Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' ewolucja'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 46 results

  1. Wyjątkowa baza 2400 stanowisk archeologicznych obejmujących dzieje człowieka od 3 milionów lat temu do 20 000 lat temu obejmuje ponad 100 starych kultur i opisuje wyniki 150 lat prac archeologicznych. Jest ona dziełem naukowców z centrum badawczego ROCEEH (The Role of Culture in Early Expansions of Humans), którzy skompilowali olbrzymią liczbę informacji i umieścili je w jednej ogólnodostępnej bazie danych. ROAD (ROCEEH Out of Africa Database) to jeden z największych zbiorów danych dotyczących archeologii, antropologii, paleontologii i botaniki, wyjaśnia doktor Andrew Kandel z Uniwersytetu w Tybindze. W sposób jednorodny pod względem geograficznym i chronologicznym połączono informacje o zabytkach kultury, szczątkach człowieka i jego przodkach, pozostałościach zwierząt i roślin. W ten sposób powstało narzędzie, które pomaga w analizie wielu różnych aspektów ewolucji człowieka. Baza ROAD to wynik 15 lat pracy naukowców, którzy przeanalizowali ponad 5000 publikacji w wielu językach, w tym w angielskim, chińskim, francuskim, włoskim czy portugalskim. Powstała w ten sposób łatwa w użyciu interaktywna mapa stanowisk archeologicznych. Użytkownik może na jej podstawie tworzyć też własne mapy obejmujące konkretne kultury, obszary geograficzne czy okresy historyczne. Naukowcy mogą zadawać ROAD zaawansowane zapytania, dzięki którym sprawdzą na przykład, obecność konkretnej kategorii kamiennych narzędzi w Afryce czy dystrybucję konkretnych gatunków zwierząt w interesujących ich okresach, jak chociażby podczas wycofywania się lądolodu. Takie zapytania dostarczą naukowcom olbrzymiej ilości danych, które później mogą wykorzystać do dalszej pracy za pomocą zaawansowanych metod wizualizacji czy analizy, mówi Kandel. Baza pokazuje tez, że znaczna część naszej wiedzy pochodzi z bardzo niewielu dobrze przebadanych regionów, jak Afryka Południowa i Wschodnia, Europa czy Azja Centralna i Wschodnia. Większa część obszarów planety to archeologiczna biała plama. Badanie tych obszarów może przynieść w przyszłości niezwykle ekscytujące odkrycia. « powrót do artykułu
  2. Motyle – zarówno te dzienne jaki i nocne, czyli ćmy – to jeden z najbardziej rozpowszechnionych rzędów owadów. Ćmy pojawiły się około 300 milionów lat temu. W 2019 roku dowiedzieliśmy się, że przed około 100 milionami lat grupa nocnych motyli zaczęła latać za dnia, by korzystać z bogatych w nektar kwiatów. Tym samym udowodniono, że nieprawdziwa jest hipoteza, jakoby motyle dzienne pojawiły się już po zagładzie dinozaurów, by uniknąć polujący na ćmy nietoperzy. Dotychczas jednak sądzono, że motyle dzienne po raz pierwszy wyewoluowały w Azji. Teraz okazuje się, że to nieprawda. Akito Kawahara, kurator zbiorów motyli we Florida Museum of Natural History, i jego zespół przeprowadzili analizy genetyczne niemal 2300 gatunków motyli reprezentujących wszystkie rodziny i 92% rodzajów z rzędu Lepidoptera. Stworzyli największe na świecie drzewo genealogiczne motyli i dowiedli, że motyle dzienne po raz pierwszy wzbiły się do lotu w Ameryce Północnej i Środkowej. Żywiły się wówczas roślinami z rodziny bobowatych. To było moje marzenie z dzieciństwa. To coś, co chciałem zrobić od czasu pierwszej wizyty w Amerykańskim Muzeum