Search the Community
Showing results for tags ' mięśnie'.
Found 10 results
-
Naukowcy z kilku brytyjskich uniwersytetów szczegółowo zbadali strongmana Eddiego Halla – człowieka, który w martwym ciągu podniósł 500 kg. – i ze zdumieniem stwierdzili, że w podnoszeniu tak wielkich ciężarów bardzo ważną rolę odgrywają mięśnie, którym dotychczas nie przypisywano tak dużego znaczenia. Eddie został poddany serii testów siłowych oraz skanowaniu za pomocą rezonansu magnetycznego, a jego strukturę mięśni i ścięgien porównano z danymi innych ludzi, zarówno trenujących sporty, jak i nietrenujących. Badania wykazały, że masa mięśniowa dolnej części ciała Eddiego była o 96% większa, niż masa mięśniowa przeciętnego niewytrenowanego mężczyzny. Największe różnice – od 120 do 202 procent – zauważono w mięśniach stóp odpowiedzialnych m.in. za rozciąganie palców oraz stabilizację ścięgien pod obciążeniem oraz grupie mięśni stabilizujących miednicę i uda. Duża różnica masy, sięgająca 100%, występowała też w mięśniu czworogłowym uda. Wszystkie wymienione mięśnie były kluczowe dla zadań, jakie wykonują strongmani, takich jak podnoszenie, noszenie i ciągnięcie ciężarów. Inne mięśnie okazały się znacznie mniej istotne. Na przykład mięśnie odpowiedzialne za zginanie stawu biodrowego były u Eddiego „zaledwie” o 23–65 procent większe niż u przeciętnego nietrenującego mężczyzny. A więzadło rzepki było o 30% grubsze, mimo że jest ono połączone z grubszym o 100% mięśniem czworogłowym uda. Największą jednak niespodziankę sprawiły mięśnie stabilizujące miednicę i uda. Spodziewaliśmy się, że u Eddiego – strongmana i rekordzisty w martwym ciągu – najbardziej rozwinięte będą mięśnie odpowiedzialne za zginanie kolan i stawów biodrowych. Miał je dobrze rozwinięte, ale zaskoczyło nas, że najbardziej rozwinięte miał mięśnie stabilizujące miednicę i uda: mięsień krawiecki, mięsień smukły i mięsień półścięgnisty. To wskazuje, że mięśnie te odgrywają większą rolę w podnoszeniu i noszeniu ciężarów, niż dotychczas przypuszczaliśmy, mówi profesor Jonathan Folland. A doktor Tom Balshaw dodaje, że zrozumienie siły i budowy mięśni ważne jest zarówno dla sportowców, jak i dla zdrowego starzenia się. Wciąż jednak mamy ograniczoną wiedzę dotyczącą ludzi o ekstremalnej sile, stwierdza uczony. Ze szczegółami badań można zapoznać się na łamach Journal of Applied Physiology. « powrót do artykułu
-
- Eddie Hall
- strongman
-
(and 3 more)
Tagged with:
-
Cyfrowa rekonstrukcja mięśni słynnej Lucy, przedstawicielki gatunku Australopithecus afarensis, pokazuje, że potężna mięśnie nóg i miednicy były przystosowane do chodzenia pod drzewach, ale mięśnie kolan pozwalały na przyjęcie w pełni wyprostowanej postawy. Lucy żyła na terenie dzisiejszej Etiopii przed ponad 3 milionami lat. Jej skamieniałe szczątki odkryto w latach 70. ubiegłego wieku. Teraz doktor Ashleigh Wiseman z Wydziału Archeologii Cambridge University wykonała trójwymiarową rekonstrukcję jej mięśni. Lucy to przykład jednego z najlepiej zachowanych szkieletów rodzaju Australopithecus. Doktor Wiseman wykorzystała opublikowane ostatnio dane i była w stanie odtworzyć po 36 mięśni w każdej z nóg Lucy. Symulacja wykazała, że australopitek był znacznie mocnej