Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'impuls'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 5 results

  1. Przed tygodniem w National Ignition Facility (NIF) uzyskano rekordowo silny impuls lasera. W ramach badań nad nowymi źródłami energii 192 lasery wysłały jednocześnie ultrafioletowe impulsy świetlne w kierunku centralnej komory, w której uzyskano 1,875 megadżula. Każdy z impulsów trwał 23 miliardowe części sekundy i w sumie wygenerowały one moc 411 biliardów watów (TW) czyli 1000 razy większą niż potrzebna jest do zasilenia całych Stanów Zjednoczonych. To ważny krok w kierunku rozpoczęcia fuzji. Podczas przygotowań do uruchomienia NIF dokonywaliśmy wielu podobnych prób, podczas których uruchamiany był jeden laser czy też zestawy po cztery. Tym razem jednak jednocześnie wystrzeliły 192 lasery - mówi Edward Moses, dyrektor NIF. Moc laserów NIF wynosi w sumie 2,03 MJ, jednak zanim promienie dosięgną centralnej komory ich moc nieco spada ona podczas przechodzenia przez instrumenty diagnostyczne i optykę. NIF jest zatem pierwszym ośrodkiem, w którym lasery ultrafioletowe osiągnęły moc 2 MJ. To niemal 100-krotnie więcej niż możliwości innych podobnych ośrodków. Podczas testu osiągnięto też bardzo dużą precyzję produkcji energii. Odchylenie nie przekraczało 1,3%. Precyzja jest niezwykle ważna, gdyż to rozkład energii pomiędzy poszczególnymi promieniami będzie decydował o symetrii implozji w kapsułach zawierających paliwo niezbędne do rozpoczęcia fuzji. National Ignition Facility pracuje w ramach Lawrence Livermore National Laboratory. O otwarciu zakładu oraz jego zadaniach informowaliśmy w 2009 roku.
  2. Artykuł, opublikowany w Nature Communications przez Hidekiego Hiroriego, zapowiada przełom w budowie urządzeń wykorzystujących tranzystory. Odkrycie japońskich uczonych z Kyoto University może prowadzić do pojawienia się niezwykle szybkich tranzystorów oraz bardzo wydajnych ogniw fotowoltaicznych. Naukowcy pracując ze standardowym arsenkiem galu zaobserwowali, że poddanie próbki działaniu krótkiego impulsu pola elektrycznego o częstotliwości przekraczającej teraherc, spowodowało pojawienie się w niej prawdziwej lawiny par elektron-dziura (ekscytonów). Wystarczyło włączenie pojedynczego impulsu trwającego pikosekundę, by gęstość ekscytonów, w porównaniu ze stanem wyjściowym próbki, zwiększyła się 1000-krotnie. Badania nad zastosowaniem terahercowych częstotliwości prowadzone są w laboratorium profesora Koichiro Tanaki, który chce stworzyć dzięki nim mikroskop pozwalający na obserwowanie w czasie rzeczywistym żywych komórek. Wpływ takich częstotliwości na półprzewodnik to efekt uboczny badań, pokazujący jednak, jak wielkie możliwości drzemią w terahercowych częstotliwościach.
  3. Cukrzyca typu 2. coraz częściej bywa powikłaniem otyłości. Naukowcy odkryli, że wiąże się ona ze słabą kontrolą impulsów. Wg nich, niezdolność do opierania się pokusom jest skutkiem zmian neurologicznych, co z kolei prowadzi do wystąpienia i zaostrzenia objawów cukrzycowych. Zespół Hiroaki Kumano z Waseda University pracował z 27-osobową grupą chorych z cukrzycą typu 2. oraz równoliczną grupą kontrolną. Japończycy badali u nich reakcję hamowania, która stanowi świetną miarę samokontroli. Ludzie z cukrzycą typu 2. muszą na co dzień podejmować surowe decyzje: powinni się opierać chęci zjedzenia czegoś wysokotłuszczowego i kalorycznego, a są bombardowani skojarzeniami z określonymi osobami, miejscami i zdarzeniami. Właściwa modyfikacja zachowania zależy więc od zdolności pacjenta do hamowania impulsywnych myśli oraz działań, wywoływanych przez wymienione bodźce środowiskowe. Chcąc zmierzyć jednostkową zdolność inhibicji impulsywnego zachowania, Kumano i inni zastosowali prosty test. Po pojawieniu się na ekranie komputera właściwego symbolu należało szybko naciskać guzik. Uderzenie w niego po zobaczeniu złego znaku obniżało jednak wynik. Okazało się, że diabetycy wypadali gorzej od przedstawicieli grupy kontrolnej, co sugeruje, że trudniej im było się powstrzymać i nie ulec pokusie, by wcisnąć klawisz. Inne wyniki pokazały, że za osiągnięcia chorych z cukrzycą typu 2. odpowiada raczej upośledzenie poznawczej kontroli impulsów niż deficyty związane ze sprawnością ruchową, monitorowaniem błędów i autokorektą. Sugeruje to, że deficyty neurologiczne dotyczące hamowania mogą się przyczyniać do zaburzeń zachowania prowadzących do przewlekłych chorób związanych ze stylem życia, np. cukrzycy typu 2. – podsumowuje Kumano.
