Search the Community
Showing results for tags ' bakteria'.
Found 34 results
-
Endometrioza to poważna choroba, która dotyka do 10% kobiet w wieku rozrodczym. Jej najbardziej widocznym objawem jest ból, niejednokrotnie tak mocny i długotrwały, że uniemożliwia normalne funkcjonowanie. W wyniku choroby komórki wyściółki macicy, endometrium, przemieszczają się po organizmie osadzając się i rozrastając w różnych miejscach, niszcząc organizm i życie kobiety. Choroba ta jest jedną z najczęstszych przyczyn niepłodności kobiet. Mimo to, wciąż nie znamy jej przyczyn. W ostatnim czasie coraz więcej uwagi zwraca się na potencjalną rolę mikroorganizmów w rozwoju endometriozy. Rozwój endometriozy próbuje się powstrzymywać za pomocą terapii hormonalnych i zabiegów chirurgicznych. Najczęściej są to jednak półśrodki, a choroba nawraca przez kilkadziesiąt lat, aż do okresu menopauzy. Chcielibyśmy znaleźć nowe sposoby leczenia. Jednak najpierw musimy się dowiedzieć, dlaczego ludzie cierpią na endometriozę, mówi specjalizująca się w biologii nowotworów Yutaka Kondo z Uniwersytetu w Nagoi. Pani Kondo wraz ze swoim zespołem przebadała tkankę endometrium 155 Japonek. I okazało się, że u 64% kobiet z endometriozą występują mikroorganizmy z rodzaju Fusobacterium. U kobiet zdrowych bakterie te znaleziono jedynie u 7% badanych. Tymczasem wiemy, że Fusobakterium, często występujące w ustach, jelitach i pochwie może powodować różne choroby, jak np. choroby przyzębia. Naukowcy postanowili sprawdzić, czy Fusobacterium może mieć wpływ na rozwój endometriozy. Dlatego też przeszczepili tkankę endometrium od jednych do jamy brzusznej innych myszy. Zgodnie z oczekiwaniami, w ciągu kilku tygodni u myszy pojawiły się blizny typowe dla endometriozy. Okazało się, że jest ich więcej i są one większe u tych myszy, którym jednocześnie przeszczepiono Fusobacterium. Myszy zaczęto więc leczyć, podawanymi dopochwowo, antybiotykami – metronidazolem lub chloramfenikolem. Doprowadziło to do zmniejszenia liczby i rozmiarów ognisk endometriozy. Japończycy prowadzą obecnie badania kliniczne na kobietach z endometriozą, by sprawdzić, czy podawanie antybiotyków przyniesie im przynajmniej częściową ulgę. Badania są obiecujące, ale mają poważne ograniczenia. Myszy nie są bowiem dobrymi modelami do badań nad endometriozą, gdyż ani nie menstruują, ani nie tworzą się u nich spontanicznie blizny spowodowane endometriozą. Dlatego też konieczne jest prowadzenie większej liczby badań na ludziach. Ponadto Japończycy skupili się na badaniu blizn tworzących się na jajnikach, tymczasem u ludzi w wyniku endometriozy mogą powstawać one w całym organizmie i na wszystkich organach wewnętrznych. « powrót do artykułu
-
- endometrioza
- bakteria
-
(and 1 more)
Tagged with:
-
Metale ziem rzadkich wykorzystujemy w smartfonach, telewizorach, silnikach elektrycznych czy turbinach wiatrowych. Są one szeroko rozpowszechnione w skorupie ziemskiej. Jednak występują w tak niewielkiej koncentracji, że ich pozyskanie nie jest proste. To proces bardzo energochłonny, składający się z setek kroków oraz wymagający użycia toksycznych chemikaliów. Okazuje się jednak, że można go uprościć, uczynić tańszym, czystszym i bezpieczniejszym dzięki bakteriom wyizolowanym właśnie z pączków dębu szypułkowego. Naukowcy z Pennsylvania State University odkryli mechanizm, za pomocą którego bakterie mogą selektywnie wybierać pomiędzy metalami ziem rzadkich. Zbadali, jak ten mechanizm działa i opracowali metodę szybkiego i efektywnego oddzielania podobnych pierwiastków w temperaturze pokojowej. Metoda ta może przyczynić się do powstania bardziej efektywnych, tańszych i przyjaznych dla środowiska technologii pozyskiwania i recyklingu pierwiastków ziem rzadkich. Procesy biologiczne potrafią odróżnić metale ziem rzadkich od wszystkich innych metali, a teraz wykazaliśmy, że potrafią też odróżniać od siebie poszczególne metale ziem rzadkich, decydując, który jest dla nich użyteczny, a który nie, mówi główny autor badań, profesor Joseph Cotruvo. Wykazaliśmy, jak wykorzystać te właściwości do pozyskiwania i oddzielania pierwiastków ziem rzadkich. Niezależnie od tego, czy wydobywasz metale ziem rzadkich ze skał, czy też z poddawanych recyklingowi urządzeń, musisz je od siebie oddzielić, by uzyskać czysty metal. Nasza metoda, przynajmniej teoretycznie, może znaleźć zastosowanie niezależnie od metody pozyskiwania pierwiastka, dodaje uczony. Do grupy pierwiastków ziem rzadkich zaliczamy 15 lantanowców oraz iterb i skand. Są one podobne pod względem chemicznym, mają podobne rozmiary i często występują razem. Znajdują jednak różne zastosowania technologiczne. Obecnie podczas separacji poszczególnych pierwiastków ziem rzadkich wykorzystuje się olbrzymie ilości toksycznych chemikaliów, takich jak nafta czy fosfoniany. Proces separacji składa się nawet z setek poszczególnych kroków, koniecznych do uzyskania czystego metalu. Jeden problem to oddzielenie tych pierwiastków od skał. Gdy już to się uda, mamy drugi problem jakim jest oddzielenie poszczególnych metali od siebie. To największe i najbardziej interesujące wyzwanie, gdyż pierwiastki te są do siebie podobne. My wzięliśmy naturalnie występującą proteinę, którą nazywamy lanmoduliną (LanM) i przygotowaliśmy ją tak, by rozróżniała te pierwiastki, wyjaśnia Cotruvo. Cotruvo i jego koledzy wiedzieli, że natura od milionów lat potrafi wykorzystywać pierwiastki ziem rzadkich. Dlatego właśnie w naturze poszukiwali rozwiązania problemu. Przed sześciu laty wyizolowali lanmodulinę z jednej z bakterii i wykazali, że 100 milionów razy lepiej łączy się ona z lantanowcami niż z innymi metalami. Później udowodnili, że można ją wykorzystać do uzyskania pierwiastków ziem rzadkich z mieszaniny, w której znajduje się wiele innych metali. Jednak ta pierwsza lanmodulina radziła sobie znacznie gorzej z zadaniem odróżniania poszczególnych pierwiastków ziem rzadkich od siebie. Podczas najnowszych badań Cotruvo i jego zespół znaleźli setki naturalnych protein mniej więcej podobnych do pierwszej zidentyfikowanej przez sobie lanmoduliny. Jednak skupili się na jednej, która była wystarczająco różna – różnice dochodziły do 70% – spodziewając się, że będzie ona miała nieco różne właściwości. Wybrana przez nich lanmodulina występuje u bakterii Hansschlegelia quercus wyizolowanej z pączków dębu szypułkowego. Okazało się, że gdy lanmodulina z tej bakterii łączy się z lżejszymi lantanowcami, jak neodym, tworzy silne dimery z identycznymi fragmentami lanmoduliny. Gdy zaś łączy się z cięższymi lantanowcami, jak dysproz, woli się nie łączyć, pozostając monomerem. To było zaskoczenie, gdyż pierwiastki te są bardzo podobnych rozmiarów. Tymczasem ta lanmodulina jest zdolna do rozróżnienia wielkości w skalach dla nas niewyobrażalnych, wynoszących bilionowe części metra. Wyczuwa różnice mniejsze niż 1/10 średnicy atomu, zachwyca się Cotruvo. Gdy naukowcy szczegółowo przeanalizowali wpływ łączenia się z lantanowcami na tworzenie dimerów przez lanmodulinę, okazało się, że wszystko zależy od pojedynczego aminokwasu, który zajmuje inną pozycję przy łączeniu się z lekkim lantanowcem niż podczas łączenia się z cięższym lantanowcem. Pozycja tej proteiny decyduje o interakcji z innym monomerem, więc i o preferencji co do tworzenia dimerów lub pozostaniu monomerem. Gdy naukowcy usunęli ten aminokwas z lanmoduliny, proteina znacznie gorzej radziła sobie z odróżnianiem poszczególnych lantanowców. Uzbrojeni w tę wiedzę naukowcy Penn State podjęli współpracę z uczonymi z Lawrence Livermore National Laboratory i wykazali, że lanmodulinę można wykorzystać do oddzielenia od siebie neodymu i dysprozu, najważniejszych składników magnesów stałych. A można to uczynić w jednym kroku, w temperaturze pokojowej, bez wykorzystywania żadnych organicznych rozpuszczalników. Nie jesteśmy pierwszymi, którzy zauważyli, że dimeryzacja może być metodą na oddzielanie metali, szczególnie za pomocą syntetycznych molekuł. Jednak jako pierwsi zaobserwowaliśmy takie zjawisko występujące w naturze w odniesieniu do lantanowców. To badania podstawowe, które potencjalnie można wykorzystać w przemyśle. Odkrywamy sekrety natury i uczymy się od niej, jak być lepszymi chemikami, dodaje Cotruvo. Zdaniem uczonego, najnowsza praca to dopiero początek. Cotruvo uważa, że z czasem nauczymy się rozwiązywać najtrudniejszy z problemów – efektywnie oddzielać od siebie pierwiastki ziem rzadkich, które bezpośrednio ze sobą sąsiadują w układzie okresowym. « powrót do artykułu
-
- pierwiastki ziem rzadkich
- lanmodulina
-
(and 1 more)
Tagged with:
-
Zakażenia wewnątrzszpitalne to jeden z najpoważniejszych problemów służby zdrowia we wszystkich krajach świata. W Polsce ulegają im setki tysięcy osób rocznie, a z powodu samej tylko sepsy szpitalnej i zakażenia Clostridioides difficile umiera co roku około 6000 pacjentów. Z bardziej pełnych danych z USA dowiadujemy się, że rocznie umiera tam niemal 100 000 osób, u których zakażenie pojawiło się już po przyjęciu do szpitala. Pomimo stosowania ścisłych zaleceń dotyczących higieny i kontrolo zakażeń nowe szczepy bakterii pojawiają się znikąd. Teraz naukowcy z Washington University School of Medicine w St. Louis wskazali na jedno ze źródeł zakażeń – uśpione bakterie w organizmie chorego. O tym, że bakterie występujące u chorego przed przyjęciem do szpitala mogą stanowić poważny problem, wiemy nie od dzisiaj. Wspomniana tutaj C. difficile naturalnie znajduje się w przewodzie pokarmowym niektórych osób i nie czynią im krzywdy. Jednak gdy podczas leczenia w wyniku podania antybiotyków dochodzi do zaburzenia równowagi flory bakteryjnej, C. difficile może być niebezpieczna, szczególnie dla starszych pacjentów. Amerykańscy naukowcy zauważyli jednak, że niebezpieczne mogą być też bakterie, których – pozornie – nie ma. Takie, których jest tak niewiele, iż nie można ich wykryć. Podczas badań na myszach naukowcy zauważyli, że po założeniu myszy sterylnego cewnika może dojść do infekcji układu moczowego bakteriami, których wcześniej nie można było wykryć, gdyż były uśpione w pęcherzu. U myszy zastosowanie cewnika aktywowało Acinetobacter baumannii ukryte w komórkach pęcherza. Bakterie opuszczały komórki, namnażały się i wywoływały infekcję. To ważne odkrycie, gdyż u ludzi cewniki są standardowo stosowane np. podczas zabiegów chirurgicznych. Możesz wysterylizować cały szpital, a i tak mogą pojawić się nowe szczepy A. bumannii. Higiena nie pomaga i tak naprawdę nikt nie wie, dlaczego. Nasze badania pokazują, że