umięśniony niż człowiek współczesny. Na przykład główne mięśnie w łydkach i udach były dwukrotnie większe niż u H. sapiens. My mamy znacznie większy stosunek tłuszczu do mięśni. U człowieka współczesnego mięśnie stanowią 50% masy uda. U Lucy było to nawet 74%. Paleoantropolodzy sprzeczają się, jak Lucy chodziła. Według jednych, jej sposób poruszania się przypominał kaczy chód, jaki widzimy u szympansów, gdy chodzą na dwóch nogach. Zdaniem innych, jej ruchy były bardziej podobne do naszego chodu w pozycji całkowicie wyprostowanej. W ciągu ostatnich 20 lat przewagę zaczęła zdobywać ta druga opinia. Badania Wiseman to kolejny argument za w pełni wyprostowaną Lucy. Wynika z nich bowiem, że mięśnie prostowniki stawu kolanowego, do których należą mięsień czworogłowy uda, naprężacz powięzi szerokiej uda, krawiecki i stawowy kolana, i dźwignia jaką zapewniały, pozwalały na wyprostowanie kolana w takim samym stopniu jak u zdrowego H. sapiens. Możemy stwierdzić zdolność Lucy do poruszania się w pozycji wyprostowanej tylko wówczas, jeśli zrekonstruujemy mięśnie i sposób ich pracy. Obecnie jesteśmy jedynym zwierzęciem, które jest w stanie stać w pozycji wyprostowanej z wyprostowanymi kolanami. Budowa mięśni Lucy wskazuje, że poruszała się w pozycji wyprostowanej równie sprawnie jak my. Także wówczas, gdy przebywała na drzewie. Lucy prawdopodobnie poruszała się w sposób, jakiego obecnie nie obserwujemy u żadnego żyjącego gatunku, mówi Wiseman. Australopithecus afarensis żył na rozległych sawannach oraz w gęstych lasach. Wykonana przez Wiseman rekonstrukcja pokazuje, że w obu tych środowiskach poruszał się równie sprawnie. Rekonstrukcja mięśni była już wykorzystywana na przykład do oceny prędkości biegu gatunku Tyrannosaurus rex. Wykorzystując podobną technikę do badania naszych przodków możemy odkryć całe spektrum sposobów poruszania się, które napędzały naszą ewolucję. W tym i te zdolności, które utraciliśmy, mówi Wiseman. « powrót do artykułu
-
- Lucy
- australopitek
- (and 4 more)
-
W jaki sposób mózg decyduje, jak najlepiej poruszać naszym ciałem? Okazuje się, że dla układu nerwowego to spore wyzwanie, gdyż mamy setki mięśni, które muszą być koordynowane setki razy na sekundę, a liczba możliwych wzorców koordynacji, z których musi wybierać mózg, jest większa niż liczba ruchów na szachownicy, mówi profesor Max Donelan z kanadyjskiego Simon Fraser University. Donelan i jego zespół badali, w jaki sposób ciało adaptuje się d nowych ruchów. A ich badania mogą mieć znaczenie zarówno dla treningu sportowców, jak i rehabilitacji niepełnosprawnych. Naukowcy zauważają, że bardzo często doświadczamy zmian zarówno w naszym organizmie, jak i w środowisku zewnętrznym. Być może lubisz biegać w niedzielę rano, Twoje mięśnie będą tym bardziej zmęczone im dłuższy dystans przebiegniesz. A może w czasie wakacji biegasz po plaży, gdzie podłoże jest luźne i nierówne w porównaniu z chodnikiem, po którym codziennie chodzisz. Od dawna jesteśmy w stanie rejestrować zmiany w sposobie poruszania się, ale dotychczas chyba nie docenialiśmy, w jaki sposób nasz organizm do takich zmian się adaptuje, stwierdza Donelan. Chcąc przyjrzeć się tym zmianom kanadyjscy neurolodzy podjęli współpracę z