  4. Naukowcy udowodnili, że możliwe jest przesyłanie impulsów z mózgu bezpośrednio do kończyn, z pominięciem kręgosłupa. To nadzieja dla osób, które po urazach kręgosłupa nie są w stanie poruszać kończynami. Uczeni z University of Washington użyli swojego "interfejsu mózgowo-maszynowego" na tymczasowo sparaliżowanej małpie. Urządzenie, wielkości telefonu komórkowego, interpretuje sygnały z mózgu i zamienia je na sygnały elektryczne, pobudzające mięśnie rąk. Wykazano, że po założeniu blokady na kręgosłup zwierzęcia i wykonaniu połączenia pomiędzy mózgiem a ramionami, małpa była w stanie kurczyć mięśnie. To pierwszy krok w kierunku bardziej skomplikowanych ruchów, jak chwytanie kubka czy naciskanie guzika. Główny autor badań, doktor Chet Moritz, uważa że uda się tak przystosować jego urządzenie, by w przyszłości sparaliżowani odzyskali władzę w kończynach. Przy okazji odkryto, że małpy są w stanie nauczyć każdą z komórek nerwowych kory motorycznej by zawiadowała ruchem mięśni. Nie muszą być to te komórki, które zwykle za to odpowiadają. Minie prawdopodobnie kilkadziesiąt lat, zanim podobne techniki trafią do powszechnego użytku. Urządzenie zostało przetestowane na zwierzęciu, które w rzeczywistości nie miało uszkodzonego kręgosłupa. Nie wiadomo też, czy sprawdzi się ono u człowieka. Ponadto działa ono tylko w jedną stronę, od mózgu do kończyny. Do prawidłowego ruchu konieczna jest informacja zwrotna do mózgu.
  5. Pomiar średnicy komórek w polu elektrycznym pozwala na łatwą identyfikację komórek nowotworowych, a nawet na określenie stadium zaawansowania choroby - twierdzą eksperci z Uniwersytetu Purdue. Naukowcy uzyskali patent na użycie technologii analizującej ten parametr i planują jej wprowadzenie do użycia przez lekarzy. Odkrycie jest efektem eksperymentu przeprowadzonego z wykorzystaniem osiagnięć tzw. nauki o mikropłynach (ang. microfluidics). Badanie komórek przeprowadza się w mikroskopijnym naczynku wygrawerowanym w przezroczystym tworzywie. Przepuszcza się przez nie prąd elektryczny, który prowadzi do powstania porów w błonach komórkowych oraz wprawia komórki w ruch. Przez powstałe otwory do wnętrza błony dostaje się woda, prowadząc do powiększenia objętości. Gdy poruszająca się komórka dotrze do specjalnie zaprojektowanego przewężenia w mikroskopijnym kanaliku, jest analizowana z użyciem szybkiej i precyzyjnej kamery. Możliwa jest dzięki temu ocena "puchnięcia" komórek pod wpływem napierającej do wnętrza wody, co pozwala na określenie, czy badany materiał pochodzi ze zdrowej tkanki, czy też dzieje się z nim coś niepokojącego. Dlaczego komórki pęcznieją? Odpowiedź leży w białkowym ich "rusztowaniu", zwanym cytoszkieletem. Struktura ta, składająca się z rozległej sieci różnego rodzaju białek, decyduje o kształcie i wytrzymałości pojedynczych komórek, a nawet, w pewnym stopniu, całych tkanek. W komórkach nowotworowych matryca ta jest najczęściej uszkodzona ze względu na liczne mutacje prowadzące ostatecznie do zezłośliwienia. Gdy proces degeneracji cytoszkieletu jest posunięty jeszcze dalej, może prowadzić do oderwania komórki od pierwotnego guza i migracji do odległych rejonów ciała, czyli tworzenia przerzutów. Właśnie dlatego materiał wyizolowany z przerzutów najłatwiej poddaje się impulsom elektrycznym. Autorem eksperymentu jest dr Chang Lu, specjalista z zakresu inżynierii rolniczej i biologicznej pracujący dla Uniwersytetu Purdue. Do badania użyto tzw. linii komórkowych, czyli komórek wyizolowanych z danego typu tkanki (w tym wypadku był to guz piersi) o dokładnie zdefiniowanych właściwościach. Jako grupa odniesienia, względem której porównywano przyrost objętości komórek nowotworowych, posłużyły komórki pobrane ze zdrowej tkanki. Naukowiec wykazał, że pod wpływem impulsu o określonych parametrach zdrowe komórki "rosną" średnio o jedną czwartą, wyizolowane z nowotworu - o połowę, zaś komórki wyizolowane z przerzutu - aż o 75%. Ogromną zaletą opacowanej techniki jest jej szybkość. Z użyciem mikroskopijnego użycia możliwe jest przebadanie aż pięciu komórek na sekundę, co pozwala na szybką i wydajną analizę wykonywaną "od ręki", np. podczas wizyty w gabinecie lekarza. Dr Lu planuje jak najszybsze rozpoczęcie badań na tkankach pobranych wprost od pacjentów, by upewnić się, czy uzyskane wyniki potwierdzą się z tymi uzyskanymi z wykorzystaniem modelowych linii komórkowych. Jeżeli tak się stanie, istnieje duża szansa na szybkie wprowadzenie technologii do pwoszechnego użycia przez lekarzy.
×
×
  • Create New...