pacjent może przynosić bakterie ze sobą do szpitala. Teraz, skoro to wiemy, przed zaplanowaną operacją, podczas której pacjent będzie cewnikowany, możemy sprawdzić, czy pacjent jest nosicielem bakterii i spróbować je usunąć przed zabiegiem – uważa profesor Mario Feldman, jeden z autorów badań. A. baumannii to poważny problem w szpitalach. Powoduje nie tylko infekcje układu moczowego, ale też infekcje płuc u osób sztucznie wentylowanych czy zakażenia krwi u pacjentów z kaniulami centralnymi. Bakteria ta jest oporna na wiele antybiotyków i łatwo wywołuje śmiercionośne infekcje. Autorzy najnowszych badań, wiedząc, że w komórkach pęcherza może ukrywać się E. coli, która również wywołuje zakażenia szpitalne, postanowili sprawdzić, czy zdolność do ukrywania się i infekcji posiada też A. baumannii. Podczas badań użyli myszy o osłabionym układzie odpornościowym, które cierpiały na infekcję układu moczowego wywołaną przez tę bakterię. Gdy infekcja została zwalczona i przez kolejne dwa miesiące w moczu myszy nie wykryto bakterii, zwierzęta zacewnikowano. W ciągu 24 godzin u połowy myszy pojawiła się infekcja tym samym szczepem A. baumannii co poprzednio. Bakterie musiały więc być ukryte w pęcherzu i aktywowały się, gdy wprowadzono cewnik. Cewnikowanie wywołuje stan zapalny, a stan zapalny powoduje aktywację bakterii, które z kolei wywołują infekcję, mówi profesor Scott J. Hultgren. Analiza literatury specjalistycznej wykazała, że u około około 2% zdrowych osób można w moczu wykryć A. baumannii. Autorzy badań mówią, żeby nie przywiązywać się zbytnio do tej liczby. Podkreślają, że wskazuje to jedynie, iż pewna część populacji jest nosicielami bakterii. U zdrowych ludzi nie powoduje ona problemów. Te pojawiają się, gdy osoby takie trafią do szpitala. Trzeba zastanowić się, w jaki sposób sprawdzać pacjentów pod kątem występowania Acinetobacter jeszcze przed rozpoczęciem niektórych rodzajów leczenia, jak ją usunąć oraz czy inne bakterie, powodujące zakażenia szpitalne, w podobny sposób ukrywają się w organizmie, stwierdza Feldman. « powrót do artykułu
-
- Acinetobacter baumannii
- bakteria
-
(and 1 more)
Tagged with:
-
Dotychczas sądzono, że to po prostu bakterie akumulujące się jedna pod drugiej na naszych zębach powodują próchnicę, mówi mikrobiolog i dentysta Huyn Koo z University of Pennsylvania. To jednak błędny obraz. Koo jest współautorem badań, z których wynika, że bakterie i grzyby tworzą wzajemnie wspomagające się społeczności, które „spacerują”, a nawet „skaczą” po zębach. Znajdujące się na zębach mikroorganizmy żywią się tymi samymi cukrami, co my i wydzielają kwasy, które uszkadzają szkliwo, wywołując próchnicę. Dotychczas jednak mieliśmy dość uproszczony obraz tego zjawiska. Wiedzieliśmy, że kolonizacja powierzchni przez mikroorganizmy to pierwszy niezbędny krok, ku pojawieniu się biofilmu, który chroni mikroorganizmy przed szkodliwym wpływem czynników zewnętrznych. Uczeni z Pennsylvanii zbadali ślinę pobraną od dzieci w wieku 12–36 miesięcy, u których występowała poważna próchnica. Badania ujawniły, że u takich dzieci występują zgrupowania bakterii z gatunku Streptococcus mutans i grzybów z gatunku Candida albicans. Takich zgrupowań nie znaleziono w ślinie dzieci o zdrowszych zębach. Jednak największym zaskoczeniem było spostrzeżenie, że zgrupowania takie są zdolne do złożonych ruchów. Komórki bakteryjne znajdowały się wewnątrz zgrupowania, zapewniając całości przyczepność. Z kolei większe, podobne do laski komórki grzybów zgromadzone były na zewnątrz, tworząc „kończyny”, przesuwające całość do przodu podczas wzrostu. Gdy dwa takie bakteryjno-grzybiczne zgrupowania się spotkały, dochodziło do ich połączenia. Tego typy zgrupowania rosły szybciej i były bardziej odporne na mechaniczne próby usunięcia i na oddziaływanie chemikaliów niż osobno żyjące grzyby czy bakterie. Autorzy badań chcą teraz sprawdzić, kto jest najbardziej narażony na pojawienie się zgrupowań grzybiczno-bateryjnych i jak można je zwalczać. « powrót do artykułu
-
Australijczycy odkryli nowy rodzaj antybiotykooporności
KopalniaWiedzy.pl posted a topic in Medycyna
Antybiotykooporność uznawana jest za jedno z największych zagrożeń dla ludzkości. Już obecnie mikroorganizmy oporne na działanie antybiotyków zabijają rocznie 1,27 miliona osób, a specjaliści spodziewają się, że do roku 2050 liczba ta wzrośnie do 10 milionów osób rocznie. Stąd też próby zrozumienia, w jaki sposób mikroorganizmy zyskują antybiotykooporność. Naukowcy z Telethon Kids Institute w Perth odkryli właśnie jej nieznany rodzaj. Bakterie, by się namnażać i wywoływać choroby, muszą wytwarzać kwas foliowy. Działanie niektórych antybiotyków polega na blokowaniu możliwości syntezy kwasu foliowego przez bakterie. Gdy jednak naukowcy przyjrzeli się działaniu antybiotyków przepisywanych zwykle na infekcje powodowane przez streptokoki należące do grupy A, odkryli, że gdy zablokowana została możliwość wytwarzania kwasu foliowego przez bakterie, zaczęły one pobierać kwas bezpośrednio z organizmu człowieka. To spowodowało, że antybiotyk był nieefektywny, a stan pacjenta pogarszał się, zamiast się poprawiać, stwierdza doktor Timothy C. Barnett. Naukowcy podkreślają, że ten rodzaj antybiotykooporności jest niewykrywalny standardowymi metodami używanymi w laboratoriach medycznych. To zaś oznacza, że antybiogram nie wykaże, iż mamy do czynienia z bakterią lekooporną, zatem lekarz może mieć problemy z zastosowaniem właściwego leczenia. Niestety, podejrzewamy, że to jedynie wierzchołek góry lodowej. Odkryliśmy ten mechanizm w grupie A streptokoków, jednak jest prawdopodobne, że korzystają z niego również inne patogeny, dodaje Barnett. Uczony mówi, że antybiotykooporność to cicha pandemia, znacznie bardziej niebezpieczna niż COVID-19. Nie tylko może do roku 2050 powodować do 10 milionów zgonów rocznie, ale WHO szacuje, iż przyniesie ona światowej gospodarce straty w wysokości 100 bilionów USD. Bez antybiotyków nie będziemy mieli sposobu na powstrzymanie śmiercionośnych infekcji, pacjenci onkologiczni nie będą mogli przechodzić chemioterapii, nie można będzie też przeprowadzać ratujących życie operacji, wyjaśnia naukowiec. « powrót do artykułu-
- antybiotykooporność
- kwas foliowy
-
(and 1 more)
Tagged with:
-
Około 25% powierzchni lądowej Półkuli Północnej stanowi wieczna zmarzlina. Globalne ocieplenie powoduje, że rozmarzająca gleba uwalnia materię organiczną uwięzioną od tysięcy lat. Część z tej materii stanowią mikroorganizmy oraz wirusy. Jean-Michel Claverie z Uniwersytetu Aix-Marseille i jego zespół informują o wyizolowaniu i „ożywieniu” 13 nowych wirusów należących do 5 kladów zdolnych do zainfekowania Acanthamoeba spp. Najmłodszy z wirusów liczył sobie 27 000 lat, najstarszy zaś – 48 500 lat co czyni go najstarszym wirusem zdolnym do zainfekowania komórki. Nasze badania potwierdzają zdolność wirusów o dużym DNA do zainfekowania Acanthamoeba po ponad 48 500 lat spędzonych w wiecznej zmarzlinie, czytamy w artykule [PDF] udostępnionym na łamach bioRxiv. Wspomniane wirusy należą do rodzajów Pandorawirus, Cedratvirus, Megawirus, Pacmanvirus i Pithovirus. Wszystkie to jedne z największych znanych nam wirusów, wszystkie znane są od niedawna i wszystkie infekują ameby. Zespół Claverie poszukiwał w próbkach właśnie dużych wirusów zdolnych do infekowania Acanthamoeba. Naukowcy dodawali próbki wiecznej zmarzliny do kultur ameb i poszukiwali śladów infekcji, które wskazywałyby, że wirusy „ożyły” i się replikują. Jeśli zaś wspomniane wirusy mogły „ożyć” po dziesiątkach tysięcy lat w wiecznej zmarzlinie i infekować komórki, oznacza to, że prawdopodobnie do tego samego zdolne są inne mniejsze wirusy. Roztapianie się wiecznej zmarzliny wiąże się więc z ryzykiem pojawienia się mikroorganizmów zdolnych do infekowania roślin i zwierząt, w tym człowieka. A ryzyko takie rośnie, gdyż wraz z globalnym ociepleniem w Arktyce będzie pojawiało się coraz więcej ludzi, chociażby po to, by wydobywać niedostępne dotychczas surowce. Ryzyko zainfekowania ludzi uśpionymi przez tysiąclecia wirusami i bakteriami będzie się zwiększało. Trzeba jednak pamiętać, że jest i pozostanie ono mniejsze niż ryzyko wybuchu epidemii wywołanej już krążącymi wśród ludzi i zwierząt mikroorganizmami. Globalne ocieplenie powoduje bowiem, że choroby tropikalne zwiększają swój zasięg, a nosiciele ich patogenów pojawiają się np. w Europie. Ryzykowne mogą być też prace nad znajdującymi się w wiecznej zmarzlinie wirusami. Gdy używamy kultur Acanthamoeba spp. do badania obecności wirusów w prehistorycznej wiecznej zmarzlinie, korzystamy z ochrony miliardów lat dystansu ewolucyjnego pomiędzy amebami a ludźmi i innymi ssakami. To najlepsza ochrona przed przypadkowym zarażeniem się pracowników laboratorium czy rozprzestrzenieniem wirusów na współcześnie żyjące zwierzęta. Ryzyko związane z „ożywianiem” takich wirusów jest całkowicie pomijalne w porównaniu z ryzykiem, jakie stwarza poszukiwanie paleowirusów bezpośrednio w tkankach mamutów, nosorożców włochatych czy prehistorycznych koni, czym zajmują się Rosjanie z laboratorium Vector w Nowosybirsku. Na szczęście jest to laboratorium klasy BLS4. My, bez podejmowania niepotrzebnego ryzyka, sądzimy, że uzyskane przez nas wyniki można ekstrapolować na wiele innych wirusów DNA zdolnych do infekowania ludzi i zwierząt. Naszym zdaniem istnieje ryzyko, że z wiecznej zmarzliny uwolnią się nieznane wirusy. W tej chwili niemożliwością jest stwierdzić, jak długo takie wirusy pozostaną aktywne po wystawieniu ich na czynniki zewnętrzne, jak promienie ultrafioletowe, tlen czy wyższe temperatury – podsumowują autorzy badań. « powrót do artykułu
- 2 replies
-
- wieczna zmarzlina
- mikroorganizmy
-
(and 2 more)
Tagged with:
-
