu, do których je wprowadzono. W przyszłości uczony wraz z zespołem chce wykorzystać inne dostępne metody dostarczania komórek do mózgu tak, by móc naprawiać go całościowo. « powrót do artykułu
  16. Codzienne wstrzykiwanie przez 5 tygodni myszom z chorobą Alzheimera (ChA) 2 krótkich peptydów znacząco poprawia pamięć zwierząt. Terapia ogranicza także zmiany typowe dla ChA: stan zapalny mózgu oraz akumulację beta-amyloidu. U myszy, które przechodziły terapię, zaobserwowaliśmy słabsze nagromadzenie blaszek beta-amyloidu oraz zmniejszenie zapalenia mózgu - podkreśla prof. Jack Jhamandas z Uniwersytetu Alberty. Odkrycie bazuje na wcześniejszych ustaleniach odnośnie do związku AC253, który może blokować toksyczne oddziaływania beta-amyloidu. Podczas badań ustalono, że AC253 blokuje przyłączanie beta-amyloidu do pewnych receptorów komórek mózgu. Okazało się jednak, że choć AC253 zapobiega akumulacji beta-amyloidu, przez szybki metabolizm w krwiobiegu jest problem z jego docieraniem do mózgu. Wskutek tego, by terapia AC253 była skuteczna, potrzeba dużych ilości tego związku, co jest niepraktyczne i może zwiększyć ryzyko rozwoju odpowiedzi immunologicznej na leczenie. Teoretycznie mogłoby pomóc przekształcenie AC253 z formy wstrzykiwalnej w doustną tabletkę, ale AC253 jest zbyt złożony, by problem dało się rozwiązać w ten sposób. Jhamandas wpadł więc na pomysł, by "przeciąć" AC253 na dwa fragmenty i sprawdzić, czy można stworzyć dwie mniejsze nici peptydowe, które blokowałyby beta-amyloid w podobny sposób jak AC253. Podczas serii testów na genetycznie zmodyfikowanych myszach Kanadyjczycy odkryli dwa krótsze fragmenty AC253, które replikowały prewencyjne i regeneracyjne właściwości większego peptydu. Następnie naukowcy wykorzystali modelowanie komputerowe i sztuczną inteligencję do prac nad drobnocząsteczkowym lekiem. Zespół koncentruje się na wytworzeniu zoptymalizowanej doustnej wersji, tak by mogły się zacząć testy kliniczne na ludziach. Jhamandas podkreśla, że leki drobnocząsteczkowe są preferowane, bo taniej je wyprodukować, a poza tym mogą one być zażywane doustnie i łatwiej dostają się do mózgu z krwią. « powrót do artykułu
  17. Japońscy naukowcy dokonali ważnych odkryć odnośnie do roli dipeptydu leucynowo-histydynowego (LH) w hamowaniu aktywacji mikrogleju i zaburzeń emocjonalnych związanych z depresją. LH występuje w fermentowanych pokarmach, np. w niebieskim serze czy nattō (potrawie z soi). Bazując na uzyskanych wynikach, autorzy artykułu z pisma Nutrients uważają, że produkty bogate w LH mogą być bezpieczną metodą podtrzymywania dobrego zdrowia psychicznego. Naukowcy podkreślają, że depresja jest jedną z najczęściej występujących chorób psychicznych. Pozostaje trudna do leczenia, bo część pacjentów nie reaguje na dostępne metody terapii farmakologiczno-psychologicznej. Nic więc dziwnego, że coraz większym zainteresowaniem cieszą się różne metody zapobiegania depresji, np. metody dietetyczne. Ostatnie badania wskazały na rolę spełnianą w depresji przez mikroglej. Mikroglej to komórki odpornościowe, które normalnie odpowiadają za "sprzątanie" (usunięcie pozostałości z miejsca uszkodzenia tkanki nerwowej). Po