inżynierami z Uniwersytetu Stanforda, którzy specjalizują się w tworzeniu egzoszkieletów. Badania kanadyjsko-amerykańskiego zespołu przyniosły bardzo interesujące wyniki. Okazało się, że system nerwowy, ucząc się wzorców koordynacji nowych ruchów, najpierw rozważa i sprawdza wiele różnych wzorców. Stwierdzono to, mierząc zmienność zarówno samego ruchu ciała jako takiego, jak i ruchów poszczególnych mięśni i stawów. W miarę, jak układ nerwowy adaptuje się do nowego ruchu, udoskonala go, a jednocześnie zmniejsza zmienność. Naukowcy zauważyli, że gdy już nasz organizm nauczy się nowego sposobu poruszania się, wydatek energetyczny na ten ruch spada aż o 25%. Z analiz wynika również, że organizm odnosi korzyści zarówno z analizy dużej liczby możliwych wzorców ruchu, jak i ze zmniejszania z czasem liczby analizowanych wzorców. Zawężanie poszukiwań do najbardziej efektywnych wzorców pozwala bowiem na zaoszczędzenie energii. Zrozumienie, w jaki sposób mózg szuka najlepszych sposobów poruszania ciałem jest niezwykle ważne zarówno dla ultramaratończyka, przygotowującego się do biegu w trudnym terenie, jak i dla pacjenta w trakcie rehabilitacji po uszkodzeniu rdzenia kręgowego czy wylewu. Na przykład trener, który będzie wiedział, w którym momencie organizm jego podopiecznego zaadaptował się do nowego programu treningowego, będzie wiedział, kiedy można wdrożyć kolejne nowe elementy. A twórcy egzoszkieletów pomagających w rehabilitacji dowiedzą się, w którym momencie można przed pacjentem postawić nowe zadania, bo dobrze opanował wcześniejsze. « powrót do artykułu
-
Naukowcy z Duke University zauważyli, że ćwiczące ludzkie mięśnie posiadają wrodzoną zdolność uzdrawiania stanu zapalnego. Celem badań było sprawdzenie, jak na siłę i strukturę mięśni szkieletowych wpływa interferon gamma, którego poziom jest zwiększony przy stanie zapalnym. Już wcześniejsze badania prowadzone na ludziach i zwierzętach pokazały, że ćwiczenia fizyczne pomagają zapobiegać negatywnym skutkom stanu zapalnego,jednak nie było wiadomo, jaką rolę w tym procesie odgrywają włókna mięśniowe, ani jak przebiega ich interakcja z molekułami takimi jak interferon gamma. W trakcie aktywności fizycznej w naszych organizmach zachodzi wiele procesów. Trudno jest wyizolować te systemy i komórki, by stwierdzić, co dokładnie robią w ciele ćwiczącej osoby, mówi Nenad Bursac, profesor inżynierii biomedycznej z Duke. Wykorzystujemy podczas badań modułową platformę mięśniową, co oznacza, że możemy mieszać i badać różne typy tkanek i komórek. W tym przypadku odkryliśmy, że podczas ćwiczeń fizycznych komórki mięśniowe na własną rękę prowadzą działania przeciwzapalne. Krótkoterminowa czyli ostra reakcja zapalna, to fizjologiczna odpowiedź na infekcję lub zranienie. To odpowiedź układu odpornościowego, która oczyszcza organizm z pozostałości uszkodzonych komórek i pozwala na odbudowę mięśni. Jednak układ odpornościowy może zadziałać nieprawidłowo i reakcja zapalna może się rozszerzyć lub też znacząco wydłużyć. To zaś prowadzi do uszkodzenia i osłabienia tkanek. Wiele chorób, takich jak reumatoidalne zapalenie stawów czy sarkopenia dochodzi do utraty masy mięśniowej. Wiemy, że chroniczne choroby zapalne indukują