Badania uczonych z The Australian National University mogą doprowadzić do pojawienia się lepszych metod walki z rzadkimi, ale niezwykle śmiertelnymi infekcjami bakteryjnymi. Mowa o bakteriach powodujących gangrenę, sepsę czy tężec. Na szczęście ta grupa bakterii rzadko powoduje infekcje. W USA jest mniej niż 1000 takich przypadków rocznie. My skupiliśmy się bakterii Clostridium septicum, która w ciągu 2 dni zabija 80% zakażonych. Jest niezwykle śmiercionośna, mówi profesor Si Ming Man. Australijczycy odkryli, że Clostridium septicum bardzo szybko zabija komórki naszego organizmu, gdyż uwalnia toksynę działającą jak młotek. Toksyna ta wybija dziury w komórkach. To, oczywiście, wzbudza alarm w naszym układzie odpornościowym. Jednak gdy ten przystępuje do działania, może wyrządzić więcej szkód niż korzyści. Układ odpornościowych ma dobre zamiary, próbuje zwalczać bakterię. Problem jednak w tym, że w tym procesie zarażone komórki dosłownie eksplodują i umierają. Gdy bakteria mocno się rozprzestrzeni i w całym ciele mamy wiele umierających komórek, dochodzi do sepsy i wstrząsu. Dlatego pacjenci bardzo szybko umierają, mówi uczony. Obecnie mamy niewiele sposób leczenia w takich przypadkach. Jednak analizy Mana i jego zespołu dają nadzieję, że opcji tych będzie więcej. Nasze badania pokazały, że możemy rozpocząć prace nad nowymi terapiami, na przykład nad wykorzystaniem leków do neutralizacji toksyny. Wykazaliśmy też, że już w tej chwili w testach klinicznych znajdują się leki, które mogą zablokować kluczowy, odpowiedzialny za rozpoznanie toksyny, receptor układu immunologicznego. Takie leki uniemożliwiłyby układowi odpornościowemu zbyt gwałtowną reakcję na toksynę. Łącząc tego typu leki moglibyśmy opracować terapię ratującą życie, dodaje Man. Dodatkową korzyść odniósłby przemysł, gdyż ta sama bakteria zabija owce i krowy, nowe leki można by więc stosować też w weterynarii. « powrót do artykułu
-
- Clostridium septicum
- infekcja
-
(and 2 more)
Tagged with:
-
Specjaliści od dawna poszukują bezpośredniego związku pomiędzy aktywnością neuronów w mózgu, a aktywnością bakterii w układzie pokarmowym. Francuscy uczeni z Instytutu Pasteura poinformowali właśnie na łamach Science, że w modelu zwierzęcym neurony w podwzgórzu bezpośrednio wykrywają zmiany aktywności bakterii w jelitach i odpowiednio dostosowują do tego apetyt i temperaturę ciała myszy. To dowodzi, że istnieje bezpośrednia komunikacja pomiędzy mikrobiomem jelit a mózgiem. Być może uda się to wykorzystać do opracowania metod walki z cukrzycą czy otyłością. Związki uwalniane przez mikrobiom trafiają do krwi i mogą wpływać na różne procesy fizjologiczne gospodarza, takie jak działanie układu odpornościowego, metabolizm czy funkcje mózgu. Metabolity mikroorganizmów, w tym krótkołańcuchowe kwasy tłuszczowe i pochodne tryptofanu, regulują bardzo wiele procesów. Składowe strukturalne mikroorganizmów są jednak wykrywane przez receptory wykrywające wzorce (PRR), które sygnalizują obecność wirusów, bakterii i grzybów na błonach śluzowych, w tkankach i komórkach. Wiemy, że składniki bakteryjne wpływają na działanie mózgu, a PRR są powiązane z zaburzeniami jego pracy. Jednak nie wiemy, czy neurony w mózgu mogą bezpośrednio wykrywać komponenty bakteryjne i czy bakterie mogą regulować procesy fizjologiczne poprzez regulowanie neuronów w mózgu, stwierdzają autorzy badań. Naukowcy skupili się na receptorze NOD2 obecnym w komórkach odpornościowych. Należy on do grupy rozpoznających wzorce receptorów wewnątrzkomórkowych. Receptor ten wykrywa muropeptydy wchodzące w skład ścian komórkowych bakterii. Wiadomo, że u myszy, w neuronach których nie dochodzi do ekspresji Nod2, pojawiają się zmiany odnośnie spożywania pokarmu, zakładania gniazda i temperatury ciała. Naukowcy wykorzystali więc techniki obrazowania, by zidentyfikować te obszary mózgu, które reagują na doustne podawanie muropeptydów. Sprawdzali też, jak zmieniała się aktywność neuronów po podaniu myszom muropeptydów. Stworzyli też genetycznie zmodyfikowane myszy, w których podwzgórzach nie dochodziło do ekspresji Nod2. To właśnie podwzgórze reguluje temperaturę ciała i przyjmowanie pokarmów. Na podstawie tak prowadzonych eksperymentów stwierdzili, że do ekspresji receptora NOD2 dochodzi w różnych regionach mózgu myszy, w szczególności zaś w podwzgórzu. A w kontakcie z muropeptydami ekspresja ta jest tłumiona. Muropeptydy obecne w jelitach, krwi i mózgu to dowody na proliferację bakterii. To niezwykłe odkrycie pokazuje, że fragmenty bakterii bezpośrednio wpływają na tak ważny ośrodek w mózgu, jakim jest podwzgórze, o którym wiemy, że reguluje kluczowe funkcje organizmu, jak temperatura, reprodukcja, głód i pragnienie, stwierdzają naukowcy. Uczeni mają nadzieję, że dzięki zdobytej wiedzy i przyszłym interdyscyplinarnym badaniom – w które powinni zostać zaangażowani neurolodzy, immunolodzy i mikrobiolodzy – powstaną w przyszłości nowe leki skuteczniej zwalczające takie zaburzenia metaboliczne jak otyłość i cukrzyca. « powrót do artykułu
-
- podwzgórze
- mikrobiom
-
(and 2 more)
Tagged with:
-
Przodkowie legionelli, bakterii wywołującej legionellozę, infekowali komórki eukariotyczne – czyli zawierające jądro komórkowe – już dwa miliardy lat temu, donoszą naukowcy z Uniwersytetu w Uppsali. Do infekcji zaczęło więc dochodzić wkrótce po tym, jak eukarioty rozpoczęły żywienie się bakteriami. Nasze badania pozwalają lepiej zrozumieć, jak pojawiły się szkodliwe bakterie oraz jak złożone komórki wyewoluowały z komórek prostych, mówi główny autor badań, profesor Lionel Guy. Z badań wynika, że już przed 2 miliardami lat przodkowie legionelli byli zdolni do uniknięcia strawienia przez eukarioty. Co więcej, byli w stanie wykorzystać komórki eukariotyczne do namnażania się. Bakterie z rodzaju Legionella należą do rzędu Legionellales. Odkryliśmy, że przodek całego rzędu pojawił się przed 2 miliardami lat, w czasach, gdy komórki eukariotyczne wciąż powstawały, ewoluując od prostych form komórkowych, to znanej nam dzisiaj formy złożonej. Sądzimy, że Legionellales były jedynymi z pierwszych mikroorganizmów zdolnych do infekowania komórek eukariotycznych, wyjaśnia Andrei Guliaev z Wydziału Biochemii Medycznej i Mikrobiologii. Jak mogło dojść do pierwszych infekcji i pojawienia się u bakterii zdolności do zarażania, namnażania się i wywoływania chorób? Pierwszym etapem była fagocytoza, w wyniku której organizm eukariotyczny, taki jak ameba, wchłonął przodka legionelli, by się nim pożywić. Następnym etapem powinno być jego strawienie i wykorzystanie w roli źródła energii. Jednak mikroorganizm potrafił się bronić i to on wykorzystał amebę do namnażania się. Szwedzcy naukowcy odkryli, że wszystkie bakterie z rodzaju Legionellales posiadają taki sam mechanizm molekularny chroniący przed strawieniem, co legionelloza. To zaś oznacza, że możliwość infekowania eukariotów pojawiła się u wspólnego przodka rodzaju Legionellales. A skoro tak, to fagocytoza musiała istnieć już przed 2 miliardami lat, gdy ten przodek się pojawił. Odkrycie stanowi ważny argument w toczącej się dyskusji, co było pierwsze. Czy najpierw pojawiły się mitochondria, przejęte przez organizmy eukariotyczne od innej grupy bakterii, które z czasem stały się centrami energetycznymi naszych komórek, czy też najpierw była fagocytoza, uważana za niezbędną do przejęcia mitochondriów, ale bardzo kosztowna z energetycznego punktu widzenia. Niektórzy badacze sądzą, że najpierw musiał pojawić się mitochondria, które zapewniły energię dla kosztowanego procesu fagocytozy. Jednak nasze badania sugerują, że fagocytoza istniała już 2 miliardy lat temu, a mitochondria pojawiły się później, mówi Lionel Guy. « powrót do artykułu
-
Niejednokrotnie informowaliśmy, że rosnąca antybiotykooporność – wywołana nadmiernym używaniem antybiotyków w medycynie, hodowli zwierząt czy kosmetykach – stanowi coraz poważniejsze zagrożenie. Na łamach The Lancet ukazały się właśnie wyniki pierwszej kompletnej ogólnoświatowej analizy skutków antybiotykooporności. Wynika z niej, że w 2019 roku patogeny oporne na działanie antybiotyków zabiły 1,24 miliona osób i przyczyniły się do śmierci 4,95 miliona kolejnych. Autorzy analizy oszacowali liczbę zgonów w 204 krajach i terytoriach spowodowanych przez 23 antybiotykooporne szczepy bakterii oporne na co najmniej jeden z 88 antybiotyków. Dane zebrano ze specjalistycznej literatury, szpitali, systemów ochrony zdrowia i innych źródeł. Objęły one w sumie 471 milionów rekordów. Następnie wykorzystano modele statystyczne, by oszacować wpływ antybiotykoopornych szczepów na poszczególne państwa. Autorzy badań szacowali liczbę zgonów, w których infekcja odgrywała rolę, proporcję zgonów w stosunku do liczby infekcji, proporcję zgonów przypisywanych konkretnemu patogenowi, rozpowszechnienie antybiotykoopornego szczepu konkretnego patogenu oraz nadmiarowe ryzyko zgonu powiązane z występowaniem na danym terenie takiego patogenu. Na tej podstawie udało się oszacować zarówno liczbę zgonów powodowanych bezpośrednio przez antybiotykooporne bakterie, jak i liczbę zgonów powiązanych z ich występowaniem. Najbardziej dotknięte problemem antybiotykooporności są kraje o niskich i średnich dochodach. A Afryce Subsaharyjskiej liczba ofiar antybiotykoopornych bakterii wynosiła w 2019 roku średnio aż 27,3 na 100 000. Na przeciwnym biegunie znajduje się Australazja z liczbą 6,5 zgonu na 100 000. Ludzi na całym świecie zabijają przede wszystkim antybiotykooporne szczepy Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii i Pseudomonas aeruginosa. Z analiz wynika, że bezpośrednio zabiły one łącznie 929 000 osób oraz przyczyniły się do 3,57 miliona zgonów powiązanych z antybiotykoopornymi bakteriami. Najwięcej, bo ponad 100 000, ofiar ma na koncie oporny na metycylinę gronkowiec złocisty (MRSA), który spowodował zgon ponad 100 000 osób. Inne wymienione patogeny zabijały od 50 do 100 tysięcy osób. Wbrew pozorom liczby sumują się do wspomnianych 900 tysięcy, gdyż naukowcy liczyli nie gatunki, a szczepy, zatem na przykład policzono zarówno ofiary opornej na karbapenemy K. pneumonie jak i ofiary K. pneumoniae opornej na cefalosporyny trzeciej generacji. « powrót do artykułu
-