aktywacji mogą też jednak powodować stan zapalny. Warto dodać, że wiele badań sugerowało związek między depresją i zapaleniem mózgu, a podczas testów leki przeciwzapalne korzystnie wpływały na objawy depresji. Japończycy dodają, że naukowcy donosili także, że spożycie fermentowanych produktów wiąże się ze zmniejszonymi symptomami depresji; brakuje jednak danych nt. składników hamujących aktywację mikrogleju i depresję. W ramach najnowszego studium akademicy z Uniwersytetu w Kobe oceniali wpływ 336 dipeptydów na aktywację mikrogleju. Okazało się, że dipeptyd leucynowo-histydynowy to silny czynnik przeciwzapalny (LH hamował wydzielanie cytokin zapalnych z mikrogleju). Później, by określić wpływ LH na zapalenie mózgu i zaburzenia emocjonalne, przeprowadzono badania na myszach. Dipeptyd leucynowo-histydynowy znakowano radioaktywnymi izotopami. Dzięki temu można było śledzić jego przemieszczanie przez organizm. Japończycy potwierdzili, że po doustnym podaniu LH docierał do mózgu. Podczas eksperymentów akademicy podawali gryzoniom lipopolisacharyd, LPS (endotoksynę, która jest głównym składnikiem błony zewnętrznej ściany komórkowej bakterii Gram-ujemnych), który podwyższał poziom czynnika martwicy nowotworów (TNF-α) oraz IL-1β w korze czołowej i hipokampie. Ustalono, że wielokrotne doustne podanie LH zmniejszało poziom tych cytokin w mózgu. Można więc powiedzieć, że dipeptyd zahamował zapalenie mózgu. W kolejnym etapie badań naukowcy przyglądali się wpływowi dipeptydu leucynowo-histydynowego na związane z depresją zaburzenia emocjonalne. Najpierw myszy poddawano 6-min testowi zawieszania za ogon (ang. Tail Suspension Test, TST). Mierzono czas, w którym zwierzęta pozostawały nieruchome, bo to behawioralny wskaźnik depresji. LPS wywoływał stan zapalny mózgu i wydłużał czas znieruchomienia podczas podwieszania. Podawanie dipeptydu leucynowo-histydynowego zapobiegało jednak prodepresyjnemu wpływowi toksyny. Później Japończycy stosowali test R-SDS (od ang. repeated social defeat stress), w ramach którego przez kilka dni na 10 min dziennie myszy umieszczano w klatce z agresywnym osobnikiem. Gdy zwierzęta, które doświadczyły wielokrotnej porażki w konfrontacji społecznej (ang. social defeat), leczono LH, ich tendencja do unikania kontaktów była słabsza. Poza tym wykazywały one mniejszy lęk w teście z podniesionym labiryntem krzyżowym (ang. Elevated Plus-Maze). Ogólnie uzyskane wyniki pokazują, że u myszy wielokrotne podanie LH hamuje aktywację mikrogleju i zaburzenia emocjonalne związane z depresją. Japońscy akademicy mają nadzieję, że podobne rezultaty uda się powtórzyć u ludzi. « powrót do artykułu
  18. Nurkując, wąż morski wręgowiec pospolity (Hydrophis cyanocinctus) wykorzystuje złożoną sieć naczyń krwionośnych z pyska i szczytu głowy do wyekstrahowania z wody dodatkowego tlenu. Jako pierwsi opisaliśmy zmodyfikowaną głowową sieć naczyniową [ang. modified cephalic vascular network, MCVN], która w czasie zanurzenia zapewnia mózgowi tego węża morskiego uzupełniające dostawy tlenu - podkreśla dr Alessandro Palci z Flinders University. Zasadniczo odkryliśmy, że by oddychać pod wodą, wręgowiec wykorzystuje czubek swojej głowy jak skrzela. Choć MCVN jest strukturalnie zupełnie różna od skrzeli ryb i płazów, jej funkcja wydaje się dość zbliżona [...]