atrofię mięśni. Chcieliśmy sprawdzić, czy ten sam proces będzie przebiegał w mięśniach hodowanych w laboratorium. Nie tylko potwierdziliśmy, że interferon gamma działa przede wszystkim za pośrednictwem specyficznego szlaku sygnałowego, ale wykazaliśmy, że komórki ćwiczących mięśni mogą bezpośrednio przeciwdziałać prozapalnemu szlakowi sygnałowemu, niezależnie od obecności innych typów tkanek czy komórek, mówi Zhaowei Chen, główny autor artykułu. Laboratorium Bursaca jest pierwszym, w którym udało się wyhodować kurczące się funkcjonalne ludzkie mięśnie szkieletowe na szalce Petriego. Naukowcy wciąż udoskonalają swoją platformę badawczą. Na potrzeby obecnych badań wyhodowane mięśnie poddano na 7 dni działaniu wysokich stężeń interferonu gamma. Jak się spodziewano, doszło do osłabienia mięśni i utraty ich masy. Następnie ponownie mięśnie poddano działaniu interferonu gamma, ale tym razem mięśnie stymulowano prądem, co powodowało, że się kurczyły, jak przy ćwiczeniach fizycznych. Naukowcy ku swojemu zdumieniu zauważyli, że w ogóle nie doszło do utraty masy mięśniowej ani ich osłabienia. To pierwsze badania, w czasie których przyjrzeliśmy się bezpośrednim i specyficznym skutkom oddziaływania interferonu gamma na funkcjonowanie ludzkich mięśni szkieletowych i wykazaliśmy istnienie nowego autonomicznego mechanizmu przeciwzapalnego w ćwiczących mięśniach, w który to mechanizm zaangażowany jest szlak sygnałowy JAK/STAT1, podsumowują autorzy badań. Podczas ćwiczeń komórki mięśniowe bezpośrednio przeciwdziałają sygnałom prozapalnym indukowanym przez interferon gamma. Tego się nie spodziewaliśmy, dodaje Bursac. « powrót do artykułu
-
- interferon gamma
- ćwiecznia
-
(and 2 more)
Tagged with:
-
Naukowcy ze Szkoły Medycznej Uniwersytetu Waszyngtona w St. Louis odkryli nową mięśniową chorobę autoimmunologiczną. Cechują ją silny ból mięśni i symetryczne proksymalne osłabienie kończyn górnych i dolnych o nagłym początku. Zespół można łatwo pomylić z chorobami mięśniowymi wymagającymi innego leczenia. W ciągu ponad 20 lat zaobserwowaliśmy tylko 4 pacjentów, jest to więc bardzo rzadka przypadłość. Nigdy wcześniej jej nie opisano, a wydaje się, że poddaje się terapii, ważne więc, by lekarze mieli tego świadomość - podkreśla dr Alan Pestronk. W 1996 r. Pestronk, który szefuje uniwersyteckiej Klinice Chorób Nerwowo-Mięśniowych, oglądał pod mikroskopem wycinki mięśni pacjenta z bólem i słabością mięśni. Zauważył wtedy coś dziwnego; histiocyty, które zwykle zajmują się martwymi komórkami, otaczały uszkodzone włókna mięśniowe (zaobserwował nekrozę miofibryli). To było na tyle dziwne, że zapadło mi w pamięć. Zacząłem szukać podobnych przypadków. W ciągu kolejnych 22 lat natknął się jeszcze na 3 pacjentów, hospitalizowanych z powodu bólu i słabości mięśni, u których biopsje pokazały rozsiany rozkład mięśni z towarzyszącymi histiocytami. Chorobę nazwano więc immunologiczną miopatią związaną z dużymi histiocytami (ang. large-histiocyte-related immune myopathy, LHIM). Poza tym pacjenci mieli różne zaburzenia układowe. U wszystkich stwierdzono anemię. Poza tym stwierdzono po jednym przypadku choroby wątroby, przerzutującego nowotworu, kardiomiopatii, limfohistiocytozy hemofagocytarnej