Świat zmaga się z rosnącym kryzysem antybiotykooporności. Nadmierne używanie antybiotyków w medycynie, przemyśle spożywczym czy kosmetycznym, prowadzi do pojawiania się bakterii opornych na działanie antybiotyków. Przedostające się do środowiska antybiotyki, a w niektórych rzekach ich stężenie 300-krotnie przekracza bezpieczny poziom, wymuszają na patogenach ciągłą ewolucję w kierunku antybiotykooporności. Nawet w jelitach dzieci odkryto setki bakteryjnych genów antybiotykooporności. Bez nowych antybiotyków lub innych rozwiązań realny staje się scenariusz, w którym ludzie znowu zaczną umierać z powodu zwykłych zakażeń czy niegroźnych obecnie chorób. Jedną ze strategii spoza repertuaru środków chemicznych jest wykorzystanie metod fizycznych, jak światło ultrafioletowe, promieniowanie gamma czy ciepło. Metody są skuteczne w dezaktywowaniu patogenów, jednak prowadza do poważnych uszkodzeń tkanek, przez co nie mogą być stosowane w praktyce klinicznej. Dlatego też część naukowców zainteresowała się światłem widzialnym. W niskim natężeniu jest ono bezpieczne dla tkanek, a jednocześnie posiada zdolność dezaktywacji bakterii, wirusów i innych patogenów. Zajmujących się tym problemem specjalistów szczególnie interesują lasery femtosekundowe, emitujące ultrakrótkie impulsy światła, których czas trwania liczy się w femtosekundach (1 femtosekunda to 1/1 000 000 000 000 000 sekundy). Naukowcy z Washington University School of Medicine wykazali, że ultrakrótkie impulsy w zakresie światła widzialnego – o długości fali 415–425 nm – mogą być efektywną bronią przeciwko antybiotykoopornym bakteriom i ich przetrwalnikom. Naukowcy przetestowali laser na na metycylinoopornym gronkowcu złocistym (MRSA) oraz E. coli. Bakterie te są wysoce odporne na działanie licznych środków fizycznych i chemicznych. Laser testowano też na przetrwalnikach Bacillus cereus, które mogą powodować zatrucia pokarmowe i są w stanie przetrwać gotowanie. Testy wykazały, że laser dezaktywuje 99,9% bakterii poddanych jego działaniu. Naukowcy wyjaśniają, że przy pewnej mocy ich laser zaczyna dezaktywować wirusy. Po zwiększeniu mocy robi to samo z bakteriami. Jego światło pozostaje jednak bezpieczne dla ludzkich tkanek. Dopiero zwiększenie mocy o cały rząd wielkości zabija komórki. Zatem istnieje pewne okienko terapeutyczne, które pozwala na jego bezpieczne wykorzystanie. Ultrakrótkie impulsy laserowe dezaktywują patogeny, nie szkodząc ludzkim białkom i komórkom. Wyobraźmy sobie, że przed zamknięciem rany, operujący chirurg mógłby zdezynfekować ją za pomocą lasera. Myślę, że już wkrótce technologia ta może być wykorzystywana do dezynfekcji produktów biologicznych in vitro, a w niedalekiej przyszłości do dezynfekcji krwioobiegu. Pacjentów można by poddać dializie i jego krew przepuścić przez laserowe urządzenie ją dezynfekujące, mówi główny autor badań Shew-Wei Tsen. Tsen wraz z profesorem Samuelem Achilefu od lat badają zdolność ultrakrótkich impulsów laserowych do zabijania patogenów. Już wcześniej wykazali, że dezaktywują one wirusy i „zwykłe” bakterie. Teraz, we współpracy z profesor mikrobiologii Shelley Haydel z Arizona State University, rozszerzyli swoje badania na przetrwalniki oraz antybiotykooporne bakterie. Wirusy i bakterie zawierają gęsto upakowane struktury proteinowe. Laser dezaktywuje je wprowadzając te struktury w tak silne wibracje, że niektóre z wiązań w proteinach pękają. Taki pęknięty koniec stara się jak najszybciej z czymś połączyć i najczęściej łączy się z inną strukturą, niż ta, z którą był dotychczas powiązany. W ten sposób wewnątrz patogenu pojawiają się nieprawidłowe połączenia wewnątrz protein i pomiędzy nimi, co powoduje, że białka nie funkcjonują prawidłowo i patogen przestaje funkcjonować. Wszystko, co pochodzi od ludzi czy zwierząt może zostać zanieczyszczone patogenami. Wszelkie produkty krwiopochodne, zanim zostaną wprowadzone do organizmu pacjenta, są skanowane pod kątem obecności patogenów. Problem jednak w tym, że musimy wiedzieć, czego szukamy. Jeśli pojawiłby się nowy wirus krążący we krwi, jak np. miało to miejsce w latach 70. i 80. w przypadku wirusa HIV, to mógłby dostać się z takimi preparatami do krwioobiegu. Ultrakrótkie impulsy lasera to metoda, która pozwali upewnić się, że produkty krwiopochodne są wolne od patogenów. Zarówno tych znanych, jak i nieznanych, mówi Tsen. Więcej na temat badań grupy Tsena przeczytamy na łamach Journal Biophotonic. « powrót do artykułu
-
Michał Styczyński z Wydziału Biologii Uniwersytetu Warszawskiego odkrył, że bakterie z Antarktyki wytwarzają naturalną substancję z grupy melanin. Można by ją wykorzystać w kremach z filtrem UV, zastępując syntetyczny oksybenzon, który przyczynia się do wymierania koralowców. Środek ten zaburza gospodarkę hormonalną parzydełkowców, uniemożliwiając im rozmnażanie się. Uczony zauważył, że pod wpływem odpowiedniego stresu środowiskowego bakterie wytwarzają substancję z grupy melanin. Może ona potencjalnie posłużyć do zastąpienia nią oksybenzonu. Antarktyka jest jednym z najbardziej ekstremalnych regionów na Ziemi. Charakteryzuje się ona bardzo niskimi temperaturami, dochodzącymi do -90 °C, wysoką ekspozycją na promieniowanie UV, niską dostępnością substancji odżywczych, a także obecnością silnie zasolonych zbiorników wodnych. Organizmy występujące w tak skrajnych warunkach musiały wykształcić szereg cech adaptacyjnych umożliwiających im przeżycie. Zimnolubne bakterie, określane jako psychrofile lub psychrotoleranty, wytwarzają m.in. specyficzne metabolity wtórne, takie jak barwniki ochronne, dzięki którym mogą optymalnie funkcjonować w polarnym środowisku, mówi Styczyński. Naturalną melaninę można by wytwarzać na skalę przemysłową namnażając bakterie w laboratorium i poddając je następnie odpowiedniej stymulacji. Jednak to nie jedyna zaleta bakterii arktycznych. Badania wykazały, że wytwarzają one też karotenoidy posiadające bardzo silne właściwości przeciwutleniające. Również i one mogą odegrać ważną rolę. Wytwarzane przez bakterie związki, ze względu na swoją specyficzną, wielonienasyconą strukturę i wynikające z niej właściwości przeciwutleniające, zapobiegają szkodliwemu działaniu promieniowania UV. Ponadto odgrywają one istotną rolę w kontrolowaniu płynności błon i chronią komórki bakteryjne przed uszkodzeniem na skutek zamarzania. Tego rodzaju substancje mają zdolność wychwytywania wolnych rodników, dlatego są w centrum zainteresowania laboratoriów produkujących preparaty kosmetyczne do pielęgnacji skóry o działaniu przeciwstarzeniowym. Na rynku obowiązują jednak ścisłe normy i restrykcje, które definiują zawartość zanieczyszczeń pochodzących z syntezy chemicznej. Nasze odkrycia wskazują, że przemysł kosmetyczny mógłby na dużo większą skalę korzystać z substancji pochodzenia naturalnego, dodaje Michał Styczyński. Niezwykle ważną cechą bakterii antarktycznych jest fakt, że łatwo jest je hodować. Ze względu na ich fizjologię organizmy te mają niewielkie wymagania odnośnie temperatury i dostępności pokarmu. Nie ma żadnych większych przeszkód natury technologicznej, by tą drogą pozyskiwać naturalne substancje na skalę przemysłową. Bakterie z Antarktydy mogą też wspomagać wzrost roślin. Mogą zwiększać dostępność mikroelementów, co można wykorzystać w rolnictwie. W praktyce można więc wykorzystać szczepy bakterii do zwiększania jakości i biomasy roślin uprawnych, chronić je przed chorobami, a także redukować ilość stosowanych nawozów chemicznych, wyjaśnia naukowiec. Komercjalizacją odkryć ma zająć się spółka Biotemist, utworzona przy Uniwersytecie Warszawskim. « powrót do artykułu
-
- Uniwersytet Wrocławski
- Antarktyka
-
(and 3 more)
Tagged with:
-
Uczeni z Yale University opisali, w jaki sposób białko APOL3 czyści organizm z bakterii. Podczas badań z wykorzystaniem m.in. salmonelli, wykazali, że białko rozpuszcza błonę komórkową bakterii. Już wcześniej było wiadomo, że komórki bronią się przed bakteriami atakując ich błony, jednak tutaj mamy do czynienia z pierwszym opisem antybakteryjnego działania podobnego do działania detergentu. To przykład, jak ludzki organizm produkuje własne antybiotyki w formie białka działającego jak detergent. Możemy się od niego uczyć, mówi główny autor badań, immunolog doktor John MacMicking. Jedną z linii obrony naszego organizmu są wyspecjalizowane komórki układu odpornościowego. Jednak w ciągłym wyścigu pomiędzy nimi, a patogenami, niejednokrotnie dochodzi do sytuacji, w której patogen przedrze się przez pozakomórkowe linie obrony i wniknie do komórki, gdzie może się namnażać. Dlatego też w drodze ewolucji pojawiły się wewnątrzkomórkowe mechanizmy obronne. U kręgowców mechanizmy te są uruchamiane przez interferon gamma (IFN-γ), który reguluje transkrypcję setek genów pomagających w walce z bakteriami, wirusami czy grzybami w wielu typach komórek. Wciąż jednak niewiele wiemy o białkach, których działanie jest zapoczątkowywane przez IFN-γ. Na potrzeby badań naukowcy zainfekowali ludzie komórki salmonellą. Poszukiwaliśmy nowych genów stymulowanych interferonem, wykorzystując przy tym bakterię salmonelli jako modelu infekcji, wyjaśniają badacze. Salmonella, podobnie jak inne bakterie gram-ujemne, posiada dwie błony komórkowe, co czyni ją szczególnie trudną do zabicia. Szczegółowo analizując reakcję komórki na obecność bakterii, uczeni wykorzystali technologię CRISPR-Cas9 do przeanalizowania ponad 19 000 genów i odkryli, że to białko APOL3 (apolipoprotein L3), kodowane przez gen APOL3, niszczy wewnętrzną błonę komórkową salmonelli. Ma przy tym pomocnika w postaci molekuły GBP1 i, prawdopodobnie, innych molekuł. Dzięki mikroskopii o wysokiej rozdzielczości naukowcy zauważyli, że GBP1 niszczy zewnętrzną błonę komórkową, dzięki czemu APOL3 może dostać się do wnętrza bakterii i zniszczyć błonę wewnętrzną, co zabija salmonellę. Okazało się przy tym, że APOL3 działa podobnie jak detergent. Ma bowiem elementy, które przyczepiają się do molekuł wody oraz inne, które łączą się z molekułami tłuszczów. Dzięki temu fragment po fragmencie usuwa lipidową błonę otaczającą bakterię. Widzimy tutaj efekt synergii pomiędzy APOL3 a innymi genami, które łączą siły i wspólnie przeprowadzają atak na podwójne błony komórkowe bakterii gram ujemnych. Błony te stanowią barierę, z którą nie radzi sobie wiele antybiotyków. Nasze badania pokazują, że w ludzkim organizmie istnieją mechanizmy, które są w stanie zniszczyć tę barierę. A są one uruchamiane przez IFN-γ, co tylko potwierdza, jak ważny jest ten mechanizm obronny, stwierdzają autorzy badań. MacMicking zwraca jednocześnie uwagę, że cały mechanizm jest wysoce selektywny, gdyż APOL3 nie atakuje przy tym błony komórkowej swojej komórki macierzystej. Uczeni zauważyli, że APOL3 unika cholesterolu, który jest jednym z głównych składników komórek naszego organizmu i skupia się na lipidach charakterystycznych dla błon komórkowych bakterii. « powrót do artykułu
-
- salmonella
- APOL3
-
(and 2 more)
Tagged with:
-