. Splot naczyniowy ujawniono dzięki skanom z mikrotomografii, badaniom histologicznym i modelowaniu komputerowemu. MCVN leży tuż pod powierzchnią skóry o sporej powierzchni i składa się głównie z żył i drobnych zatok. Największe naczynia są zlokalizowane u podstawy skóry właściwej. Rozgałęziają się one dogrzbietowo w mniejsze naczynia (kapilary), które leżą bezpośrednio pod naskórkiem. Ku tyłowi MCVN zbiega się w jedną dużą żyłę (czasem sparowaną), penetrującą czaszkę przez wyjątkowo duży otwór ciemieniowy. Dzięki zmodyfikowanej głowowej sieci naczyniowej węże morskie mogą prawdopodobnie dłużej przebywać w zanurzeniu. Naukowcy spróbują to potwierdzić w czasie kolejnych badań. « powrót do artykułu
  19. Na MIT powstał sterowany za pomocą pola magnetycznego robot podobny do nici, który może przemieszczać się w wąskich poskręcanych naczyniach krwionośnych, np. w naczyniach w mózgu. W przyszłości tego typu roboty, po połączeniu z innymi dostępnymi technologiami, mogą zostać użyte do szybkiego leczenia zatorów cy uszkodzeń w mózgu. Udar mózgu jest obecnie piątą przyczyną śmierci i główną przyczyną niepełnosprawności w USA. Jeśli leczenie ostrego udaru rozpocznie się w ciągu pierwszych 90 minut, to szanse pacjenta na przeżycie znacząco rosną, mówi profesor Xuanhe Zhao. Jeśli mielibyśmy urządzenie, które pozwoliłoby na usunięcie zatoru w ciągu tej „złotej godziny”, moglibyśmy potencjalnie uniknąć uszkodzenia mózgu. Z taką właśnie nadzieją pracujemy. Obecnie w celu usunięcia zatoru w mózgu zwykle przeprowadza się procedurę polegającą na wprowadzeniu do tętnicy udowej cewnika, który dociera do mózgu. Później wykorzystywany jest jeszcze stent, za pomocą którego usuwa się skrzep. To długotrwała procedura, wymagająca obecności specjalnie przeszkolonego chirurga, który ponadto otrzymuje podczas niej dawkę promieniowania, służącego do obrazowania przebiegu operacji. To wymagający zabieg. Nie ma wystarczająco dużo chirurgów, którzy potrafią go wykonać. Szczególnie na terenach podmiejskich i wiejskich, mówi Yoonho Kim, jeden z autorów badań. Procedura wymaga ręcznego sterowania narzędziami, które wykonane są z metalu pokrytego polimerem. Ten z kolei może uszkadzać wyściółkę naczyń krwionośnych. Zespół z MIT postanowił pójść inną drogą. Naukowcy przez ostatnie lata pogłębiali swoją wiedzę na temat hydrożeli oraz produkowanych technologią druku 3D materiałach sterowanych za pomocą pola magnetycznego. Teraz połączyli swoją wiedzę i stworzyli sterowaną magnetycznie pokrytą hydrożelem nić, którą podczas testów przeprowadzili przez dokładny model 1:1 naczyń krwionośnych mózgu. Rdzeń robotycznej nici jest wykonany z nitinolu, czyli stopu niklu i tytanu. To materiał jednocześnie giętki i sprężysty. Został on pokryty specjalnym tuszem połączonym z nitinolem za pomocą cząstek magnetycznych, a całość pokryto hydrożelem, materiałem, który jest biokompatybilny, gładki, nie uszkadza naczyń krwionośnych i nie wpływa na reakcję leżących pod nim cząstek magnetycznych. Następnie za pomocą dużego magnesu wykazali, że