oraz zespołu Raynauda. Istnieje kilka immunologicznych chorób mięśniowych, w przypadku których pod mikroskopem widać rozpad miofibryli. Każda z nich ma inne rokowania i wymaga innego leczenia. By wdrożyć odpowiednią terapię, lekarze muszą [więc] rozumieć immunologiczną naturę tych zaburzeń. Jak podkreślają autorzy publikacji z pisma Neurology, stan 3 z 4 pacjentów z LHIM poprawił się w ciągu 3 miesięcy od terapii immunomodulującej (m.in. za pomocą sterydów). Od tego czasu nie nastąpiła wznowa. Gdy pojawiły się objawy mięśniowe, czwarta osoba przechodziła leczenie onkologiczne. Wkrótce potem zmarła. Amerykanie dodają, że LHIM można pomylić z rabdomiolizą; zespół powoduje bowiem podobne zmiany chemiczne we krwi (w surowicy występuje bardzo wysoki poziom kinazy kreatynowej). Stan osób z rabdomiolizą poprawia się jednak zazwyczaj samoczynnie (leczenie jest objawowe), a przy LHIM pomagają leki przeciwzapalne. « powrót do artykułu
-
Gnu potrafią migrować w upale, nie pijąc nawet do 5 dni. Okazuje się, że zawdzięczają to m.in. superwydajnym mięśniom. Kiedyś uważano, że gnu zatrzymują się każdego dnia u wodopoju. Gdy okazało się, że to nieprawda, brytyjsko-botswański zespół postanowił sprawdzić, jak antylopy, które wędrując, pokonują niekiedy 1900 km, tego dokonują. Naukowcy znieczulili kilka osobników i pobrali próbki mięśni. Później działano na nie prądem, mierząc ilość wydzielanego ciepła. Ustalono, że ok. 62,6% energii zużywanej przez mięśnie przeznaczano na ruch, a tylko 1/3 ulegała stracie w postaci ciepła. Autorzy publikacji z pisma Nature podkreślają, że wyższą wydajność osiągnęły tylko żółwie. Większość zwierząt ma o wiele mniej wydajne mięśnie, a średnia wynosi tylko 25%. Dzięki superwydajnym mięśniom można pokonywać bez picia dłuższe trasy (mniejsza utrata ciepła oznacza, że do chłodzenia potrzeba mniej wody). « powrót do artykułu
-
Czemu spalamy tłuszcz i rozgrzewamy się, ćwicząc czy mając dreszcze? Amerykanie zauważyli właśnie, że sarkolipina, peptyd występujący wyłącznie w mięśniach, zwiększa wydatkowanie energii i utlenianie tłuszczów. Zespół z Sanford Burnham Prebys Medical Discovery Institute (SBP) wykazał, że oddziałując z transporterem jonów wapnia SERCA, sarkolipina zmusza mięśnie do wykorzystywania większych ilości energii do przemieszczania Ca2+. Przez to mitochondria produkują więcej energii, spalając więcej tłuszczów. To badanie wskazuje na bezpośrednie związki między sarkolipiną i metabolizmem energii - opowiada dr Muthu Periasamy. Wydatkowanie energii w mięśniach zwiększają 2 czynniki: ćwiczenia i chłód. Gdy zadziała któryś z nich, komórki mięśni nasilają obieg wapnia i zatrudniają SERCA do transportowania kationów wapnia do siateczki sarkoplazmatycznej, czyli retikulum endoplazmatycznego miocytów (gromadzi ono jony wapnia, które są potrzebne do skurczu mięśni). Proces ten jest bardzo energochłonny, gdyż by przenieść wapń, SERCA potrzebuje ATP. Gdy sarkolipina wiąże się z SERCA, energia (ATP) jest nadal zużywana, ale nie ma już mowy o efektywnym transporcie kationów wapnia. Efekt jest taki, że powstaje więcej ciepła, a spalanie tłuszczów ulega nasileniu. Gdy ćwiczymy, mięśnie szkieletowe generują mitochondria [zachodzi ich biogeneza] i