Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'salmonella'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 7 results

  1. Uczeni z Yale University opisali, w jaki sposób białko APOL3 czyści organizm z bakterii. Podczas badań z wykorzystaniem m.in. salmonelli, wykazali, że białko rozpuszcza błonę komórkową bakterii. Już wcześniej było wiadomo, że komórki bronią się przed bakteriami atakując ich błony, jednak tutaj mamy do czynienia z pierwszym opisem antybakteryjnego działania podobnego do działania detergentu. To przykład, jak ludzki organizm produkuje własne antybiotyki w formie białka działającego jak detergent. Możemy się od niego uczyć, mówi główny autor badań, immunolog doktor John MacMicking. Jedną z linii obrony naszego organizmu są wyspecjalizowane komórki układu odpornościowego. Jednak w ciągłym wyścigu pomiędzy nimi, a patogenami, niejednokrotnie dochodzi do sytuacji, w której patogen przedrze się przez pozakomórkowe linie obrony i wniknie do komórki, gdzie może się namnażać. Dlatego też w drodze ewolucji pojawiły się wewnątrzkomórkowe mechanizmy obronne. U kręgowców mechanizmy te są uruchamiane przez interferon gamma (IFN-γ), który reguluje transkrypcję setek genów pomagających w walce z bakteriami, wirusami czy grzybami w wielu typach komórek. Wciąż jednak niewiele wiemy o białkach, których działanie jest zapoczątkowywane przez IFN-γ. Na potrzeby badań naukowcy zainfekowali ludzie komórki salmonellą. Poszukiwaliśmy nowych genów stymulowanych interferonem, wykorzystując przy tym bakterię salmonelli jako modelu infekcji, wyjaśniają badacze. Salmonella, podobnie jak inne bakterie gram-ujemne, posiada dwie błony komórkowe, co czyni ją szczególnie trudną do zabicia. Szczegółowo analizując reakcję komórki na obecność bakterii, uczeni wykorzystali technologię CRISPR-Cas9 do przeanalizowania ponad 19 000 genów i odkryli, że to białko APOL3 (apolipoprotein L3), kodowane przez gen APOL3, niszczy wewnętrzną błonę komórkową salmonelli. Ma przy tym pomocnika w postaci molekuły GBP1 i, prawdopodobnie, innych molekuł. Dzięki mikroskopii o wysokiej rozdzielczości naukowcy zauważyli, że GBP1 niszczy zewnętrzną błonę komórkową, dzięki czemu APOL3 może dostać się do wnętrza bakterii i zniszczyć błonę wewnętrzną, co zabija salmonellę. Okazało się przy tym, że APOL3 działa podobnie jak detergent. Ma bowiem elementy, które przyczepiają się do molekuł wody oraz inne, które łączą się z molekułami tłuszczów. Dzięki temu fragment po fragmencie usuwa lipidową błonę otaczającą bakterię. Widzimy tutaj efekt synergii pomiędzy APOL3 a innymi genami, które łączą siły i wspólnie przeprowadzają atak na podwójne błony komórkowe bakterii gram ujemnych. Błony te stanowią barierę, z którą nie radzi sobie wiele antybiotyków. Nasze badania pokazują, że w ludzkim organizmie istnieją mechanizmy, które są w stanie zniszczyć tę barierę. A są one uruchamiane przez IFN-γ, co tylko potwierdza, jak ważny jest ten mechanizm obronny, stwierdzają autorzy badań. MacMicking zwraca jednocześnie uwagę, że cały mechanizm jest wysoce selektywny, gdyż APOL3 nie atakuje przy tym błony komórkowej swojej komórki macierzystej. Uczeni zauważyli, że APOL3 unika cholesterolu, który jest jednym z głównych składników komórek naszego organizmu i skupia się na lipidach charakterystycznych dla błon komórkowych bakterii. « powrót do artykułu