są w stanie precyzyjnie sterować urządzeniem. Stworzyli też silikonowy model naczyń krwionośnych mózgu, który wypełnili płynem o podobnej lepkości co krew, a następnie przeprowadzili swoją robotyczną nić przez naczynia. Kim mówi, że ich nić można wyposażyć w różnego typu funkcje. Może ona np. dostarczać do miejsca zatoru leki rozpuszczające zakrzep czy rozbijać go za pomocą lasera. Na potrzeby badań uczeni zastąpili nitinol światłowodem i wykazali, że są taki robot również może dotrzeć do miejsca zakrzepu, a oni są w stanie aktywować laser na żądanie. Przeprowadzono też porównanie robotycznej nici pokrytej i niepokrytej hydrożelem. Okazało się, że żel ułatwiał przemieszczanie się i zapobiegał utknięciu nici w wąskich naczyniach. Jednym z wyzwań chirurgii jest nawigowanie przez złożoną sieć naczyń krwionośnych mózgu, które mogą mieć taką średnicę, iż dostępne cewniki nie są w stanie tam dotrzeć. Te badania dają nadzieję na rozwiązanie tego problemu i przeprowadzenie operacji bez konieczności otwierania czaszki, mówi profesor Kyujin Cho, z Narodowego Uniwersytetu Seulskiego. Kolejna dobra wiadomość jest taka, że skoro chirurg nie musi fizycznie popychać cewnika, gdyż nić jest sterowana za pomocą pola magnetycznego, nie musi on przebywać w sąsiedztwie źródła promieniowania wykorzystywanego do obrazowania przebiegu operacji. Już istniejące rozwiązania pozwalają na jednoczesne zastosowanie pola magnetycznego i fluoroskopii, więc lekarz może przebywać w innym pomieszczeniu, a nawet w innym mieście, kontrolując pole magnetyczne za pomocą dżojstika. Mamy nadzieję, że w kolejnym etapie badań będziemy mogli przetestować naszą technologię in vivo, cieszy się Kim.   « powrót do artykułu
  20. Pamięć pogarsza się z wiekiem, bo mózg przejmuje na siebie większe obciążenie związane z biciem serca. Z upływem czasu duże tętnice sztywnieją, co ostatecznie prowadzi do uszkodzenia naczyń kapilarnych w mózgu. Jak można się domyślić, nie służy to tkankom i sprawnemu przebiegowi procesów poznawczych. Proponujemy ciąg wydarzeń, który tłumaczy, w jaki sposób starzenie mózgu i naczyń są ze sobą powiązane - podkreśla prof. Lars Nyberg z Uniwersytetu w Umeå. Nyberg i Anders Wåhlin stworzyli model, który rozpoczyna się od bicia serca. Bazuje on na licznych badaniach z ostatnich 5 lat i wyjaśnia, czemu niektóre procesy poznawcze mogą być szczególnie zagrożone. Gdy ludzkie ciało się starzeje, duże tętnice, np. aorta, sztywnieją i tracą sporą część zdolności do absorbowania wzrostów ciśnienia generowanych w momencie wyrzutu krwi do tętnic. Pulsacyjne zmiany ciśnienia są więc przenoszone na mniejsze naczynia, między innymi w mózgu. Najdrobniejsze naczynia w mózgu, kapilary, są poddawane zwiększonemu stresowi powodującemu uszkodzenia komórek znajdujących w ścianach naczyń i w ich otoczeniu, a należy pamiętać, że są one ważne dla regulacji mikrokrążenia mózgowego. Jeśli najmniejsze naczynia są uszkodzone, ma to negatywny wpływ na zdolność zwiększania dostaw krwi do mózgu w sytuacji, kiedy mamy sobie poradzić z wymagającymi procesami poznawczymi. Wg Szwedów, szczególnie podatną strukturą jest hipokamp, czyli część mózgu odpowiedzialna m.in. z pamięć epizodyczną. Dzieje się tak, bo znajduje się on w pobliżu dużych naczyń i jest stosunkowo wcześnie wystawiany na wpływ zwiększonego obciążenia. « powrót do artykułu