utleniają więcej tłuszczów. Brakującym elementem jest sarkolipina, która jest "werbowana" w czasie ćwiczeń bądź ekspozycji na zimno i która zmienia obieg wapnia, by zwiększyć biogenezę mitochondriów i spalanie tłuszczów - wyjaśnia Periasamy. Podczas eksperymentów autorzy publikacji z pisma Cell Reports zauważyli, że myszy pozbawione sarkolipiny mają mniej mitochondriów i problemy ze spalaniem tłuszczów; w mięśniach zachodziła ich akumulacja (lipotoksyczność), a to powszechna przyczyna insulinooporności miocytów. Gryzonie z większą ilością sarkolipiny miały za to więcej mitochondriów i wykazywały nasilone utlenianie tłuszczów. Gdy myszy ze zwiększoną ilością sarkolipiny karmiliśmy wysokotłuszczową paszą, nie akumulowały tłuszczów w mięśniach i nie rozwijały insulinooporności czy cukrzycy typu 2. - podkreśla dr Santosh Maurya. Czy można zatem wykorzystać sarkolipinę do terapii osób z otyłością i/lub cukrzycą typu 2.? Naukowcy wykazali już, że skrajna otyłość pogarsza działanie sarkolipiny. Być może istnieje okno terapeutyczne, kiedy da się zaangażować sarkolipinę do spalania większej ilości energii. Taka strategia powinna pomóc osobom z zaburzeniami metabolicznymi, a także tym, którym trudno jest ćwiczyć. Mamy więcej pomp SERCA, niż potrzebujemy. Niektóre są związane z sarkolipiną, ale w danym momencie lipid wiąże się tylko z ok. 25% transporterów. Przydałyby się więc leki, które zwiększą skuteczność tego procesu. « powrót do artykułu
-
- sarkolipina
- mięśnie
- (and 8 more)
-
Używanie nóg, szczególnie w ramach treningu obciążeniowego, wysyła do mózgu sygnały, które są kluczowe dla powstawania zdrowych neuronów. Nasze badanie stanowi poparcie dla twierdzenia, że osoby, które nie mogą wykonywać ćwiczeń obciążeniowych, np. obłożnie chore lub astronauci w czasie długich misji, nie tylko tracą masę mięśniową. Chemia ich organizmu zmienia się na poziomie komórkowym, co wiąże się z negatywnymi oddziaływaniami także na układ nerwowy - wyjaśnia dr Rafaella Adami z Uniwersytetu w Mediolanie. Podczas eksperymentu przez 28 dni część myszy mogła korzystać z tylnych łap tylko w ograniczonym zakresie. Gryzonie mogły jednak nadal normalnie jeść czy utrzymywać higienę. Nie zaobserwowano u nich oznak stresu. Pod koniec testów naukowcy przyglądali się strefie okołokomorowej komór bocznych (ang. subventricular zone, SVZ). Rezydują tu nerwowe komórki macierzyste (ang. neural stem cells, NSC), które mogą się przekształcać w neurony, komórki gleju, a także formujące osłonki mielinowe oligodendrocyty. Okazało się, że ograniczanie aktywności fizycznej zmniejszało liczbę NSC nawet o 70% (porównań dokonywano do grupy kontrolnej, która swobodnie zażywała ruchu). Oprócz tego ani neurony, ani oligodendrocyty w pełni nie dojrzewały. Wszystko wskazuje więc na to, że używanie nóg wiąże się z wysyłaniem do mózgu sygnałów, które są kluczowe dla produkcji zdrowych neuronów. To nie przypadek, że jesteśmy stworzeni do aktywności: chodzenia, biegania czy wykorzystywania mięśni nóg do podnoszenia różnych obiektów. Zdrowie neurologiczne nie przypomina jednokierunkowej drogi, gdzie tylko mózg nakazuje mięśniom pracę - podkreśla Adami. Gdy autorzy publikacji z pisma Frontiers in Neuroscience