  2. Pierwsze badanie dotyczące tego, co przez 1,5 godz. przed zjedzeniem dzieje się z drugim śniadaniem (a właściwie w jego wnętrzu), objęło ponad 700 należących do przedszkolaków pudełek z wiktuałami. Wykazało ono, że tylko 2% mięs, warzyw i nabiału przechowywano w bezpiecznym zakresie temperatur. Byliśmy w szoku, kiedy odkryliśmy, że ponad 90% psujących się produktów […] trzymano w niebezpiecznej temperaturze – opowiada doktorant Fawaz Almansour. Wyniki jego studium ukazały się właśnie w piśmie Pediatrics. Według Centrum Kontroli i Zapobiegania Chorobom, łatwo psujące się towary, które przez ponad 2 godziny znajdowały się w temperaturze 4-60 stopni Celsjusza, nie są już bezpieczne. Mimo że 45% opakowań z drugim śniadaniem zawierało lód, a ok. 12% kanapek schowano do lodówek i tak niemal wszystkie łatwo psujące się produkty "stały się podejrzane". Jak tłumaczy Almansour, nim nadeszła pora posiłku, bakterie powodujące zatrucia pokarmowe, np. pałeczki Salmonelli czy okrężnicy (E. coli), mogły się namnożyć. Doktorant przekonuje, że rodzice najlepiej zrobią, jeśli włożą do pudełka jak najwięcej lodu i poproszą dziecko, by po przyjściu do szkoły od razu schowało przekąskę do lodówki. W ramach studium Almansour zajął się drugimi śniadaniami przedszkolaków z 9 miejsc w Teksasie. Badano je w ciągu 3 losowych dni między 9.30 a 11. Spośród 705 tylko 11,8% trzymano w lodówce. Dziewięćdziesiąt jeden procent umieszczono w termoizolacyjnej plastikowej torbie na lunch, jednak te nie utrzymywały właściwej temperatury. Większość psujących się produktów przechowywano w temperaturze bliskiej pokojowej; średnia wynosiła 17,6 st. Celsjusza. Z 1361 psujących się produktów tylko 22 były bezpieczne (trzymano je w temperaturze poniżej 4 st. Celsjusza). Amerykanie zauważyli, że nawet włożenie lunchu do lodówki nie gwarantuje sukcesu. Ustalono bowiem, że choć 458 produktów umieszczono w chłodziarce w pojemniku, tylko 4 znalazły się w bezpiecznym zakresie temperatur. Naukowcy uważają, że działo się tak, gdyż przed włożeniem do lodówki jedzenie poleżało trochę na zewnątrz, a później w lodówce torba termoizolacyjna próbowała utrzymać wyższą temperaturę, jaka panowała na zewnątrz.
  3. Po złożeniu jaj naturalna ochrona przed patogenami, np. pałeczkami salmonelli, w postaci wysycenia dwutlenkiem węgla stopniowo się zmniejsza. Prof. Kevin Keener z Purdue University opracował proces szybkiego schładzania jaj, który pozwala odtworzyć to zabezpieczenie (Poultry Science). Świeżo złożone jaja są nasycone dwutlenkiem węgla, a ich pH wynosi ok. 7. Z czasem pH wzrasta do 9, a CO2 opuszcza jajo. W takich warunkach aktywność lizozymu chroniącego białko przed bakteriami spada. Podczas eksperymentów Keener nasycił oczyszczone lizozymy białka CO2 i sprawdzał, co będzie się działo przy różnych wartościach pH. Zauważył, że zarówno przy wysokim, jak i niskim pH dodatek dwutlenku węgla zwiększał aktywność enzymu nawet o 50%. Opracowany przez Amerykanina proces chłodzenia odtwarza te warunki. Kiedy chłodzimy jaja, dwutlenek węgla jest zasysany do ich wnętrza. Potrafimy [zatem] ponownie nasycić białko CO2, powracając do pierwotnych "ustawień", typowych dla jaj właśnie złożonych przez kurę. Wg Keenera, dodatkowa aktywność lizozymu daje jaju więcej czasu na samoczynne wyeliminowanie szkodliwych bakterii (oznacza to, że człowiek nie musi się wtrącać, by wspomóc dezynfekcję). Metoda specjalisty z Purdue University polega na wykorzystaniu suchego lodu. Jaja umieszcza się w komorze chłodniczej i wprowadza CO2 o temperaturze -78,88 st. Celsjusza. Gaz cyrkuluje w komorze i tworzy cienką warstwę wewnątrz skorupki jajek. Suchy lód sublimuje i szybko obniża wewnętrzną temperaturę jaj (spada ona poniżej 7 stopni Celsjusza). Udowodniono, że skorupka bez problemu wytrzymuje rozciąganie pod wpływem oddziaływania suchego lodu. W kolejnym etapie badań Keener będzie analizować zmiany molekularne zachodzące podczas ochładzania.
