Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'chmury'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 4 results

  1. Aktualizacja: artykuł opublikowany w piśmie „Nature", został różnie zinterpretowany przez media. Jednak pola do interpretacji nie pozostawiają słowa Jaspera Kirkby'ego, który stwierdził, że przeprowadzone przez niego i jego kolegów badania nie mówią nic o możliwym wpływie promieniowania kosmicznego na chmury i klimat, ale są bardzo ważnym pierwszym krokiem w zrozumieniu tego zagadnienia. Wstępne wyniki wykazały bowiem, że promieniowanie kosmiczne ma spory wpływ na nukleację, że wysokoenergetyczne protony przyczyniają się do co najmniej 10-krotnego zwiększenia tempa nukleacji aerozoli, jednak powstające w ten sposób cząsteczki są zbyt małe by mogły posłużyć za zaczątek chmur. Eksperyment wykazał, że na wysokości kilku kilometrów do procesu nukleacji wystarczają para wodna i kwas siarkowy, a proce ten jest znacznie przyspieszany promieniowaniem kosmicznym. Na wysokości do 1 kilometra nad ziemią konieczna jest jeszcze obecność amoniaku. Co najważniejsze, badania CLOUD pokazały, że para wodna, kwas siarkowy i amoniak, nawet "napędzane" promieniowaniem kosmicznym, nie wyjaśniają zachodzącego w atmosferze procesu formowania się areozoli. Stąd wniosek, że zaangażowane weń muszą być jeszcze inne składniki. Jak zatem widzimy, pierwsze rezultaty uzyskane w ramach prowadzonego przez CERN eksperymentu CLOUD - Cosmics Leving Outdoor Droplets - nie sugerują (jak wcześniej informowaliśmy) że obecne modele klimatyczne powinny być znacznie zmienione. Z badań wynika jedynie, że promieniowanie z kosmosu odgrywa znacznie większą niż przypuszczano rolę w nukleacji aerozoli, jednak nie oznacza to jeszcze, że czynniki te prowadzą do formowaniu się chmur nad naszą planetą. Odkrycie CERN-u wpisuje się w polityczną walkę o określenie przyczyn globalnego ocieplenia, dlatego też naukowcy starają się przedstawić tylko i wyłącznie wyniki badań i nie podawać ich interpretacji. Indukowana przez jony nukleacja objawia się ciągłą produkcją nowych cząsteczek, które trudno jest wyizolować w czasie obserwacji atmosfery, gdyż istnieje bardzo dużo zmiennych. Jednak zjawisko to zachodzi na masową skalę w troposferze - mówi Jasper Kirkby, fizyk z CERN-u. Naukowcy doszli do takich wniosków wykorzystując akcelerator Proton Synchotron do badania zjawiska nukleacji z użyciem różnych gazów i temperatur. Ojcem teorii o Słońcu jako pośredniej przyczynie globalnego ocieplenia, w którym rolę odgrywa interakcja wiatru słonecznego i promieniowania kosmicznego, jest duński fizyk Henrik Svensmark. Jego zdaniem Słońce to jeden z czterech czynników odpowiedzialnych za zmiany klimatyczne. Trzy pozostałe to wulkany, zmiany w stanie klimatu do których doszło w 1977 roku oraz emisja zanieczyszczeń przez człowieka. Doktor Kirkby, który opisał dokładnie tę teorię w 1998 roku mówił wówczas, że promieniowanie kosmiczne odpowiada prawdopodobnie za połowę lub nawet całość wzrostu temperatury na Ziemi w ciągu ostatnich 100 lat. Jak dotychczas nie udało się tej tezy udowodnić.
  2. Specjaliści z Instytutu Nauki Weizmanna oraz amerykańskiego NOAA odnieśli równania stosowane do obrazowania dynamiki oddziaływań między ofiarami a drapieżnikami do modelowania związków między systemami chmur, deszczem i aerozolami (Proceedings of the National Academy of Sciences). Chmury mają duży wpływ na klimat. Izraelsko-amerykański zespół wspomina choćby o chmurach warstwowo-kłębiastych znad płytkich wód, które tworzą duże pokrywy nad subtropikalnymi oceanami. Obniżają one temperaturę, odbijając część promieniowania słonecznego. Doktorzy Ilan Koren oraz Graham Feingold stwierdzili, że równanie do modelowania cyklów interakcji ofiary-drapieżniki stanowi świetną analogię dla cykli chmury-deszcz. Akademicy wyjaśniają, że odpowiednie populacje ofiar i drapieżników rozszerzają się i kurczą jedne kosztem drugich, tak jak deszcz uszczupla chmury, a te znowu odbudowują się po opadach. Na tym podobieństwa się nie kończą. Dostępność traw wpływa na wielkość stad, a dostępność aerozoli i składających się na nie jąder kondensacji nadaje kształt chmurom. Większa liczba cząstek daje np. początek większej liczbie kropli, ale krople te są mniejsze i pozostają raczej zawieszone, zamiast spadać w formie deszczu. W najnowszym badaniu Feingold i Koren stwierdzili, że stosując 3 podstawowe równania, można stworzyć model, który potwierdza, że dynamika chmur i deszczu naśladuje 3 znane tryby oddziaływań drapieżników i ofiar. Podobnie jak gazele i lwy, których populacje oscylują w tandemie, deszcz stale podąża tropem formowania się chmur. W grę może też wchodzić tryb równowagi, w którym gazele (chmury) odradzają się w takim samym tempie, w jakim są przerzedzane. Trzecią opcją jest chaos – następuje krach, kiedy drapieżniki wymykają się spod kontroli i polują, ile chcą lub silny deszcz niszczy system chmur. Model demonstruje, że gdy zmienia się ilość aerozoli, system może nagle przestawić się z jednego stanu/trybu w drugi.
  3. KopalniaWiedzy.pl