skupili się na poszczególnych komórkach, stwierdzili, że ograniczanie ćwiczeń zmniejsza ilość tlenu w organizmie, co tworzy środowisko beztlenowe i zmienia metabolizm. Ograniczanie ruchu wydaje się też wpływać na 2 geny, z których jeden - CDK5Rap1 - ma duże znaczenie dla zdrowia mitochondriów. Włosi podkreślają, że uzyskane wyniki rzucają nowe światło na szereg kwestii, w tym na takie choroby, jak stwardnienie rozsiane czy rdzeniowy zanik mięśni. Chorobami neurologicznymi interesuję się od 2004 r. Zawsze zadawałem sobie pytanie: czy skutki tych chorób wynikają wyłącznie z uszkodzeń rdzenia i mutacji genetycznych [...], czy znaczenie ma też ograniczona zdolność poruszania - opowiada dr Daniele Bottai, również z Uniwersytetu w Mediolanie. Można by powiedzieć, że jesteśmy literalnie uziemieni na Ziemi. To coś, co dopiero zaczynamy rozumieć [i eksplorować] - dodaje. « powrót do artykułu
-
U osób, które chrapią, występują rozległe uszkodzenia tkanki nerwów i mięśni podniebienia miękkiego. To z kolei może powodować problemy z przełykaniem i przyczyniać się do rozwoju bezdechu sennego. Nie wiadomo, czemu u niektórych rozwija się bezdech. Za istotne czynniki uważa się otyłość, małe gardło, choroby neurologiczne oraz zaburzenia hormonalne. Zdarza się jednak, że bezdech występuje u osób, które nie spełniają żadnego z tych kryteriów. Praca doktorska Farhana Shaha z Uniwersytetu w Umeå sugeruje, że brakującym elementem układanki mogą być właśnie uszkodzenia tkanki nerwów i mięśni podniebienia miękkiego. Urazy nerwów i mięśni wydają się przyczyniać do zapadania górnych dróg oddechowych w czasie snu. Uszkodzenia są najprawdopodobniej skutkiem nawracających drgań podczas chrapania [...]. Zespół Shaha badał 8 pacjentów, którzy chrapali od wielu lat i 14 chrapiących osób z bezdechem sennym. Wszystkich porównywano do kontrolnej grupy 18 niechrapiących. Ochotników monitorowano podczas snu, by odnotować przypadki bezdechu. Zaburzenia przełykania badano za pomocą techniki wideoradiograficznej. By wykryć ewentualne uszkodzenia podniebienia miękkiego, pobierano próbki tkanek. Okazało się, że zarówno u chrapiących, jak i cierpiących na chrapanie połączone z bezdechem występowały rozległe uszkodzenia nerwów i mięśni. Uszkodzenia przekładały się zaś na stopień zaburzeń przełykania i nasilenie bezdechu sennego. Szwedzi podkreślają, że w nerwach chrapiących i cierpiących na bezdech było mniej włókien i mniej komórek wspierających, które m.in. wspomagają regenerację. Dla odmiany występowało tu więcej tkanki łącznej. Naukowcy zaobserwowali też, że duża liczba włókien mięśniowych wykazywała zmiany odzwierciedlające odnerwienie. Widoczne też były zmiany w budowie białek błon komórkowych i cytoszkieletu miocytów. Takie modyfikacje powodują słabość mięśni; dotąd widywano je wyłącznie w genetycznych chorobach mięśni. Konieczne są dalsze badania, które pokażą, czy terapia zapobiegająca uszkodzeniu nerwów i mięśni może doprowadzić do wyleczenia lub przynajmniej zastopowania progresji choroby [...] - podsumowuje Shah. « powrót do artykułu
-
- chrapanie
- bezdech senny
-
(and 4 more)
Tagged with:
-
