Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' implant'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. Elon Musk ogłosił przełom w dziedzinie synchronizacji ludzkiego mózgu ze sztuczną inteligencją. Podczas pokazu na żywo Musk zaprezentował układ scalony zbudowany przez jego firmę Neuralink. To w pełni samodzielny implant mózgowy, który bezprzewodowo przesyła informacje o aktywności mózgu, nie wymagając przy tym żadnego zewnętrznego sprzętu. Działanie chipa zaprezentowano na przykładzie żywej świni. Uczestnicy pokazu mogli zobaczyć grupę świń, z których jedna miała wszczepiony implant. Ekran nad nią na bieżąco pokazywał i rejestrował aktywność jej mózgu. Dotychczas by zarejestrować działanie mózgu konieczne było podłączenie badanej osoby lub zwierzęcia do zewnętrznego urządzenia, np. elektroencefalografu (EEG). Celem Muska jest stworzenie implantu mózgowego, który bezprzewodowo połączy ludzki mózg ze sztuczną inteligencją i pozwoli na kontrolowanie komputerów, protez i innych maszyn jedynie za pomocą myśli. Implant może służyć też rozrywce. Za jego pomocą będzie bowiem można kontrolować gry. Musk chce stworzyć implant, który będzie rejestrował i zapisywał aktywność milionów neuronów, przekładając ludzkie myśli na polecenia dla komputera i odwrotnie. Wszystko to miało by się odbywać za pomocą niewielkiego wszczepialnego implantu. Prace nad implantem pozwalającym na stworzenie interfejsu mózg-komputer trwają od ponad 15 lat. Ich celem jest umożliwienie normalnego funkcjonowania ludziom z chorobami neurologicznymi czy paraliżem. Badania bardzo powoli posuwają się naprzód. Od 2003 w USA implanty mózgowe wszczepiono mniej niż 20 osobom. Wszystkie dla celów badawczych. Większość z takich systemów posiada jednak części, które wystają poza organizm, umożliwiając w ten sposób zasilanie i transmisję danych. Takie zewnętrzne części to ryzyko infekcji. Są ponadto niepraktyczne. Neuralink twierdzi, że jej układ jest najbardziej zaawansowany z dotychczasowych. Zawiera procesor, nadajnik bluetooth, akumulator oraz tysiące elektrod. Każda z tych elektrod rejestruje aktywność do 4 neuronów. Bolu Ajiboye, profesor inżynierii biomedycznej z Case Western Reserve Univeristy, który jest głównym naukowcem konsorcjum BrainGate pracującym nad implantami dla pacjentów neurologicznych, mówi, że jeśli chip Muska będzie przez dłuższy czas umożliwiał bezprzewodową transmisję danych, to mamy do czynienia dużym postępem na tym polu. W Neuralinku pracują mądrzy ludzie prezentujący innowacyjne podejście. Wiem, co oni tam robią i z niecierpliwością czekam na wyniki, stwierdza uczony. Na razie jednak osiągnięcia Neuralink znamy z prezentacji, a nie z recenzowanych artykułów. Nie wiemy na przykład, a jaki sposób urządzenie transmituje tak dużą ilość danych bez generowania uszkadzającego mózg ciepła. Ponadto, jak zauważa Ajiboye, urządzenie jest dość duże jak na implant mózgowy. Jest to bowiem cylinder o średnicy 23 i długości 8 mm. Tymczasem urządzenie, które obecnie testuje BrainGate ma wymiary 4x4 mm. Zawiera też element wystający przez czaszkę oraz 100 elektrod. Tymczasem urządzenie Neuralinka korzysta z 1000 elektrod. Podczas pokazu z udziałem Muska wykorzystano trzy świnie, z których jedna – imieniem Gertruda – miała wszczepiony implant. Widać było, że za każdym razem gdy Gertruda węszy, zwiększała się aktywność elektryczna jej mózgu. Jednak rejestracja danych to nie wszystko. Najważniejsze jest ich dekodowanie. Wiele laboratoriów na całym świecie poświęciło wiele czasu na opracowywanie algorytmów mających na celu interpretację sygnałów z mózgu. Neuralink nam tego nie zaprezentował, mówi Ajiboye. Pierwsze implanty Neuralinka mają mieć zastosowanie medyczne. Mogą np. trafić do ludzi z uszkodzonym rdzeniem kręgowym. Jednak Elon Musk stwierdził, że w przyszłości chce wyjść poza zastosowania medyczne. Słowa te wywołały duże poruszenie w mediach. Jako naukowcy specjalizujący się w dość szczególnej dziedzinie musimy być odpowiedzialni za słowa, ważyć obietnice jakie składamy i uważać na to, co opowiadamy o naszej technologii. Gdy pojawił się Elon Musk nasze prace przyciągnęły uwagę mediów. To dobrze, jednak rodzi to też wyzwania. A jednym z takich wyzwań jest odróżnienie propagandy od rzeczywistości.   « powrót do artykułu