  4. Salmonella to jedna z najpowszechniejszych infekcji pokarmowych. Wprawdzie potrafimy ją bez większego trudu leczyć, ale mimo to potrafi być kłopotliwa - część chorych nie potrafi jej zwalczyć całkowicie i zostaje jej cichymi nosicielami. To problem szczególnie dla osób pracujących w przemyśle spożywczym i restauracyjnym, nie mogą oni bowiem wrócić do pracy, póki z organizmu nie znikną ostatnie ślady Salmonelli. Dlaczego jednak u niektórych ludzi eliminacja zarazków się nie udaje? Światło na tę zagadkę rzucają badania, jakie prowadzi Wolf-Dietrich Hardt, profesor mikrobiologi na ETH (Eidgenössische Technische Hochschule) w Zurichu. Zauważył on, badając infekcję Salmonellami na myszach, że część zarażonych organizmów zostaje nosicielami, mimo prawidłowego działania systemu odpornościowego. Zarazki pozostawały w organizmie, pomimo obecnych stosownych przeciwciał. Żeby upewnić się, że nie jest to kwestia wadliwie funkcjonującego układu immunologicznego, profesor Hardt posłużył się myszami zmodyfikowanymi genetycznie, które nie posiadały antyciał zwalczających tę infekcję. Sytuacja powtórzyła się, część myszy zostawała nosicielami, podczas gdy większość pozbywała się bakterii z organizmu całkowicie. Szczegółowe badania porównawcze odkryły sekret zwalczania salmonelli. Zarazków z łatwością pozbywały się te myszy, które posiadały bogatą i zróżnicowaną florę jelitową. Myszy ze zubożoną i mniej różnorodną florą - co potwierdziły kolejne testy - nie potrafiły pozbyć się bakterii. Badanie sugeruje więc, że to właśnie bakterie jelitowe wiążą zarazki salmonelli i ułatwiają ich wydalanie z kałem z organizmu. Nie są znane dokładne mechanizmy tego procesu, ale można z dużą dozą pewności założyć, że podobna zależność dotyczy również ludzi. Prof. Hardt nie nie chce co prawda formułować żadnych zaleceń leczniczych, zanim sprawa nie zostanie dokładniej zbadana, ale zważywszy że salmonellę leczy się antybiotykami, które niszczą również naturalną florę jelitową, możemy na pewno zadbać o nią na własną rękę - to na pewno nie zaszkodzi.
  5. Naukowcy z University of Massachusetts poinformowali o opracowaniu nowej metody walki z nowotworami. Ich pomysł opiera się na wykorzystaniu bakterii dostarczających do patologicznej tkanki substancji skłaniającej nieprawidłowe komórki do samobójczej śmierci, czyli apoptozy. Do wytworzenia nowego rodzaju broni przeciw nowotworom wykorzystano bakterie Salmonella typhimurium. Genom mikroorganizmów zmodyfikowano tak, by w reakcji na promieniowanie gamma wytwarzały TRAIL - białko znane ze swojej zdolności do wybiórczego wymuszania apoptozy komórek nowotworowych. Selektywność terapii jest dodatkowo podwyższona z uwagi na fakt, iż zastosowane bakterie wyraźnie preferują przebywanie w tkance nowotworowej w stosunku do kolonizacji miejsc nieobjętych chorobą. Zmodyfikowane bakterie testowano na myszach chorych na raka piersi. Mikroorganizmy wszczepiano wprost do guza, po czym miejsce ich podania dwukrotnie naświetlano niską dawką promieniowania, niemal całkowicie nieszkodliwą dla zdrowych tkanek. Po ekspozycji na promieniowanie bakterie rozpoczęły wytwarzanie leczniczej proteiny. Wyniki eksperymentu można śmiało określić jako bardzo obiecujące. Wszystkie badane zwierzęta przeżyły co najmniej 30 dni od zabiegu, zaś toksyczność terapii była minimalna. Dla porównania, żadne ze zwierząt z grupy kontrolnej, u których nie zastosowano leczenia, nie dożyło końca pierwszego miesiąca od rozpoczęcia eksperymentu. To pierwszy krok, ale jest to pierwszy raz, kiedy kontrolowaliśmy dostawę [TRAIL] do nowotworów, i pierwszy raz, kiedy byliśmy w stanie uruchomić produkcję cytotoksycznego [tzn. toksycznego dla komórek, w tym przypadku: dla komórek nowotworowych] białka i zniszczyć nowotwór od środka, cieszy się jeden z autorów nowej metody, dr Neil Forbes. Jego zdaniem terapia z wykorzystaniem zmodyfikowanych genetycznie bakterii wymaga jeszcze wielu poprawek, lecz nawet wyniki stosowania jej obecnej wersji robią wrażenie.