  21. Naukowcy ze Szkoły Medycznej Uniwersytetu Johnsa Hopkinsa odkryli, że bilirubina, żółty barwnik będący produktem rozkładu hemu hemoglobiny i innych hemoprotein, chroni komórki mózgu przed stresem oksydacyjnym. Żółtaczka, czyli żółte zabarwienie skóry i białkówek oczu, jest spowodowana odkładaniem się w tkankach nadmiaru bilirubiny. Może ona być wynikiem 1) nadmiernego jej wytwarzania, np. hemolizy czy rozległych krwiaków, 2) zahamowania metabolizmu (zapalenia wątroby) lub 3) utrudnionego wydalania. Bez odpowiedzi pozostawało jednak pytanie o fizjologiczną rolę bilirubiny u zdrowych osób. Amerykanie podkreślają, że zainteresowanie działaniem bilirubiny w mózgu to pokłosie testów, podczas których sprawdzano, jakie tkanki w organizmie myszy ją wytwarzają. Zaskoczeni naukowcy stwierdzili, że stężenia bilirubiny w mózgu są bardzo wysokie. Bilirubina jest normalnie uznawana za produkt odpadowy, ale stwierdzony poziom produkcji oznacza zużycie dużych ilości energii, dlatego wydaje się dziwne, by bilirubina nie spełniała w mózgu żadnej funkcji - podkreśla dr Bindu Paul. W ramach najnowszego badania akademicy postanowili sprawdzić, po co w mózgu tyle bilirubiny. Autorzy artykułu z pisma Cell Chemical Biology dodają, że wcześniej sugerowano, że bilirubina może być ważnym przeciwutleniaczem. Ponieważ mózg jest bardzo aktywny metabolicznie i podatny na uszkodzenia oksydacyjne, zespół rozważał możliwość, że bilirubina chroni go przed stresem oksydacyjnym. W testach wykorzystano hodowane w laboratorium mysie neurony; zostały one genetycznie zmodyfikowane w taki sposób, by nie wytwarzać bilirubiny. Naukowcy wystawiali je na różne źródła stresu oksydacyjnego - wprowadzali do ich środowiska reaktywne formy tlenu. Okazało się, że w porównaniu do normalnych neuronów, zmodyfikowane komórki słabiej radziły sobie z tymi stresorami, a szczególnie z anionem ponadtlenkowym (O2-). Doktorant Chirag Vasavda podkreśla, że anion ponadtlenkowy jest ważną cząsteczką sygnałową, związaną z uczeniem czy pamięcią. Nadmierna aktywność mózgu prowadzi jednak do niekontrolowanych poziomów anionu, co może wyzwalać stres oksydacyjny i zapoczątkowywać ciąg reakcji uszkadzających ten narząd. Wstępne eksperymenty sugerowały, że bilirubina może odgrywać ważną rolę w kontrolowaniu stężenia anionu ponadtlenkowego w mózgu. Naukowcy podejrzewali, że zdolność bilirubiny do regulowania O2- ma związek z unikatową budową cząsteczki, która pozwala jej wychwytywać i neutralizować szkodliwe związki w sposób niedostępny dla innych przeciwutleniaczy, np. glutationu. By to sprawdzić, Amerykanie stymulowali aktywność mózgu u normalnych myszy i myszy pozbawionych bilirubiny. Stwierdzono, że w 2. grupie występowało ~2-3-krotnie większe uszkodzenie mózgu. Oznacza to, że bilirubina chroni mózg przed szkodliwym wpływem stresu oksydacyjnego. « powrót do artykułu