Historii Naturalnej gdy byłem dzieckiem i gdy na drzwiach biura kuratora zobaczyłem drzewo genealogiczne motyli. To jednocześnie najtrudniejsze badania naukowe, w jakich brałem udział. Wymagały one wielkiego wysiłku ze strony ludzi na całym świecie, cieszy się Kawahara. Obecnie istnieje około 19 000 gatunków motyli dziennych. Zrekonstruowanie ich historii na przestrzeni 100 milionów lat było trudnym zadaniem. Wymagało zebrania danych o miejscach występowania poszczególnych gatunków motyli oraz roślin, z których korzystają. Dane takie nie były jednak przechowywane w jednym miejscu, znaczna ich część nie była zdigitalizowana, konieczne było przeszukiwanie publicznie dostępnych baz danych, poszukiwanie książek oraz artykułów naukowych, tłumaczenie ich z różnych języków, przeglądanie zbiorów muzealnych i innych miejsc, w których znajdowały się użyteczne informacje o motylach. Naukowcy przeanalizowali też 11 niezwykle rzadkich skamieniałości motyli, które wykorzystali do kalibracji swojego drzewa genetycznego. Dzięki temu dowiedzieli się np. że motyle dzienne bardzo szybko się różnicowały, jedne grupy pokonywały w toku ewolucji olbrzymie odległości, inne zaś pozostawały w miejscu, mimo, że wokół nich swój bieg zmieniały rzeki, pojawiały się i znikały pasma górskie, przemieszczały się kontynenty. Dzięki olbrzymiej pracy naukowców wiemy, że motyle dzienne pojawiły się po raz pierwszy gdzieś w Ameryce Środkowej i zachodnich częściach Ameryki Północnej. W tym czasie Ameryka Północna była przedzielona szerokim morzem, a Ameryka Północna i Południowa nie były jeszcze połączone. Mimo to motyle były w stanie pokonywać wielkie przestrzenie nad wodami i podbijały świat. Nie zawsze leciały najkrótszą drogą. Mimo że wówczas Ameryka Południowa i Afryka znajdowały się dość blisko siebie, motyle najpierw przeleciały do Azji, na Bliski Wschód i do Afryki Wschodniej. Dotarły nawet do Indii, które wówczas były wyspą. Największym ich wyczynem było zaś dotarcie do Australii, połączonej wówczas z Antarktyką. Oba kontynenty były ostatnią pozostałością Pangei. Nie można wykluczyć, że motyle żyły przez pewien czas w Antarktyce. A przed około 45 milionami lat zjawiły się w Europie. Nie wiadomo, dlaczego zajęło im to tak dużo czasu, ale skutki tej późnej migracji widać do dzisiaj. W Europie, w porównaniu z innymi kontynentami, nie ma zbyt wielu gatunków motyli. A te które są, często występują w innych częściach świata, na przykład na Syberii i w Azji, mówi Kawhara. Gdy już motyle zasiedlały jakiś obszar, szybko się różnicowały w zależności od występujących na nim roślin. Gdy z Ziemi zniknęły dinozaury, istniały już niemal wszystkie współczesne rodziny motyli, a każda z nich była w sposób szczególny powiązana z konkretnymi roślinami. Gdy naukowcy porównali historię ewolucyjną motyli oraz roślin, na których żerują, stwierdzili, że dochodziło tutaj do wspólnej ewolucji. Naukowcy zauważyli, że obecnie 67,7% gatunków motyli to gatunki, które korzystają z jednej rodziny roślin, a 32,3% gatunków korzysta z dwóch lub więcej rodzin. Motyle żywiące się na bobowatych i wiechlinowatych często korzystają tylko z nich. Większość gatunków nie korzysta z roślin z innych rodzin. Bobowate i wiechlinowate są szeroko rozpowszechnione i występują niemal we wszystkich ekosystemach. Wiekszość z nich posiada też potężne chemiczne środki