  6. Nowy test, oparty o zastosowanie komórek pobranych od popularnych ryb akwariowych, jest w stanie szybko i precyzyjnie wykryć liczne toksyny bakteryjne - twierdzą naukowcy z Uniwersytetu Stanu Oregon. Technologia może znaleźć zastosowanie głównie w przemyśle spożywczym. Opracowana metoda wykorzystuje naturalną cechę bojowników syjamskich (Betta splendens) - ryb hodowanych powszechnie w akwariach na całym świecie. Zwierzęta te, w optymalnych warunkach intensywnie barwne, pod wpływem toksyn w mgnieniu oka tracą kolor, a ich ciało staje się niemal przeźroczyste. Badacze wyizolowali z nich komórki odpowiedzialne za ten proces, zwane komórkami chromatoforowymi, czyli "niosącymi barwę" (nazwa ta pochodzi z języka greckiego). To one odgrywają główną rolę w nowym rodzaju testu. Wykonanie badania jest niezwykle proste. Do naczynia, w którym hodowane są komórki wysycone czerwonym pigmentem, dodaje się próbkę podejrzewaną o występowanie w niej toksyn, takich jak szkodliwe białka bakteryjne lub metale ciężkie. Jeżeli dojdzie do zatrucia komórek, reagują one błyskawicznym wycofaniem cząsteczek jaskrawego barwnika z cytoplazmy, co prowadzi do zaniku czerwonej barwy. Proces ten można z łatwością wykryć, a intensywność reakcji można zmierzyć i opisać z użyciem wartości liczbowych. Komórki chromatoforowe bojowników reagują na toksyny produkowne przez liczne bakterie. Do mikroorganizmów, które można wykryć dzięki ich zastosowaniu, zalicza się m.in. bakterie jadu kiełbasianego (Clostridium botulinum) oraz przedstawicieli gatunków Clostridium perfringens i Bacillus cereus, odpowiedzialnych za liczne przypadki biegunek. Skuteczność testu potwierdzono także w odniesieniu do bakterii z rodzaju Salmonella, niezwykle istotnego z punktu widzenia przemysłu spożywczego. Wymienione zanieczyszczenia pojawiają się w produktach spożywczych stosunkowo często, lecz ich wykrycie bywa niejednokrotnie skomplikowane i czasochłonne. Technologia opracowana na Uniwersytecie Stanu Oregon może pomóc w rozwiązaniu tego problemu poprzez dostarczenie prostego i szybkiego testu gotowego do zastosowania w przemyśle. Co więcej, jak twierdzi szefowa zespołu badaczy, prof. Janine Trempy, istnieje duża szansa, że użycie zestawu do badań nie będzie wymagało jakiegokolwiek specjalistycznego szkolenia. Obecnie planowane są dalsze badania, których celem będzie przetestowanie zdolności komórek pobranych od bojowników do wykrywania innych bakterii istotnych ze względu na powodowanie przez nie zatrucia. Chodzi tu głównie o mikroorganizmy z rodzaju Listeria oraz należące do szczepu E.coli 0157:H7. Zdaniem prof. Trempy konieczne będzie także ustalenie metody, która pozwoliłaby na utrzymanie komórek chromatoforowych w hodowli. Pozwoliłoby to na uniknięcie pobierania ich od ryb w celu wykonania kolejnych analiz. Badacze z Oregonu uzyskali już patent na opracowaną przez siebie metodę. Szczegółowe informacje na jej temat opublikowano w czasopiśmie Microbial Biotechnology.