Rodzice zastanawiający się, skąd ich pociechy mają siłę i energię na całodzienne szaleństwa, wreszcie uzyskali odpowiedź. Okazuje się, że mięśnie dzieci są nie tylko wyjątkowo odporne na zmęczenie, ale regenerują się szybciej niż u dobrze wytrenowanych dorosłych sportowców. Wyniki badań nad wydajnością energetyczną i regeneracją mięśni u małych chłopców, niewytrenowanych dorosłych oraz sportowców zajmujących się sportami wytrzymałościowymi ukazały się w piśmie Frontiers in Physiology. Wyniki tych badań mogą znaleźć zastosowanie na wielu polach, od opracowania metod lepszego wykorzystywania potencjału fizycznego dzieci poprzez lepsze zrozumienie zmian fizjologicznych zachodzących z wiekiem, po wyjaśnienie, jak procesy te wpływają na ryzyko rozwoju różnych chorób, w tym cukrzycy. W czasie wielu ćwiczeń fizycznych dzieci mogą męczyć się szybciej niż dorośli, gdyż mają ograniczone możliwości układu krążenia, mają tendencję do wykonywania mniej efektywnych ruchów i muszą wykonać więcej kroków by przejść taki sam dystans. Nasze badania wykazały, że dzieci mogą przezwyciężyć część z tych ograniczeń dzięki posiadaniu mięśni odpornych na zmęczenie oraz zdolności do bardzo szybkiej regeneracji po intensywnych ćwiczeniach, stwierdzają profesorowie Sebastien Ratel z francuskiego Universite Clermont Auvergne i Anthony Blazevich z australijskiego Edith Cowan University. W badaniach wzięły udział trzy grupy osób. Byli to chłopcy w wieku 8-12 lat, niewytrenowani dorośli oraz dorośli sportowcy, którzy brali udział w krajowych zawodach w triatlonie, długodystansowych biegach lub jeździe na rowerze. U każdej z grup oceniano produkcję energii w sposób aerobowy (przy udziale tlenu) oraz anaerobowy (bez udziału tlenu). Mierzono tętno, poziom tlenu we krwi oraz tempo usuwania kwasu mlekowego. We wszystkich testach dzieci uzyskały lepsze wyniki niż niewytrenowani dorośli. Odkryliśmy, że dzieci lepiej wykorzystują metabolizm aerobowy, dzięki czemu mniej męczyły się w czasie ćwiczeń o wysokiej intensywności. Szybko się też regenerowały, szybciej nawet niż dobrze wytrenowani sportowcy wytrzymałościowy. Miały szybsze tętno i szybciej usuwały kwas mlekowy. To może wyjaśniać, dlaczego dzieci wciąż mogą bawić się bez przerwy, gdy dorośli już dawno są zmęczeni, mówi Ratel. Wielu rodziców pyta nas o jak najlepsze wykorzystanie możliwości fizycznych ich dzieci. Nasze badania pokazują, że wytrzymałość mięśni u dzieci jest bardzo dobra, więc dobrym rozwiązaniem byłoby skupienie się na innych aspektach rozwoju fizycznego, takich jak technika, prędkość czy siła mięśni. W ten sposób można zoptymalizować trening u dziecka, dzięki czemu będzie ono lepszym zawodnikiem i osiągnie większą satysfakcję z uprawiania sportu, mówią uczeni. Zwracają przy tym uwagę, że wydajność aerobowa, przynajmniej na poziomie mięśni, znacząco zmniejsza się wraz z wiekiem. W tym też czasie zwiększa się ryzyko takich chorób jak cukrzyca. Interesującym przedmiotem przyszłych badań byłoby sprawdzenie, czy zaobserwowane przez nas zamiany w mięśniach są bezpośrednio związane z ryzykiem wystąpienia niektórych chorób. Wyniki naszych badań mogą sugerować, że w miarę dorastania powinniśmy starać się utrzymać mięśnie w takiej kondycji, w jakiej mają je dzieci. Bycie dzieckiem wydaje się być zdrowe. « powrót do artykułu