Bakteria Stenotrophomonas maltophilia naturalnie występuje w ekosystemie w otoczeniu człowieka. Do niedawna była uważana za nie sprawiającą większych problemów. Teraz okazuje się, że jest to coraz bardziej rozpowszechniony wieloantybiotykooporny patogen powodujący ciężkie infekcje układu oddechowego. S. maltophilia stała się, obok gronkowca złocistego czy E. coli, jednym z najgroźniejszych patogenów powodujących zakażenia szpitalne. Bakteria ta jest szczególnie niebezpieczna dla pacjentów z osłabionym układem odpornościowym lub leczonym z powodu stanu zapalnego układu oddechowego. Może ona zaatakować każdy organ, jednak najczęściej dochodzi do infekcji układu oddechowego, bakteremii oraz infekcji wywołanych przez użycie cewnika. Jako, że to stosunkowo nowe, bardzo poważne i coraz bardziej rozpowszechnione zagrożenie, konieczne jest lepsze zrozumie wirulencji tego patogenu oraz jego lokalnej i globalnej transmisji. Międzynarodowa grupa naukowa pracująca pod nadzorem niemieckiego Centrum Badawczego w Borstel (Forschungszentrum Borstel – Leibniz Lungenzentrum), przeprowadziła pierwsze badania światowego drzewa filogenetycznego S. maltophilia. Naukowcy z ośmiu krajów odkryli, że w 22 krajach istnieją 23 linie S. maltophilia o różnym stopniu rozpowszechnienia, z których większość zawiera szczepy o każdym możliwym stopniu wirulencji. Jedna z tych linii jest obecna na całym świecie i zawiera największą liczbą szczepów infekujących ludzi. Chodzi tutaj o linię Sm6. Stwierdzono w niej istnienie kluczowych genów zwiększających wirulencję i odporność na działanie antybiotyków. To sugeruje, że specyficzna konfiguracja genetyczna może ułatwiać rozpowszechnianie się różnych podtypów S. maltophilia w środowisku szpitalnym, mówi główny autor badań, Matthias Gröschel. Analiza sposobu przenoszenia się bakterii ujawniła, że w szpitalach na przestrzeni zaledwie dni i tygodni mogą rozpowszechniać się blisko spokrewnione szczepy. Ze szczegółami badań można zapoznać się na łamach Nature Communications. « powrót do artykułu
-
- Stenotrophomonas maltophilia
- bakteria
- (and 2 more)
-
Wydaje się, że spożywanie zbyt dużych ilości soli negatywnie wpływa na możliwość obrony organizmu przed bakteriami. Takie wnioski płyną z badań przeprowadzonych na myszach i 10 ochotnikach. Autorzy badań, Christian Kurts i jego zespół ze Szpitala Uniwersyteckiego w Bonn, wykazali, że myszy, w których diecie znajdowała się wysoka zawartość soli, gorzej radziły sobie z infekcją nerek spowodowaną przez E. coli oraz ogólnoustrojową infekcją Listeria monocytogenes. To bardzo zjadliwy patogen, wywołujący niebezpieczne zatrucia pokarmowe. Po badaniach na myszach rozpoczęto badania na 10 zdrowych ochotnikach w wieku 20–50 lat. Najpierw sprawdzono, jak w walce z bakteriami radzą sobie ich neutrofile. Następnie badani przez tydzień spożywali dodatkowo 6 gramów soli dziennie. Po tygodniu porównano działanie ich neutrofili. Okazało się, że w każdym przypadku radziły sobie one gorzej niż przed badaniem. Naukowcy nie sprawdzali, jak sól wpływa na zdolność organizmu do obrony przed wirusami. Światowa Organizacja Zdrowia (WHO) zaleca, by dzienna dawka spożywanej soli nie przekraczała 5 gramów dziennie. Tymczasem przeciętny Polak każdego dnia spożywa średnio 10 gramów soli. Naukowcy sądzą, że sól na dwa sposoby upośledza zdolność układu odpornościowego do walki z bakteriami. Po pierwsze, gdy spożywamy za dużo soli uwalniane są hormony, które pomagają ją wydalić. Wśród tych hormonów znajdują się glukokortykoidy, o których wiadomo, że tłumią układ odpornościowy. Ponadto niemieccy badacze zauważyli, że gdy mamy w organizmie dużo soli, w naszych nerkach gromadzi się mocznik, a ten zaburza pracę neutrofilów. Wyniki badań zostały opublikowane na łamach Science Translational Medicine. « powrót do artykułu
-
Wraz z pojawieniem się rolnictwa i hodowli, pojawiły się też bakterie wywołujące u ludzi nowe nieznane wcześniej choroby. Do takich wniosków doszedł międzynarodowy zespół naukowy, który badał genomy Salmonella enterica uzyskane ze szkieletów sprzed tysięcy lat. Uczeni przedstawili pierwsze dowody DNA na wsparcie hipotezy mówiącej, że przejście na rolnictwo wiązało się z pojawieniem się nowych patogenów, które zarażają nas do dzisiaj. Felix M. Key, Alexander Herbig i Johannes Krause z Instytutu Nauki o Historii Człowieka im. Maxa Plancka stali na czele zespołu, który badał szkielety z zachodu Eurazji i zrekonstruował dzięki temu osiem genomów Salmonella enterica. Większość chorób nie pozostawia widocznych zmian w szkielecie, więc naukowcy chcący zbadać,jakie patogeny dręczyły naszych przodków, muszą odwoływać się do poszukiwania w ludzkich szczątkach śladów genomu bakterii i czy wirusów. Dzięki opracowanej przez nas technice mogliśmy przeanalizować tysiące próbek zębów pod kątem występowania DNA rodzaju Salmonella, mówi Herbig. Naukowcy przeanalizowali 2739 próbek. Na ich podstawie zrekonstruowali osiem genomów rodzaju Salmonella, w tym i taki pochodzący sprzed 6500 lat. To najstarszy zrekonstruowany dotychczas genom bakteryjny. A obecność S. enterica w zębach świadczy o tym, że ludzie ci w chwili śmierci cierpieli na choroby układowe. Badane szczątki należały do ludzi zamieszkujących tereny od współczesnej Rosji po Szwajcarię, którzy reprezentowali różne grupy kulturowe, od łowców zbieraczy, poprzez pasterzy-nomadów po wczesnych rolników. Tak szerokie spektrum czasowe, geograficzne i kulturowe pozwoliło nam na wykorzystanie po raz pierwszy genetyki molekularnej do powiązania ewolucji patogenów z pojawieniem się nowego stylu życia człowieka, mówi Herbig. Wraz z pojawieniem się rolnictwa i hodowli zwierząt ludzie zaczęli prowadzić osiadły tryb życia. Mieli większy kontakt ze zwierzętami oraz z odchodami zarówno zwierząt jak i innych ludzi. Od dawna więc istniała hipoteza mówiąca, że wszystkie te czynniki mogły doprowadzić do bardziej stałego i nawracającego kontaktu z patogenami oraz pojawienia się nowych chorób. Brakowało na to jednak bezpośrednich molekularnych dowodów. Prehistoryczna metagenomika daje nam niezwykły wgląd w przeszłość ludzkich chorób. Mamy obecnie dane molekularne, które pozwolą nam zrozumieć pojawienie się i rozprzestrzenianie patogenów przed tysiącami lat, stwierdza Felix M. Key z Instytutu Maxa Plancka i Massachusetts Institute of Technology. Badania wykazały, że wszystkie 8 genomów rodzaju Salmonella pozyskane od pasterzy i rolników to przodkowie szczepu, który wywołuje obecnie dur rzekomy. Prawdopodobnie jednak te prehistoryczne bakterie nie były dobrze zaadaptowane do ludzi i atakowały również zwierzęta. To zaś sugeruje, że pojawiły się one właśnie w wyniku zmiany trybu życia ze zbieracko-łowieckiego na pasterski i rolniczy. Już wcześniej pojawiły się sugestie, że ten szczep Salmonelli przeszedł ze świń na ludzi przed około 4000 lat. Jednak obecne odkrycie, że zaraża on ludzi od ponad 5000 lat sugeruje, że to świnie zaraziły się od nas. Autorzy najnowszych badań proponują jednak inną hipotezę. Uważają oni, że specyficzne dla ludzi i dla świń szczepy Salmonelli pochodzące od wspólnego przodka, zaczęły razem ewoluować gdy ludzie udomowili świnie. Zaczynamy rozumieć genetyczne podstawy adaptacji Salmonelli do gospodarza i możemy teraz przełożyć tę wiedzę na mechanizmy dotyczące pojawiania się chorób u ludzi i zwierząt, dodaje Johannes Krause. Powyższe doniesienia wyglądają jeszcze bardziej interesująco w zestawieniu z badaniami na temat różnic w układzie odpornościowym pomiędzy łowcami-zbieraczami a rolnikami. « powrót do artykułu
-
Naukowcy odkryli setki gigantycznych bakteriofagów, wirusów zabijających bakterie. Okazało się, że mają one cechy przynależne żywym organizmom, co zaciera granicę pomiędzy mikroorganizmami a wirusami. Ich rozmiary i złożoność budowy dorównują strukturom, które bezspornie uznajemy za żywe. W nowo odkrytych bakteriofagach znaleziono geny typowe dla bakterii, które bakterie używają przeciwko swoim gospodarzom. Niezwykłego odkrycia dokonali uczeni z University of California, Berkeley (UCB). Najpierw pobrali oni liczne próbki z 30 różnych ziemskich środowisk, od przewodu pokarmowego wcześniaków i ciężarnych kobiet, przez tybetańskie gorące źródło, południowoafrykański bioreaktor po pokoje szpitalne, oceany, jeziora obszary położone głęboko pod ziemią. Na podstawie tych próbek utworzyli wielką bazę DNA i zaczęli ją analizować. Analiza wykazała obecność 351 różnych gatunków gigantycznych bakteriofagów. Każdy z nich miał genom co najmniej 4-krotnie dłuższy niż genom przeciętnego znanego dotychczas bakteriofaga. Rekordzistą był tutaj bakteriofag o genomie złożonym z 735 000 par bazowych. To 15--krotnie więcej niż genom przeciętnego faga. Ten genom jest bardziej rozbudowany niż genomy wielu bakterii, którymi żywią się fagi. Badamy mikrobiomy Ziemi i czasem znajdujemy coś niespodziewanego. Te gigantyczne fagi zacierają różnice pomiędzy bakteriofagami, które nie są uważane za organizmy żywe, a bakteriami i archeonami. Natura znalazła sposób na istnienie czegoś, co jest hybrydą pomiędzy tego, co uznajemy za tradycyjne wirusy, a tradycyjne żywe organizmy, mówi profesor Jill Banfield. Innym zdumiewającym odkryciem było spostrzeżenie, że w DNA tych olbrzymich fagów znajdują się fragmenty CRISPR, czyli systemu używanymi przez bakterie do obrony przed bakteriofagami. Prawdopodobnie gdy fag wprowadza swoje DNA do wnętrza bakterii jego system CRISPR zwiększa możliwość bakteryjnego CRISPR, prawdopodobnie po to, by lepiej zwalczać inne fagi. Te fagi tak przebudowały system CRISPR, który jest używany przez bakterie i archeony, by wykorzystać go przeciwko własnej konkurencji i zwalczać inne fagi, mówi Basem Al-Shayeb, członek zespołu badawczego. Okazało się również, że jeden z nowo odkrytych fagów wytwarza proteinę analogiczną do Cas9, proteiny wykorzystywanej w unikatowej technologii edycji genów CRISPR-Cas9. Odkrywcy nazwali tę proteinę Cas(fi), gdyż grecką fi oznacza się bakteriofagi. Badając te wielkie fagi możemy znaleźć nowe narzędzia, które przydadzą się na polu inżynierii genetycznej. Znaleźliśmy wiele nieznanych dotychczas genów. Mogą być one źródłem nowych protein dla zastosowań w przemyśle, medycynie czy rolnictwie, dodaje współautor badań Rohan Sachdeva. Nowe odkrycie może mieć też znaczenie dla zwalczania chorób u ludzi. Niektóre choroby są pośrednio wywoływane przez fagi, gdyż fagi są nosicielami genów powodujących patogenezę i antybiotykooporność. A im większy genom, tym większa zdolność do przenoszenia takich genów i tym większe ryzyko, że takie szkodliwe geny zostaną przez fagi przeniesione na bakterie żyjące w ludzkim mikrobiomie. Jill Banfield od ponad 15 lat bada różnorodność bakterii, archeonów i bakteriofagów na całym świecie. Teraz, na łamach Nature, poinformowała o zidentyfikowaniu 351 genomów bakteriofagów o długości ponad 200 kilobaz. To czterokrotnie więcej więc długość genomu przeciętnego bakteriofaga. Udało się też określić dokładną długość 175 nowo odkrytych genomów. Najdłuższy z nich, i absolutny rekordzista w świecie bakteriofagów, ma 735 000 par bazowych. Uczeni sądzą, że genomy, których długości nie udało