  22. Ostatnie badania wykazały, że osoby z otyłością i nadwagą są podatne na insulinooporność mózgu. Naukowcom z Uniwersytetu w Tybindze zależało więc na sprawdzeniu, czy ćwiczenia mogą poprawić insulinowrażliwość i funkcjonowanie poznawcze w tej grupie osób. Zespół dr Stephanie Kullman zebrał grupę 22 osób prowadzących siedzący tryb życia. Wszyscy mieli nadwagę bądź otyłość (średni wskaźnik masy ciała, BMI, wynosił 31). Ochotnicy wzięli udział w 8-tygodniowym programie treningowym, w którym uwzględniono m.in. jazdę na rowerze i marsz. Skanowanie mózgu miało miejsce przed i po interwencji. Funkcje mózgu mierzono przed i po donosowym podaniu insuliny. Naukowcy badali także nastrój, funkcje poznawcze i metabolizm obwodowy. Okazało się, że choć program ćwiczeń doprowadził jedynie do marginalnej utraty wagi, funkcje mózgu ważne dla metabolizmu znormalizowały się po zaledwie 8 tygodniach. Ćwiczenia zwiększyły np. miejscowy przepływ krwi w zależnych od dopaminy regionach kontroli motorycznej i procesów nagrody. Insulinowrażliwość wzrosła zwłaszcza w prążkowiu; reakcja mózgu osoby otyłej przypominała po 8 tygodniach odpowiedź człowieka z prawidłową masą ciała. Co ciekawe, im więcej ktoś stracił tłuszczu brzusznego, tym większa była poprawa funkcji mózgu. Ochotnicy wspominali też o poprawie nastroju i zdolności przełączania między zadaniami, co wskazuje na poprawę funkcji wykonawczych. « powrót do artykułu
  23. Obserwacje bonobo, które na bagnach w basenie Konga żerują na roślinach bogatych w jod, mogą wyjaśnić, w jaki sposób zaspokajane były potrzeby żywieniowe prehistorycznych ludzi z regionu. Jak podkreślają niemieccy badacze, jod ma krytyczne znaczenie dla rozwoju mózgu i zdolności poznawczych. Nasze wyniki mogą pomóc zrozumieć imigrację prehistorycznych ludzkich populacji do basenu Konga. Można się spodziewać, że bonobo jako gatunek mają podobne zapotrzebowanie na jod jak ludzie, dlatego nasze badanie jako pierwsze daje prawdopodobną odpowiedź na pytanie, w jaki sposób przedindustrialni ludzcy migranci mogli przeżyć w basenie Konga bez sztucznej suplementacji jodem - opowiada dr Gottfried Hohmann z Instytutu Antropologii Ewolucyjnej Maxa Plancka. Naukowcy obserwowali 2 społeczności bonobo z lasu LuiKotale w Parku Narodowym Salonga. Wykorzystano też dane nt. zawartości różnych pierwiastków, w tym jodu, w roślinach, również wodnych, zjadanych przez szympansy karłowate. Okazało się, że najwięcej jodu zawierają: 1) miąższ sitów (Juncus spp.) oraz 2) łodygi grzybieni egipskich (Nymphaea lotus). Potwierdziły to badania 3 niezależnych laboratoriów, prowadzone za pomocą różnych technik analitycznych. Scenariusze ewolucyjne sugerują, że główne osiągnięcia ludzkiej ewolucji są związane z zamieszkiwaniem w regionach przybrzeżnych, które zapewniają wyżywienie wyzwalające u hominidów rozwój mózgu. Wyniki naszego studium sugerują, że jedzenie roślin wodnych z bagien w leśnym habitacie mogło się przyczyniać do zaspokojenia zapotrzebowania na jod w populacjach hominidów przyzwyczajonych do diety środowisk przybrzeżnych. Hohmann dodaje, że zdobyte informacje pomagają stwierdzić, w jaki sposób małpy pozyskują jod z naturalnych źródeł pokarmowych w sytuacji, gdy wiele populacji zamieszkuje regiony ubogie w jod (basen Konga jest jednym z nich). Zaobserwowano, że