    Kosmiczne chmury

    Duńscy naukowcy potwierdzili stosunkowo słabo dotąd znaną teorię tworzenia się chmur. Wg nich, jądra kondensacji, które pomagają ustabilizować zarodniki kropelek, tłumaczą formowanie się chmur nad obszarami miejskimi, ale nie nad lasami deszczowymi, oceanami czy w czasach poprzedzających rewolucję przemysłową. Gdyby jednak uznać, że cząstki promieniowania kosmicznego – protony i neutrony – zderzają się w atmosferze ziemskiej z cząsteczkami wody, wybijając z nich elektrony, a powstające w ten sposób jony przyciągają nienaruszone cząsteczki, sprawa wyglądałaby już zupełnie inaczej. W 2006 r. członkowie zespołu fizyka Henrika Svensmarka z Duńskiego Uniwersytetu Technicznego w Kopenhadze sztucznie wytworzyli aerozol w komorze atmosferycznej. Zbombardowali wtedy dipole wody strumieniem cząstek. Większa liczba jonów oznaczała większą ilość aerozolu. W ramach najnowszego studium Svensmark skoncentrował się na spadkach natężenia promieniowania kosmicznego, tzw. spadkach Forbusha. Są one skutkiem burz na Słońcu i koronalnych wyrzutów masy. Do przestrzeni międzyplanetarnej trafiają głównie elektrony i protony oraz nieco jonów cięższych pierwiastków. Wiatr słoneczny i związane z nim pole magnetyczne odpychają cząstki promieniowania kosmicznego, tworząc coś w rodzaju okresowej tarczy. Gdyby rzeczywiście tworzenie się chmur miało coś wspólnego z promieniowaniem kosmicznym, w czasie spadku Forbusha okrywa powinna być cieńsza. By to sprawdzić, Duńczycy zebrali satelitarne dane pogodowe z ostatnich 22 lat i zestawili je z 26 spadkami Forbusha. W przypadku 5 najsilniej zaznaczonych zawartość kropli w chmurach zmalała średnio o 7%. Po kilku tygodniach wszystko wracało do normy. Teraz jesteśmy przekonani, że spadki Forbusha wpływają na aerozole. Svensmark sądzi, że jego odkrycia wskazują na związek między promieniowaniem kosmicznym a zmianą klimatu. Skoro z chmur pada i odbijają one światło słoneczne, to ich skurczenie oznacza ogrzanie Ziemi.
  4. KopalniaWiedzy.pl

    Pierwsze gwiazdy nie mogły świecić?

    Patrząc na pokryty jasnymi punktami firmament, trudno w to uwierzyć, ale fizycy z University of Utah w Salt Lake City wyliczyli, że pierwsze gwiazdy mogły być tak przysłonięte przez chmury ciemnej materii, że nie mogły świecić. Gdyby się to potwierdziło, musielibyśmy zmienić poglądy na ewolucję gwiazd i proces tworzenia się czarnych dziur w dobie młodości kosmosu. Teraz większość astronomów uznaje, że wszechświat zaczął się formować wokół zbitek ciemnej materii. W sumie jest jej 6-krotnie więcej niż materii widzialnej, do tej pory nikomu jednak nie udało się jej bezpośrednio zaobserwować. Widać tylko skutki jej działania grawitacyjnego. Wg naukowców, zbitki ciemnej materii miały ok. 13 mld lat temu spełniać rolę "jądra"/zakotwiczenia grawitacji. Wokół nich najpierw kondensowały się chmury wodoru i helu, a potem formowały się pierwsze gwiazdy i galaktyki. Fizyk Paolo Gondolo i jego zespół zaprezentowali jednak alternatywną koncepcję. Na razie nie była ona testowana podczas symulacji komputerowych. Sądzą oni, że cząsteczki ciemnej materii (neutralino) zderzały się ze sobą, ogrzewając chmury gazów i nie dopuszczając do ich skraplania się oraz rozpoczęcia reakcji termojądrowych. To dlatego gwiazdy pozostały ciemne (nie wiadomo na jak długo). Były też większe od swoich współczesnych odpowiedników. Być może ich rozmiary 15 tys. razy przekraczały "gabaryty" Układu Słonecznego (Physical Review Letters). Niewykluczone, że nadal gdzieś istnieją. Amerykanie odwołali się do teorii supersymetrii, która zakłada, że ciemna materia powinna się składać z tzw. superpartnerów cząsteczek elementarnych (cięższych, nierozszczepialnych i pozbawionych ładunku elektrycznego). I tak superpartnerem neutrina byłoby neutralino.
×