się dokładnie ustalić, mogą być znacznie większe niż 200 kilobaz. Większość z genów nowo odkrytych bakteriofagów koduje nieznane białka. Jednak naukowcom udało się zidentyfikować geny kodujące proteiny niezbędne do działania rybosomów. Tego typu geny nie występują u wirusów, a u bakterii i archeonów. Tym co odróżnia cząstki nie będące życiem od życia jest posiadanie rybosomów i związana z tym zdolność do translacji białek. To właśnie jedna z najważniejszych cech odróżniających wirusy od bakterii, czyli cząstki nie będące życiem od organizmów żywych. Okazuje się, że niektóre z tych olbrzymich fagów posiadają znaczną część tej maszynerii, zatem nieco zacierają te granice, przyznaje Sachdeva. Naukowcy przypuszczają, że olbrzymie fagi wykorzystują te geny do pokierowania bakteryjnymi rybosomami tak, by wytwarzały kopie protein potrzebnych fagom, a nie bakteriom. Niektóre z tych fagów posiadają tez alternatywny kod genetyczny, triplety, które kodują specyficzne aminokwasy, co może zmylić bakteryjne rybosomy. Jakby tego było mało, nowo odkryte bakteriofagi posiadają geny kodujące różne odmiany protein Cas. Niektóre mają też macierze CRISPR, czyli takie obszary bakteryjnego genomu, gdzie przechowywane są fragmenty genomu wirusów, służące bakteriom do rozpoznawania i zwalczania tych wirusów. Uczeni stwierdzili, że fagi z wielkimi genomami są dość rozpowszechnione w ekosystemach Ziemi. Ich obecność nie ogranicza się do jednego ekosystemu. Odkryte wielkie fagi zostały przypisane do 10 nowych kladów. Każdy z nich posiada w nazwie słowo „wielki” w języku jednego z autorów badań. Te nowe klady to Mahaphage (z sanskrytu), Kabirphage, Dakhmphage i Jabbarphage (z arabskiego), Koydaiphage (japoński), Biggiephage (angielski z Australii), Whopperphage (angielski z USA), Judaphage (chiński), Enormephage (francuski) oraz Keampephage (duński). « powrót do artykułu
- 2 replies
-
- organizm żywy
- CRISPR
-
(and 5 more)
Tagged with:
-
Wielu osobom przebywającym na oddziałach intensywnej opieki medycznej podaje się probiotyki. Okazuje się jednak, że u niewielkiego odsetka pacjentów mogą one powodować bakteremię. Obecne w probiotykach bakterie mogą bowiem dostawać się do krwi pacjentów. O zauważeniu takiego zjawiska informuje na łamach Nature grupa naukowców z Wydziału Biologii Izraelskiego Instytutu Technologicznego Technion w Hajfie oraz z Boston's Children Hospital, Harvard Medical School i Walter Reed Army Institute of Research w USA. Wszystko zaczęło się od spostrzeżenia, jakiego dokonano w Boston Children's Hospital. Otóż w latach 2009–2014 na tamtejszy OIOM przyjęto 22 174 pacjentów. Wśród nich były 522 osoby, które otrzymywały probiotyki zawierające szczep Lactobacillus rhamnosus GG (LGG). Bakteremia pojawiła się u 6 (1,1%) z tych pacjentów. Tymczasem w grupie 21 652 pacjentów, którzy nie otrzymywali probiotyków z LGG bakteremie zaobserwowano u 2 osób (0,009%). Innymi słowy, w grupie przyjmującej probiotyki ryzyko wystąpienia bakteremii było ponad 100-krotnie większe. Naukowcy postanowili bliżej się temu przyjrzeć. Chcieliśmy sprawdzić, czy możemy zidentyfikować przyczyny wystąpienia bakteremii i czy uda się nam opracować rekomendacje dotyczące podawania probiotyków pacjentom OIOM-u, mówi jedna z głównych autorek badań, doktor Kelly Flett. Najpierw szczegółowo zbadano same bakterie z krwi chorych i stwierdzono, że we wszystkich 6 przypadkach osób, które przyjmowały probiotyki we krwi występują Lactobacillus rhamnosus. U obu osób nieprzyjmujących probiotyków bakteremia była wywołana przez inne gatunki Lactobacillus. Warto tutaj zauważyć, że bakteremia spowodowana przez Lactobacillus rhamnosus występuje w całej populacji z częstotliwością 0,00007%, zatem zdarza się kilkanaście tysięcy razy rzadziej, niż wspomniany 1,1% pacjentów OIOM-u przyjmujących probiotyki. By stwierdzić, czy to probiotyki wywołały bakteremie, wykonano szczegółowe analizy kodu genetycznego bakterii wyizolowanych z krwi pacjentów, a wyniki porównano z genomem bakterii obecnych w probiotykach LGG. Okazało się, że genomy są niemal identyczne. We wszystkich próbkach łącznie wykryto jedynie 23 polimorfizmy pojedynczego nukleotydu (SNP), a odległość pomiędzy ostatnim wspólnym przodkiem bakterii z probiotyków i z krwi pacjentów była mniejsza niż pomiędzy ostatnim wspólnym przodkiem bakterii z probiotyków a klonami LGG przechowywanymi w banku genetycznym. Co więcej, nie stwierdzono żadnej mutacji, która jednoznacznie pozwoliłaby odróżnić bakterie z probiotyków od bakterii z krwi. Autorzy badań podkreślają, że u wspomnianych 6 pacjentów, u których rozwinęła się bakteremia, nie występowały typowe czynniki ryzyka bakteremii Lactobacillus. Co więcej, gdy osoby te porównano z 16 innymi pacjentami OIOM-u, którzy też przyjmowali probiotyki, ale u których bakteremia nie wystąpiła, nie stwierdzono żadnych istotnych różnic takich jak użycie sprzętu medycznego w czasie pobytu w szpitalu, zabiegi chirurgiczne, występowanie biegunki, przyjmowanie antybiotyków i inne. To zaś wskazuje, że prawdopodobnie trudno będzie zidentyfikować tych pacjentów, którzy są narażeni na rozwój bakteremii. Naukowcy nie wiedzą, w jaki sposób doszło do zakażenia krwi. Wszyscy pacjenci mieli założone wkłucie centralne, które jest jedną z możliwych dróg zakażenia. Inną możliwością jest przeniknięcie bakterii przez ścianę pęcherza. Badania wykazały istotne statystycznie zwiększone ryzyko rozwoju bakteremii u pacjentów OIOM-u przyjmujących probiotyki z LGG. Stwierdzono także, że już po przeniknięciu do krwioobiegu pacjenta bakterie ewoluują. Nie można wykluczyć, że nabywają wówczas oporności na antybiotyki, chociaż nie ma też pewności, czy cech tych nie wykazywały jeszcze przed podaniem probiotyków. « powrót do artykułu
- 1 reply
-
- zakażenie krwi
- bakteria
-
(and 4 more)
Tagged with:
-
Antybiotykooporność to jeden z największych problemów, z którymi przychodzi właśnie mierzyć się ludzkości. Już w tej chwili na terenie Unii Europejskiej każdego roku z powodu antybiotykooporności umiera 25 000 osób. Jeśli nie poradzimy sobie z tym problemem, to w roku 2050 na całym świecie będzie umierało 10 milionów osób rocznie z powodu oporności bakterii na stosowane antybiotyki. Tym bardziej należy cieszyć się, że powstał nowy środek chemiczny, który skutecznie identyfikuje i zabija antybiotykooporne superbakterie Gram-ujemne. Jest on dziełem doktorantki Kirsty Smitten, a prace nad nim prowadzą naukowcy z University of Sheffield i Rutheford Appleton Laboratory. Bakterie Gram-ujemne, a należy do nich np. E. coli, są odpowiedzialne za wiele niebezpiecznych infekcji, w tym zapalenie płuc, infekcje układu moczowego czy krwionośnego. Bardzo trudno się je zwalcza, gdyż środki chemiczne mają problem z przeniknięciem ściany komórkowej bakterii. Od 50 lat nie pojawiła się żadna nowa metoda zwalczania bakterii Gram-ujemnych, a ostatni lek, który potencjalnie mógłby je zwalczać, wszedł w fazę testów klinicznych w 2010 roku. Nowy związek chemiczny ma kilka istotnych cech. Wykazuje luminescencję, co oznacza, że można śledzić sposób, w jaki działa na bakterie. To zaś umożliwia prace nad nowymi terapiami. Dotychczasowe badania wskazują, że wspomniany związek działa na kilka różnych sposobów, co powoduje, że bakteriom trudno będzie wyrobić oporność. Na razie testowany był na mikroorganizmach opornych na jeden rodzaj antybiotyków. W najbliższym czasie rozpoczną się testy na bakteriach wielolekoopornych. Niedawno Światowa Organizacja Zdrowia opublikowała raport, w którym wymieniała kilkanaście Gram-ujemnych bakterii jako jedne z największych zagrożeń dla ludzi i stwierdziła, że znalezienie środków je zwalczających jest priorytetem, gdyż bakterie te powodują choroby o wysokiej śmiertelności, bardzo szybko ewoluuje u nich antybiotykooporność, a zakażeniami często dochodzi w szpitalach. « powrót do artykułu
-
- lekooporność
- antybiotyk
-
(and 2 more)
Tagged with:
-
Sensacyjne wyniki badań mogą sugerować, że za rozwój choroby Alzheimera odpowiada... niedostateczna higiena jamy ustnej. Wszystko wskazuje na to, że jest ona w jakiś sposób powiązana z tym schorzeniem. Przyczyny choroby Alzheimera pozostają nieznane. Rozpowszechnioną teorię, mówiącą, że odpowiada za nią gromadzenie się blaszek amyloidowych w mózgu, osłabiają ostatnie wyniki badań, w czasie których blaszki amyloidowe znaleziono też w mózgach zdrowych osób. Wiadomo, że niedostateczna higiena jamy ustnej jest powiązana z chorobą Alzheimera. Nie jest jednak jasne, czy przyczynia się ona do powstawania choroby, czy też jest jej wynikiem, gdyż pacjenci z demencją zapominają o myciu zębów. Najnowsze wyniki badań dowodzą, że bakteria powodująca choroby przyzębia jest obecna nie tylko w ustach, ale i w mózgach osób z alzheimerem. Co więcej, badania na myszach wykazały, że bakteria wywołuje w mózgu zmiany typowe dla alzheimera. To kolejne już odkrycie sugerujące, że do rozwoju tej choroby neurodegeneracyjnej przyczyniają się mikroorganizmy. Jednak nawet naukowcy, którzy zgadzają się z takim podejściem, nie są przekonani, że Porphyromonas gingivalis, bakteria, która była przedmiotem najnowszych badań, wywołuje alzheimera. Całkowicie zgadzam się z tym, że ten mikroorganizm może brać w tym udział. Ale znacznie mniej przekonuje mnie stwierdzenie, że to on odpowiada za chorobę Alzheimera, mówi neurobiolog Robert Moir z Uniwersytetu Harvarda, którego badania wskazują, że gromadzenie się w mózgu β-amyloidu, z którego formują się blaszki, to forma obrony przed mikroorganizmami. Za najnowszymi badaniami, których wyniki opublikowano w Science Advances, stoi firma biotechnologiczna Cortexyme z San Francisco. Jej współzałożycielem jest Stephen Dominy. To psychiatra, który w latach 90. ubiegłego roku leczył ludzi z HIV. Niektórzy z jego pacjentów cierpieli na demencję, która cofnęła się po podaniu im leków antyretrowirusowych. Wtedy to Dominy zaczął zastanawiać się, czy choroba Alzheimera, której najbardziej znanym objawem jest demencja, nie jest chorobą zakaźną. Uczony zaczął poszukiwać P. gingivalis z tkance mózgowej zmarłych, którzy cierpieli na alzheimera. Gdy znalazł jej ślady założył firmę, która zajęła się dalszymi badaniami. Cortexyme we współpracy z laboratoriami w Europie, USA, Nowej Zelandii i Australii potwierdziła, że wspomniana bakteria nie tylko znajduje się w mózgach zmarłych, którzy cierpieli na chorobę Alzheimera, ale jej DNA jest obecne też w płynie mózgowo-rdzeniowym żywych pacjentów. Co więcej, w ponad 90% zbadanych tkanek mózgowych znaleziono