  2. Lekarze z Kliniki Kardiologii Uniwersyteckiego Szpitala Dziecięcego (USD) w Krakowie podjęli się operacji wady wrodzonej u 17-letniego chłopca. Zamknięto ok. 7-8-mm ubytek międzykomorowy. Pacjentowi zaimplantowano największy u dziecka w Polsce implant PFM LVSD COIL, który sprowadzono specjalnie na potrzeby tej operacji. Większe implanty były wszczepiane, ale dorosłym - powiedział dr Piotr Weryński, kierownik Kliniki Kardiologii USD. Implant wszczepiono 2 lipca. Pacjenta już wypisano do domu. Jak podkreślił Weryński, lekarze uzupełnili ubytek w sercu przez naczynia krwionośne, bez otwierania klatki piersiowej i rozcinania serca. Chłopakowi nacięto żyłę i tętnicę i przez nie wprowadzono specjalny cewnik. W cewniku znajdował się implant w postaci długiej nitki ze specjalnego stopu metali. Co istotne, materiał miał zaprogramowaną pamięć kształtu i wielkości. Weryński dodał, że implant jest elastyczny, ugina się do różnych kształtów, pracuje z sercem. Ubytek międzykomorowy powoduje, że część krwi ucieka z lewej komory i płynie do krążenia płucnego zamiast do aorty i krążenia systemowego. Przez tę wadę serce szybciej się męczyło, wyczerpywały się te rezerwy, które miały wystarczyć na wiele lat. Był to olbrzymi ubytek, który został teraz szczelnie zamknięty. Do objawów ubytku międzykomorowego należą, m.in., szybsze męczenie się dziecka czy gorsza tolerancja wysiłku. « powrót do artykułu
  3. Naukowcy z Instytutu Technologii Stevensa stworzyli powłokę np. do endoprotez stawów, która gdy pojawiają się bakterie, uwalnia celowane mikrodawki antybiotyków. Dzięki temu można znacząco obniżyć wskaźnik zakażeń. Prof. Matthew Libera opisał metodę powlekania implantu siecią mikrożelową. W skrócie są to plamki o średnicy 100-krotnie mniejszej od przekroju ludzkiego włosa, które absorbują pewne antybiotyki. Zachowanie mikrożelu reguluje się za pomocą ładunków elektrycznych; aktywność elektryczna zbliżających się bakterii prowadzi do uwolnienia leku. Mikrożele można zastosować w wielu różnych urządzeniach medycznych, w tym w zastawkach serca czy szwach chirurgicznych. Amerykańska armia, która współfinansowała badania, chce wdrożyć technologię w szpitalach polowych (obecnie zakażenia występują w 1/4 ran bojowych). Zakażenia po zabiegach chirurgicznych trudno zwalczyć, gdyż kolonizując powierzchnie, bakterie tworzą antybiotykooporne biofilmy. Libera i inni zaburzają ten cykl, zabijając bakterie, nim w ogóle zdobędą przyczółek. W odróżnieniu od tradycyjnych metod leczenia - układowych, które zalewają antybiotykiem cały organizm czy miejscowych, takich jak mieszanie antybiotyków z cementem kostnym - podejście mikrożelowe jest silnie celowane: uwalniane są maleńkie dawki antybiotyku do uśmiercenia pojedynczych bakterii. W ten sposób ogranicza się presję selekcyjną, prowadzącą do rozwoju superpatogenów. Amerykanie wyjaśniają, że inne obecnie rozwijane "samobroniące się" powierzchnie bazują na bakteryjnych produktach przemiany materii, które wyzwalają uwalnianie leków. Takie podejście jest jednak mniej efektywne od metody Libery, która może zabijać także formy spoczynkowe bakterii. Mikrożele są bardzo wytrzymałe; niegroźne im np. odkażanie etanolem. Poza tym tygodniami zachowują one stabilność i właściwie reagują na ludzką tkankę, co oznacza, że przechowują ładunek do momentu, aż jest on potrzebny i wspierają zdrowy wzrost kości. By nałożyć mikrożel na urządzenie medyczne, chirurg musi je na kilka sekund zanurzyć w specjalnej kąpieli. Druga kąpiel wysyca mikrożel antybiotykiem. Plany są takie, by w przyszłości lekarz przygotowywał urządzenia bezpośrednio przed wszczepieniem, wykorzystując antybiotyki dostosowane do czynników ryzyka danego pacjenta. Jak dotąd podejście testowano w warunkach in vitro. « powrót do artykułu
×
×
  • Create New...