obronne odstraszające owady. Jednak od milionów lat rośliny te pozwalają, by motyle z nich korzystały. Grupa Kawahary zauważyła też, że aż 94,2% gatunków motyli pożywiających się na więcej niż jednej rodzinie roślin, wybiera rośliny blisko spokrewnione. To zaś potwierdza wcześniejsze badania, z których wynikało, że spokrewnione ze sobą motyle żywią się na spokrewnionych ze sobą roślinach. Ewolucja motyli i roślin okrytonasiennych jest ze sobą nierozerwalnie związana od samych początków istnienia tych roślin, a bliskie związki pomiędzy tymi organizmami doprowadziły do pojawienia się wspaniałej różnorodności i roślin, i zwierząt, dodaje profesor Pamela Soltiz z Florida Museum. « powrót do artykułu
  3. Astronomowie z Indii i Kanady zarejestrowali emisję radiową w paśmie 21 cm pochodzącą z wyjątkowo odległej galaktyki. Ich osiągnięcie otwiera drogę do lepszego poznania wszechświata, szczególnie jego odległych części. Daje ono np. nadzieję na znalezienie odpowiedzi na pytanie, w jaki sposób w odległych galaktykach powstają gwiazdy. Galaktyki emitują różne rodzaje sygnałów radiowych. Dotychczas mogliśmy rejestrować ten konkretny sygnał tylko z bliższych galaktyk, co ograniczało naszą wiedzę, mówi Arnab Chakraborty, doktorant na kanadyjskim McGill University. Emisja w paśmie 21 centymetrów pochodzi z atomów wodoru, który szczególnie interesuje naukowców. Atomowy wodór to podstawowy budulec gwiazd, ma też olbrzymi wpływ na ewolucję galaktyk. Zatem, by lepiej zrozumieć ewolucję wszechświata, naukowcy chcą zrozumieć ewolucję gazu w różnych punktach jego historii. A dzięki indyjskiemu Giant Metrewave Radio Telescope oraz wykorzystaniu techniki soczewkowania grawitacyjnego udało się zarejestrować emisję z atomów wodoru znajdujących się w bardzo odległej galaktyce. Dotychczas najbardziej odległą galaktyką, dla której zarejestrowano emisję w paśmie 21 cm, był obiekt oddalony od nas o 4,1 miliarda lat. Przesunięcie ku czerwieni tej galaktyki wynosiło z=0.376. Przesunięcie ku czerwieni to zjawisko polegające na wydłużaniu się fali promieniowania elektromagnetycznego w miarę oddalania się źródła emisji od obserwatora. W przypadku światła widzialnego falami o największej długości są fale barwy czerwonej, stąd nazwa zjawiska. Kanadyjsko-indyjski zespół zarejestrował teraz emisję z galaktyki, dla której z wynosi 1.29, co oznacza, że jest ona oddalona od nas o 8,8 miliarda lat świetlnych. Przechwycony sygnał został z niej wyemitowany, gdy wszechświat liczył sobie zaledwie 4,9 miliarda lat. Ze względu na gigantyczną odległość, do chwili, gdy przechwyciliśmy sygnał, emisja z pasma 21 cm przesunęła się do pasma 48 cm, mówi Chakraborty. Zarejestrowanie tak słabego sygnału z tak wielkiej odległości było możliwe dzięki zjawisku soczewkowania grawitacyjnego, w wyniku którego fale emitowane ze źródła są zaginane jak w soczewce przez obecność dużej masy – na przykład galaktyki – pomiędzy źródłem a obserwatorem. W tym przypadku soczewkowanie wzmocniło sygnał 30-krotnie, dzięki czemu mogliśmy zajrzeć tak głęboko w przestrzeń kosmiczną, wyjaśnia profesor Nirupam Roy. Badania wykazały, że masa wodoru atomowego w obserwowanej galaktyce jest niemal dwukrotnie większa niż masa gwiazd. Uzyskane wyniki dowodzą, że już za pomocą obecnie dostępnych technologii jesteśmy w stanie coraz bardziej szczegółowo badać coraz odleglejsze obszary wszechświata i śledzić jego ewolucję. « powrót do artykułu