gingipainy, toksyczne enzymy wytwarzane przez P. gingivalis. Służą one bakterii do zmiany odpowiedzi immunologicznej gospodarza na własną korzyść oraz do pozyskiwania składników odżywczych. Uczeni zauważyli, że im więcej gingipain w mózgu, tym więcej też powiązanych z chorobą alzheimera protein tau i ubikwityny. Uczeni, chcąc sprawdzić, czy bakteria może powodować rozwój choroby, codziennie przez 6 tygodni nakładali na dziąsła myszy P. gingivalis. Później w mózgach zwierząt znaleźli zarówno bakterię, jak i umierające neurony oraz podwyższony poziom β-amyloidu. Podczas eksperymentów w laboratorium okazało się, że gingipainy niszczą białka tau. Wiadomo zaś, że zwyrodnienia tego białka są skorelowane z nasileniem objawów choroby Alzheimera. Gdy myszom laboratoryjnym podawano lek, który wiąże gingipainy, doprowadziło to do lepszego oczyszczenia mózgu z P. gingivalis niż podawanie popularnych antybiotyków, zmniejszyło produkcję β-amyloidu oraz tempo neurodegeneracji. Wzięcie na cel gingipain prowadzi prawdopodobnie do zagłodzenia bakterii, mówi Dominy. Wstępne badania na ochotnikach sugerują, że lek jest prawdopodobne bezpieczny i prowadzi do poprawy funkcji poznawczych,. Jeszcze w bieżącym roku mają ruszyć testy na większą skalę. Neurolog James Noble z Columbia University, który badał związek chorób przyzębia z alzheimerem mówi, że co prawda hipoteza tego typu jest dziwna, ale wydaje się mieć pewne podstawy. Noble dodaje, że eksperymenty przeprowadzone przez Cortexyme są największymi z dotychczasowych badań nad obecnością P. gingivalis w mózgach osób cierpiących na chorobę Alzheimera i że zostały solidnie przeprowadzone. Niewykluczone, że P. gingivalis jest jednym z wielu mikroorganizmów, które w jakiś sposób wpływają na rozwój alzheimera. Jeśli jednak się okaże, że to właśnie ten mikroorganizm odpowiada za pojawienie się choroby, nie oznacza to jeszcze, że każdy, kto cierpi na choroby przyzębia, zachoruje też na alzhemiera. Jednak tak czy inaczej wygląda na to, że regularna i prawidłowa higiena jamy ustnej zmniejsza ryzyko. « powrót do artykułu
- 3 replies
-
- alzheimer
- choroba alzheimera
- (and 6 more)
-
W ludzkich jelitach znaleziono największe ze znanych bakteriofagów, które okresowo dziesiątkują bakterie w naszym przewodzie pokarmowym. Jak donoszą naukowcy z Uniwersytetu Kalifornijskiego w Berkeley, te megafagi są 10-krotnie większe od przeciętnych bakteriofagów i 2-krotnie większe od największych znanych dotychczas fagów. Co interesujące, znaleziono je wyłącznie w jelitach osób, które stosują dietę odmienną od diety ludzi z Zachodu, jedzą dużo błonnika i mało tłuszczu. Megafagi znaleziono też w jelitach pawianów i świń, co pokazuje, że fagi, które mogą też zawierać geny mające wpływ na ludzkie zdrowie, mogą przemieszczać się pomiędzy ludźmi a zwierzętami. Niewykluczone zatem, że mogą też przenosić choroby. Wiemy, że fagi mogą przenosić geny powodujące choroby oraz geny antybiotykooporności. Przemieszczanie się megafagów i przemieszczenie się bakterii będących ich gospodarzami stwarza możliwość przenoszenia chorób pomiędzy ludźmi a zwierzętami. A megafagi zwiększają to ryzyko, mówi profesor Jill Banfield. Warto tutaj też wspomnieć, że większość biologów nie uważa wirusów za organizmy żywe. Odkrycie megafagów, które są większe niż bakterie zaciera różnice pomiędzy tym, co ożywione a co nieożywione. Profesor Banfiled jest pionierem na polu sekwencjonowania metagenomicznego. To metoda pozwalająca na jednoczesne sekwencjonowanie wszystkich genów wszystkich organizmów występujących w danej próbce. Po sekwencjonowaniu odtwarza się genom każdego z organizmów, często okrywając przy tym nieznane mikroorganizmy. Pani Banfield i jej zespół prowadzili już sekwencjonowanie próbek wód kopalnianych, gejzerów, ludzkiego przewodu pokarmowego, głęboko położonych warstw skalnych, odkrywając przy tym olbrzymią liczbę nowych mikroorganizmów. Banfield odkryła megafagi analizując próbki z jelit mieszkańców Bangladeszu. Zawierający materiał genetyczny kapsyd megafagów ma średnicę aż 200-300 nanometrów. Dzięki technice CRISPR ujawniono też, że fragmenty kodu genetycznego megafagów znajdują się tylko u bakterii z rodzaju Prevotella, co sugeruje, że megafagi głównie na nich żerują. Prevotella rzadziej występuje u ludzi spożywających dietę zachodnią, bogatą w mięso, cukier i tłuszcze. Prevotella powoduje infekcje górnych dróg oddechowych oraz choroby przyzębia. Odkrycie megafagów, które na niej żerują, może przyczynić się do opracowania nowych metod leczenia. Pierwszego odkrycia megafagów dokonano u ludzi żyjących w Bangladeszu w regionie administracyjnym Laksham Upazila. Dlatego nazwano je fagami Lak. Następnych odkryć dokonano u przedstawicieli zbieracko-łowieckiego plemienia Hadza w Tanzanii, dwóch oddzielnych grup społecznych pawianów z Kenii oraz u świń z duńskich farm. Pomiędzy fagami Lak odkrytymi u świń i tymi u ludzi występuje bliższe pokrewieństwo, niż między fagami Lak znalezionymi u pawianów i ludzi. Jest więc dość prawdopodobne, że fagi te przemieszczają się pomiędzy różnymi gatunkami. Sądzimy, że fagi Lak dopiero niedawno dostały się do organizmów pawianów, gdyż są pawiany niemal nie wyrobiły sobie na nie oporności i są one wśród nich bardzo rozpowszechnione, mówi profesor Banfield. Fagi mogą przenosić geny kodujące wiele toksyn bakteryjnych, powodując, że u osób zarażonych występują poważniejsze objawy różnych chorób. Grupa Banfield chce zbadać, w jaki sposób fagi i ich bakteryjne ofiary zmieniają się w czasie i jak wpływa na nie dieta. U czterech osób, u których odkryto megafagi stwierdzono, że zarówno ilość fagów jak i bakterii Prevotella zmienia się w czasie. Wygląda na to, że dochodzi do okresowych wzrostów liczby fagów, co prowadzi co spadku populacji Prevotella, to z kolei powoduje spadek populacji fagów, co umożliwia odrodzenie się populacji bakterii. I cykl się powtarza. Duże genomy megafagów to obiecujące pole do badań. Te genomy są pełne protein, których funkcji nie znamy. Być może biorą one udział w procesach, o których nie mamy pojęcia. Możemy odkryć tam wiele nowych rzeczy. « powrót do artykułu
-
- bakteriofag
- fagi Lak
- (and 5 more)
-
Profesor Bonnie Bassler i student Justin Silpe zidentyfikowali wirusa VP882, który może podsłuchać bakterie i zdecydować o ich zabiciu. Wirus skutecznie atakuje E. coli oraz salmonellę i bakterię cholery. Profesor Bassler zrewolucjonizowała mikrobiologię odkrywając, że bakterie porozumiewają się między sobą za pomocą cząsteczek związków chemicznych (quorum sensing). "Pomysł, by wirus wykrywał molekuły używane przez bakterie do komunikacji jest całkowicie nowy. Justin odkrył pierwszy tego typu przypadek, a później tak zmodyfikował wirusa, by ten odbierał różne sygnały, nie tylko molekuły komunikacyjne, i wówczas wirus zabija na żądanie", mówi uczona. Szczegółowy opis pracy ukaże się 10 stycznie na łamach pisma Cell. Jak mówi uczona, wirus może podjąć jedną z dwóch decyzji – pozostać z gospodarzem lub go zabić. Może zatem żyć wewnątrz gospodarza i unikać jego układu odpornościowego lub też namnożyć się i w ten sposób zabić gospodarza, wypuszczając setki i tysiące swoich potomków w kierunku innego gospodarza. Jednak zabicie obecnego gospodarza jest ryzykowne. Jeśli bowiem w pobliżu nie będzie innego, to wszystkie wirusy zginą. Tymczasem okazuje się, że VP882 potrafi uniknąć tego ryzyka. Wirus nasłuchuje komunikacji pomiędzy bakteriami, świadczącej o tym, że w pobliżu są inne bakterie. To zwiększa prawdopodobieństwo, że gdy wirus się namnoży i zabije gospodarza, jego potomstwo znajdzie kolejną ofiarę. Ten artykuł opisuje relacje pomiędzy wirusami a ich gospodarzami z zupełnie innej perspektywy, mówi profesor Graham Hatfull. Po raz pierwszy dowiadujemy się, że gdy bakteriofag jest w stanie lizogenicznym (uśpionym) to nie śpi on całkowicie, ale czujnie drzemie z otwartym jednym okiem i nasłuchującymi uszami, gotów do reakcji, i gdy tylko usłyszy odpowiednie sygnały, szybko odpowiada na zmiany w środowisku. Jason odkrył, że komunikacja przekracza granice królestw w systematyce. Zapoczątkował całkowicie nowe pole badań. Byłoby bowiem bez sensu przyjąć założenie, że to jedyny istniejący przykład komunikacji pomiędzy królestwami. Justin odkrył pierwszy przypadek, a po jego zauważeniu zaczął szukać głębiej. Znalazł wiele wirusów, które mają podobne możliwości. Być może nie wszystkie z nich są w stanie wykryć komunikację pomiędzy bakteriami, ale jasnym się stało, że wirusy zbierają informacje na temat swojego gospodarza i wykorzystują ją, by go zabić, stwierdza profesor Bassler. Gdy Silpe odkrył, że VP882 może podsłuchiwać bakterie, zaczął prowadzić eksperymenty, które miały na celu wysłanie wirusowi sygnału, by zabijał bakterie na żądanie. Wirusy zabijające bakterie, bakteriofagi, znane są od dawna i używane w medycynie. VP882 jest pierwszym znanym bakteriofagiem, który nasłuchuje komunkacji pomiędzy bakteriami, by zdecydować, kiedy najlepiej zabić gospodarza. Ponadto, jak zauważa profesor Bassler, jest on bardzo obiecującym narzędziem terapeutycznym, gdyż nie działa jak typowy wirus. Większość wirusów potrafi zarazić tylko konkretne rodzaje komórek. Wirusy grypy zarażają komórki płuc, wirus HIV atakuje tylko specyficzne komórki układu odpornościowego. VP882 jest inny. Może on zarażać bardzo dużo komórek. Slipe przetestował go już na bakteriach cholery (Vibrio cholerae), salmonelli oraz E. coli. Bakterie te przez setki milionów lat ewoluowały oddzielnie od siebie. Fakt, że VP882 potrafi je wszystkie zarazić wskazuje, że zarazi on też wiele innych bakterii. Profesor Hatfull zauważa, że VP882 może stać się niezwykle przydatnym narzędziem do walki z infekcjami, szczególnie w dobie rosnącej antybiotykooporności. Wirusowy zabójca powinien nie tylko poradzić sobie z bakteriami opornymi na antybiotyki, ale może nawet spowolnić pojawianie się takich szczepów. « powrót do artykułu
-