inne małpy, w tym szympansy i goryle, jedzą rośliny wodne, co sugeruje, że one także mogą zapewniać sobie jod z tych źródeł. Autorzy raportu z pisma BMC Zoology podkreślają, że bez określenia statusu jodowego (stanu zaopatrzenia w jod) trudno powiedzieć, ile tego pierwiastka bonobo wchłaniają. Biorąc jednak pod uwagę stężenia stwierdzone w roślinach, można przypuszczać, że całkiem sporo. Należy też pamiętać, że stężenia odnotowane w lesie LuiKotale nie muszą być odzwierciedleniem całego basenu Konga. « powrót do artykułu
  24. Dimetylotryptamina (DMT), główny składnik psychodelicznego napoju ayahuasca, jest również naturalnie syntetyzowany w mózgu ssaków. Odkrycie zespołu z Michigan Medicine jest pierwszym krokiem w kierunku badania DMT w mózgach ludzi. Wyniki studium ukazały się w piśmie Scientific Reports. DMT nie występuje wyłącznie w roślinach [takich jak Mimosa hostilis, Diplopterys cabrerana czy Psychotria viridis]. Można ją wykryć także u ssaków - podkreśla dr Jimo Borjigin, która przed skoncentrowaniem się na psychodelikach zajmowała się szyszynką (wbrew pozorom, ma to spore znaczenie). W XVII w. Kartezjusz twierdził, że szyszynka jest siedzibą duszy. Nazywany przez niektórych trzecim okiem gruczoł długo był postrzegany jako tajemniczy, teraz wiadomo już jednak, że kontroluje produkcję melatoniny, która odgrywa ważną rolę w modulowaniu zegara biologicznego. Przeglądając Internet pod kątem prowadzonych zajęć, Borjigin zauważyła, że spora rzesza ludzi nadal jest przekonana co do mistycznych mocy szyszynki. Źródłem tego wydaje się dokument przedstawiający prace Ricka Strassmana ze Szkoły Medycznej Uniwersytetu Nowego Meksyku, który w połowie lat 90. XX w. przeprowadził pewien eksperyment. Ochotnikom podano wtedy dożylnie DMT i gdy psychodelik przestał już działać, przeprowadzono z nimi wywiady. W filmie Strassman stwierdzał, że wg niego, szyszynka produkuje i wydziela DMT. Powiedziałam do siebie: zaraz, zaraz, od lat zajmuję się szyszynką i nigdy o tym nie słyszałam. Zaintrygowana Borjigin skontaktowała się z Strassmanem i poprosiła o podanie źródeł/uzasadnienie tego stwierdzenia. Wtedy Strassman przyznał, że to tylko hipoteza. Niewiele myśląc, Borjigin zaproponowała współpracę i przetestowanie tego twierdzenia. Gdyby DMT była endogenną monoaminą, można by ją wykryć za pomocą fluorometru. Naukowcy pobrali próbkę z szyszynki szczura i potwierdzili obecność DMT. Wyniki tego badania opublikowano w 2013 r. Borjigin nie była jednak usatysfakcjonowana. Musiała się dowiedzieć, jak i gdzie DMT jest syntetyzowana. Jej student Jon Dean przeprowadził eksperyment z wykorzystaniem fluorescencyjnej hybrydyzacji in situ, FISH (od ang. fluorescent in situ hybridization), gdzie za pomocą fluorescencyjnych sond DNA w materiale genetycznym wycinka szuka się określonej sekwencji DNA. Dzięki tej technice znaleźliśmy neurony z 2 enzymami koniecznymi do produkcji DMT. Występowały one nie tylko w szyszynce, ale i w innych częściach mózgu, w tym w korze nowej i hipokampie, które odpowiadają m.in. za uczenie i pamięć. Zespół Borjigin zademonstrował także, że poziom DMT rośnie u niektórych szczurów doświadczających zatrzymania