  7. Podróż statkiem kosmicznym nie jest zbyt zdrowa dla ludzi. Osłabia kości, mięśnie i system immunologiczny. Zupełnie inny efekt wywiera jednak na pałeczki Salmonelli. Przeprowadzone eksperymenty wykazały, że po pobycie w przestrzeni kosmicznej Salmonella jest wielokrotnie bardziej zjadliwa, niż jej kuzynka, która pozostała na Ziemi. Z jednej strony jest to zła wiadomość: agencje kosmiczne, planujące długotrwałe załogowe loty (np. na Marsa) muszą liczyć się z tym, że osłabiony organizm astronautów zetknie się z bardzo groźnymi mikroorganizmami. Z drugiej jednak strony odkrycie to może pomóc w opracowaniu nowych metod terapii. Cheryl Nickerson, profesor w Instytucie Bioprojektów Stanowego Uniwersytetu Arizony zbadał bakterie, które trafiły w przestrzeń kosmiczną wraz z misją STS-115 z 2006 roku. Okazało się, że podczas przebywania w kosmosie w ekspresji 167 genów zaszły znaczne zmiany. Gdy „kosmiczną” Salmonellą zarażono myszy, odsetek śmiertelnych zachorowań był znacznie wyższy niż u zwierząt zarażonych Salmonellą, która nigdy w kosmosie nie przebywała. Uczony odkrył też, że najważniejszym globalnym regulatorem zmian, które zaszły w kodzie Salmonelli jest pojedynczy gen. Być może uda się go wykorzystać do opracowania lepszych leków zwalczających Salmonellę na Ziemi. Uczestnicy misji STS-115 celowo zabrali ze sobą Salmonellę zamkniętą w specjalnej tubie, w której nie mogły się rozwijać. Gdy tuba trafiła na orbitę, astronauci dostarczyli bakteriom odżywkę. Następnie po 24 godzinach, połowa bakterii została przeniesiona do innej tuby z kolejną porcją odżywki, a druga połowa została wymieszana ze środkiem chemicznym, który zahamował jej rozwój. Tymczasem na Ziemi w laboratorium przeprowadzono identyczny eksperyment, posłużono się takim samym sprzętem i odczynnikami. Symulowano przy tym identyczne warunki (temperatura, wilgotność itp.), jakie panowały na statku kosmicznym. Z jednym wyjątkiem: bakterie rozwijały się w warunkach ziemskiej grawitacji. Późniejsze porównanie obu szczepów wykazało, że u bakterii z kosmosu sam brak grawitacji spowodował zmiany w ekpresji 167 genów i produkcji 73 białek. „Kosmiczna” Salmonella stała się przez to bardziej śmiertelna. Badanie bakterii w warunkach braku grawitacji może wydawać się bezużyteczne dla osoby, która całe życie pozostanie na Ziemi. Jednak tak nie jest. Jeanne Becker z National Space Biomedical Research Institute mówi: Popatrzmy na to z perspektywy bakterii. Chce ona przeżyć w nieprzyjaznym środowisku: nieważne, czy mowa tutaj o braku grawitacji, ataku ze strony systemu odpornościowego czy antybiotyków. Sposób, w jaki bakteria odpowiada na stres – na przykład wytwarzając takie czy inne białka – może przydać się do zbadania biochemicznych mechanizmów obronnych, a to z kolei prowadzi do opracowania nowych metod terapii. Brak grawitacji wpływa też na ludzkie geny. Eksperyment przeprowadzony na hodowlanej kulturze komórek ludzkich nerek wykazał, że po pobycie w przestrzeni kosmicznej zaszły zmiany w ekspresji 1600 genów. Zespół Nickersona badał też wpływ lotu kosmicznego na Pseudomonas aerguinosa, bakterię, która wywołała jedyną jak dotychczas poważną infekcję na statku kosmicznym. Do zdarzenia doszło podczas słynnego feralnego lotu Apollo 13. Po udanym lądowaniu astronauta Fred Haise przez kilka tygodni chorował na bardzo ostrą infekcję prostaty. Wyniki badań nad Pseudomonas nie zostały jeszcze opublikowane.
×
×
  • Create New...