DnaK, proteina bakterii z rodzaju Mycoplasma, zaburza proces naprawy DNA w komórce, wspomagając w ten sposób rozwój nowotworu. W samych guzach nowotworowych znaleziono niewiele DnaK lub nie znajdowano go w ogóle, co oznacza, że szkodliwe działanie proteiny ma miejsce na bardzo wczesnym etapie rozwoju nowotworu, ale prawdopodobnie nie jest ona już potrzebna, gdy komórki nowotworowe się uformują. Badania, przeprowadzone w Institute of Human Virology na University of Maryland, opublikowano na łamach PNAS. Sugerują one, że infekcje bakteryjne mogą przyczyniać się do większej liczby nowotworów niż dotychczas sądzono. Obecnie około 20% nowotworów jest powodowanych przez infekcje, w większości wirusowe. Mycoplasma to bakterie, które są kojarzone z nowotworami, przede wszystkim u ludzi zarażonych HIV. Dzięki naszym badaniom wiemy, w jaki sposób infekcja może uruchomić całą kaskadę wydarzeń prowadzących do rozwoju nowotworu. Co bardzo ważne, infekcja nie musi być długotrwała, a bakteryjne proteiny nie muszą być bez przerwy obecne w komórkach nowotworowych. Badania dostarczają też informacji na temat interakcji bakterii z lekami przeciwnowotworowymi, mówi profesor Robert Gallo. Naukowcy wykorzystali myszy z osłabionym układem odpornościowym do zbadania roli infekcji Mycoplasma w rozwoju chłoniaka. Porównywali, jak szybko niezarażone myszy z osłabionym układem odpornościowym rozwiną chłoniaka w porównaniu z myszami zarażonymi, również z osłabionym układem odpornościowym. Zwierzęta zarażono szczepem Mycoplasma pozyskanym od pacjenta z HIV. Okazało się, że u zarażonych myszy chłoniak pojawił się wcześniej, a u niektórych, ale nie u wszystkich, DNA bakteryjne występowało w komórkach nowotworowych. Infekcja nie musi więc trwać długo, by doprowadzić do rozwoju nowotworu. Skupiliśmy się na proteinie DnaK. Należy ona do rodziny protein chroniących inne proteiny przed uszkodzeniem lub pomagających im zawijać się. W tym jednak przypadku DnaK zmniejszała aktywność ważnych protein komórkowych, takich jak p53, zaangażowanych w naprawdę DNA i ochronę przed nowotworem. Komórki zarażone Mycoplasma nie są w stanie naprawić uszkodzonego DNA, co zwiększa ryzyko rozwoju nowotworu, wyjaśnia doktor Davide Zella. Naukowcy zauważyli też, że uwolnione przez bakterię DnaK może przenikać do sąsiednich komórek. Udowodnili też, że bakteryjna proteina, obniżając aktywność p53 zmniejsza też skuteczność leków przeciwnowotworowych. Infekcja bakterią z rodziny Mycoplasma nie tylko rozpoczyna w zainfekowanej komórce całą sekwencję wydarzeń prowadzących do akumulowania się uszkodzeń w DNA, ale również doprowadza do takich samych zjawisk w pobliskich niezainfekowanych komórkach, do których trafia DnaK. « powrót do artykułu
-
- Mycoplasma
- nowotwór
- (and 4 more)
-
W czasie dorocznego spotkania Society for Neuroscience zaprezentowano plakat, który przyciągnął uwagę specjalistów. Na zdjęciu w wysokiej rozdzielczości było bowiem widać... bakterię penetrującą i kolonizującą zdrową komórkę mózgową. Autorzy fotografii i stojących za nią badań zalecają ostrożność, gdyż badania znajdują się na wstępnym etapie, a widoczna na zdjęciu tkanka mózgowa została pobrana ze zwłok, więc mogła zostać zanieczyszczona. Jednak możliwość, że bakterie mogą bezpośrednio wpływać na procesy w mózgu, to coś pasjonującego. To przebój tygodnia. To tak, jakbyśmy w mózgu mieli osobną nieznaną dotychczas fabrykę molekularną. To coś przekraczającego ludzkie pojęcie, mówi neurolog Ronald McGregor z Uniwersytetu Kalifornijskiego w Los Angeles, który nie brał udziało w badaniach. Mózg jest mocno chroniony przed zewnętrznymi wpływami. Bakterie i wirusy czasem przedostają się przez barierę krew-mózg, często wywołując zagrażające życiu stany chorobowe. Od pewnego czasu pojawia się coraz więcej doniesień, że bakterie mikrobiomu jelitowego mogą pośrednio wpływać na nasz charakter czy zachowanie oraz na ryzyko wystąpienia chorób neurologicznych. Na przykład zachwianie równowagi mikrobiomu może prowadzić do zwiększonej produkcji protein przyczyniających się do rozwoju choroby Parkinsona. Jednak najnowsze badania sugerują coś, czego nikt sie nie spodziewał. Neuroanatom Rosalinda Roberts wraz ze swoim zespołem z University of Alabama w Birmingham (UAB) postanowiła zbadać różnice pomiędzy mózgami osób zdrowych i chorujących na schizofrenię. Pod mikroskopem badano tkankę mózgową pobraną wkrótce po śmierci tych osób. Przed około 5 laty Courtney Walker, magistrantka z laboratorium Roberts, zauważyła w preparatach niezidentyfikowane obiekty wyglądające jak pałeczki, które było widać pod mikroskopem elektronowym. Początkowo nie zwróciłam na to uwagi, bo szukałam czegoś innego. Pałeczki pojawiały się jednak w kolejnych preparatach. W końcu pani Roberts skonsultowała spostrzeżenie z innymi naukowcami z UAB. W bieżącym roku jeden z bakteriologów przyszedł z niespodziewaną wiadomością – zauważone struktury to bakterie jelitowe. Znaleziono je we wszystkich 34 badanych mózgach, z których połowa należała do osób zdrowych, a połowa do osób ze schizofrenią. Roberts zaczęła zastanawiać się, czy bakterie mogły przedostać się do mózgu w ciągu kilku godzin pomiędzy śmiercią pacjenta a usunięciem mózgu. Przyjrzała się więc preparatom mózgów myszy, które pobrano natychmiast po zabiciu zwierzęcia. Również w nich znalazła bakterie. Następnie przeanalizowała mózgi myszy, które są hodowane bez żadnego kontaktu z mikroorganizmami. W ich mózgach nie było bakterii. Sekwencjonowanie RNA bakterii z mózgów ujawniło, że należały one do trzech typów bakterii jelitowych: Firmicutes, Proteobakterii oraz Bakterioidetes. Naukowcy nie mają pojęcia, w jaki sposób bakterie dotarły z jelit do mózgu. Mogły przeniknąć barierę krew-mózg, mogły wędrować po nerwach pomiędzy jelitami a mózgiem, mogły też dostać się przez nos. Zespół Roberts nie wie również, czy mają one negatywny czy pozytywny wpływ na mózg. W tkance nie znaleziono śladów zapalenia, co świadczyłoby o negatywnym ich wpływie, jednak naukowcy jeszcze nie przeprowadzili szczegółowych porównań bakterii w mózgach osób zdrowych i chorych. Jeśli przyszłe badania wykażą występowanie dużych różnic, może okazać się, że mózg posiada własny mikrobiom, który decyduje o jego zdrowiu i chorobie. Jak dotąd zauważono jednak pewne interesujące zjawiska. Wydaje się, że bakterie szczególnie chętnie kolonizują astrocyty, komórki wspomagające pracę neuronów. Bakterie skupiały się przede wszystkim przy końcach astrocytów, otaczających naczynia krwionośne w barierze krew-mózg. Dużo wskazuje też na to, że bakterie są bardziej liczne w długich włóknach projekcyjnych otoczonych mieliną. Uczeni nie są obecnie w stanie wyjaśnić tych zjawisk, jednak nie można wykluczyć, że bakterie przyciąga tam obecność cukru i tłuszczu. Odpowiadając na pytanie, dlaczego dotychczas nie zaobserwowano bakterii w mózgu, Roberts wyjaśnia, że bardzo rzadko mózgi osób zmarłych są poddawane badaniom za pomocą mikroskopu elektronowego. Poza tym neurolodzy, podobnie jak początkowo ona sama, mogą lekceważyć bądź nie rozpoznawać obecności bakterii w mózgu. Grupa Roberts musi jeszcze wykluczyć zanieczyszczenie tkanki bakteriami z powietrza lub narzędzi. Jeśli jednak nawet bakterie nie żyją normalnie w mózgach, to sposób ich kolonizowania mózgów zmarłych osób może być niezwykle intrygujący. Najbardziej jednak intrygującą możliwością jest istnienie mikrobiomu mózgu. Dużo rzeczy zostało tutaj do zbadania, mówi Teodor Postolache, psychiatra z University of Maryland, który specjalizuje się w badaniu Toxoplasma gondii i jej wpływu na mózg. Nie jestem zbytnio zdumiony faktem, że w mózgu można znaleźć inne mikroorganizmy. Jeśli jednak one tam normalnie żyją, to mamy do czynienia z prawdziwą rewolucją, mówi. Uczony dodaje, że być może bakterie jelitowe mają za zadanie ochronę mózgu przed szkodliwymi mikroorganizmami. Daleko nam do tego, by to udowodnić, ale to intrygujący trop, stwierdza. « powrót do artykułu
-
Pierwsze splątanie organizmu żywego i fotonu
KopalniaWiedzy.pl posted a topic in Astronomia i fizyka
Grupa naukowców z Uniwersytetu w Oksfordzie donosi o udanym splątaniu bakterii z fotonami. W październikowym numerze Journal of Physics ukazał się artykuł zespołu pracującego pod kierunkiem Chiary Marletto, który przeanalizował eksperyment przeprowadzony w 2016 roku przez Davida Colesa i jego kolegów z University of Sheffield. Podczas wspomnianego eksperymentu Coles wraz z zespołem umieścili kilkaset chlorobakterii pomiędzy dwoma lustrami i stopniowo zmniejszali odległość pomiędzy nimi tak, aż dzieliło je zaledwie kilkaset nanometrów. Odbijając białe światło pomiędzy lustrami naukowcy chcieli spowodować, by fotosyntetyczne molekuły w bakteriach weszły w interakcje z dziurą, innymi słowy, bakterie miały ciągle absorbować, emitować i ponownie absorbować odbijające się fotony. Eksperyment okazał się sukcesem. Sześć bakterii zostało w ten sposób splątanych z dziurą. Jednak Marletto i jej zespół twierdzą, że podczas eksperymentu zaszło coś więcej, niż jedynie połączenie bakterii z dziurą. Przeprowadzone analizy wykazały, że sygnatura energetyczna pojawiająca się podczas eksperymentu jest właściwa dla splątania molekuł wewnątrz bakterii e światłem. Wydaje się, że niektóre fotony jednocześnie trafiały w molekuły i je omijały, a to właśnie dowód na splątanie. Nasze modele dowodzą, że zanotowano sygnaturę splątania pomiędzy światłem a bakterią, mówi pani Marletto. Po raz pierwszy udało się dokonać splątania kwantowego w żywym organizmie. Istnieje jednak wiele zastrzeżeń, mogących podważać wnioski grupy Marletto. Po pierwsze i najważniejsze, dowód na splątanie zależy od tego, w jaki sposób zinterpretujemy interakcję światła z bakterią. Marletto i jej grupa zauważają, że zjawisko to można opisać też na gruncie klasycznego modelu, bez potrzeby odwoływania się do efektów kwantowych. Jednak, jak zauważają, nie można tego opisać modelem „półklasycznym”, w którym do bakterii stosujemy zasady fizyki newtonowskiej, a do fotonu fizykę kwantową To zaś wskazuje, że mieliśmy do czynienia z efektami kwantowymi dotyczącymi zarówno bakterii jak i fotonu. To trochę dowód nie wprost, ale sądzę, że wynika to z faktu, iż oni próbowali bardzo rygorystycznie podejść do tematu i nie wysuwali twierdzeń na wyrost, mówi James Wootton z IBM Zurich Research Laboratory, który nie był zaangażowany w badania. Z kolei Simon Gröblacher z Uniwersytetu Technologicznego w Delft zwraca uwagę na kolejne zastrzeżenie. Otóż energię bakterii i fotonu zmierzono wspólnie, nie osobno. To pewne ograniczenie, ale wydaje się, że miały tam miejsce zjawiska kwantowe. Zwykle jednak gdy chcemy dowieść splątania, musimy osobno zbadać oba systemy. Wiele zespołów naukowych próbuje dokonać splątania z udziałem organizmów żywych. Sam Gröblacher zaprojektował eksperyment, w którym chce umieścić niesporczaki w superpozycji. Chodzi o to, by zrozumieć nature rzeczy i sprawdzić czy efekty kwantowe są wykorzystywane przez życie. W końcu u swoich podstaw wszystko jest kwantem, wyjaśnia współpracownik Marletto, Tristan Farrow. « powrót do artykułu