krążenia. W tym miejscu warto przypomnieć, że w artykule opublikowanym w sierpniu zeszłego roku naukowcy z Imperial College London napisali, że DMT stymuluje w mózgu zjawiska, które przypominają te związane z doświadczeniami z pogranicza śmierci (ang. near-death experiences, NDE). Amerykanie chcą dalej badać funkcję naturalnego DMT. Nie mamy pojęcia, za co odpowiada. Odkryliśmy tylko neurony, które ją wytwarzają i wiemy, że stężenie produkowanej DMT przypomina poziomy innych neuroprzekaźników monoaminowych. « powrót do artykułu
  25. Przeciętna osoba zjada obecnie znacznie więcej kalorii, niż jadł przeciętny człowiek przed 50 laty. Różnica jest olbrzymia, taka, jakbyśmy jedli dodatkowego burgera, frytki i napój gazowany. To zaś ma katastrofalny wpływ nie tylko na naszą tkankę tłuszczową, ale również na nasze... mózgi. Profesor Nicolas Cherbuin z Australia National University donosi na łamach Frontiers in Neuroendocrinology, że stan zdrowia mózgu zaczyna pogarszać się znacznie wcześniej niż sądzono, a dzieje się tak w dużej mierze przez niezdrowy tryb życia. Ludzie szkodzą swojemu mózgowi przez niezdrową fastfoodową dietę oraz zbyt małą aktywność ruchową, stwierdza uczony. Znaleźliśmy silne dowody wskazujące na to, że złe odżywianie się i brak ćwiczeń fizycznych przez dłuższy czas znacząco zwiększa nie tylko ryzyko cukrzycy typu 2. ale również powoduje znaczne upośledzenie funkcjonowania mózgu, prowadząc do jego kurczenia się i demencji, dodaje. Naukowcy donoszą, że około 30% dorosłej populacji ma nadwagę lub cierpi na otyłość, a ponad 10% wszystkich dorosłych będzie do roku 2030 cierpiało na cukrzycę typu 2. Związek pomiędzy cukrzycą typu 2. a szybkim upośledzeniem funkcji mózgu jest udowodniony. Jednak nasza praca pokazuje, że neurodegeneracja rozpoczyna się znacznie wcześniej niż sądziliśmy. I widzimy jasny związek pomiędzy niezdrowym trybem życia a upośledzeniem funkcjonowania mózgu. Gdy zaś człowiek osiągnie wiek średni uszkodzenia te są niemal nieodwracalne. Zachęcamy więc wszystkich, by zdrowo się odżywiali i trzymali prawidłową wagę, najlepiej już w dzieciństwie, a na pewno we wczesnej dorosłości, apeluje Cherbuin. Burger, frytki i napój gazowany to około 600 kilokalorii. O tyle więcej zjadamy od przeciętnego człowieka żyjącego w latach 70. ubiegłego wieku. Ten dodatkowy zastrzyk kalorii oznacza, że wiele osób niezdrowo się odżywia. Ludzie jedzą zbyt dużo niezdrowego jedzenia, szczególnie fast-foodów, zauważa uczony. Dodaje, że obecne zalecenia dotyczące zdrowia mózgu nie sprawdzają się, gdyż ludzie słyszą, że o mózg powinni zacząć dbać po 60. roku życia. Tymczasem jest już zbyt późno. Wiele osób, które cierpi na demencję i inne oznaki dysfunkcji poznawczych, w tym na kurczenie się mózgu, pracowało na to przez całe życie, niezdrowo się odżywiając i utrzymując zbyt niski poziom aktywności fizycznej. Jeśli chcemy uniknąć problemów poznawczych, tych, których da się uniknąć, powinniśmy już w młodości odżywiać się zdrowo i się ruszać, stwierdza naukowiec. Badania zespołu Cherbuina to metaanaliza około 200 międzynarodowych badań dotyczących diety, mózgu i starzenia się. « powrót do artykułu
×
×
  • Create New...