  4. Umiejętność gotowania pokarmów uznawana jest za kluczowy element ewolucji człowieka. Gotowane pożywienia oraz wszystko, co związane z tym procesem, miało olbrzymi wpływ na naszą biologię oraz rozwój stosunków społecznych. Niedawno zdobyto dowody, że hominini intencjonalnie używali ognia co najmniej milion lat temu. Kiedy jednak wykorzystywali ogień do przygotowywania posiłków? Uczeni z Izraela, Wielkiej Brytanii i Niemiec znaleźli właśnie najstarsze znane nam ślady przygotowywania posiłków na ogniu. Na stanowisku Gesher Benot Ya’aqov w Izraelu naukowcy odkryli pozostałości po gotowaniu ryby sprzed 780 000 lat. O swoich pracach poinformowali na łamach Nature Ecology and Evolution. Badacze skupili się na analizie zębów gardłowych należących do ryb z rzędu karpiokształtnych. Zęby te spełniają rolę żaren mielących twarde pokarmy, jak np. muszle. Na wspomnianym stanowisku znaleziono liczne takie zęby, występujące w różnych warstwach archeologicznych. Naukowcy przeanalizowali strukturę kryształów formujących się w szkliwie pod wpływem temperatury. Na tej podstawie dowiedli, że ryba, która została złowiona w pobliskim prehistorycznym jeziorze Hula została poddana obróbce cieplnej odpowiadającej temperaturom przy gotowaniu, a nie uległa przypadkowemu spaleniu. To niezwykle ważne odkrycie, gdyż dotychczas ślady używania ognia do przygotowywania posiłków znajdowano na stanowiskach o około 600 000 lat młodszych i powiązanych z głównie z H. sapiens. Wykorzystaliśmy metody geochemiczne do zidentyfikowania zmian rozmiarów kryształów szkliwa wyniku wystawienia na różne temperatury. Gdy dochodzi przypadkowego spalenia w ogniu, zachodzą dramatyczne zmiany rozmiarów, które łatwo zidentyfikować. Znacznie trudniej rozpoznać zmiany powodowane przez niższe temperatury gotowania, pomiędzy 200 a 500 stopni Celsjusza. Przeprowadzone eksperymenty pozwoliły nam na zidentyfikowania takich zmian. Nie wiemy dokładnie, jak ryby gotowano, ale biorąc pod uwagę brak zmian powodowanych przez wysokie temperatury, jest jasne, że nie były gotowane bezpośrednio na otwartym ogniu, ani nie wrzucono ich do ognia jako odpadów, mówi doktor Jens Najorka z Muzeum Historii Naturalnej w Londynie. Fakt, że gotowanie ryb stosowano w tym miejscu przez tak długi, nieprzerwany czas, świadczy o istniejącej tradycji gotowania ryb. To kolejne dowód na wysokie zdolności poznawcze przedstawicieli kultury aszelskiej, którzy w prehistorii zamieszkiwali Dolinę Hula. Żyjące tutaj grupy były świetnie zaznajomione ze swoim środowiskiem naturalnym i korzystały z różnych jego zasobów. [...] Możliwe, że gotowanie nie ograniczało się do ryb, ale obejmowało inne zwierzęta oraz rośliny, wyjaśnia profesor Naama Goren-Inbar z Uniwersytetu Hebrajskiego w Jerozolimie. Na stanowisku znaleziono szczątki różnych gatunków ryb, z wyraźną przewagą dwóch wielkich gatunków karpiowatych, które dorastały do 2 metrów długości. To pokazuje, jak ważne były ryby w życiu prehistorycznych ludzi i jak olbrzymią rolę odgrywały w ich diecie i gospodarce. Badając szczątki ryb z Gesher Benot Ya'aqob mogliśmy też, po raz pierwszy, zrekonstruować gatunki zamieszkujące Jezioro Hula i wykazać, że znajdowały się wśród nich i takie, które już wymarły, dodają naukowcy. Gotowanie pokarmów było olbrzymią rewolucją. Dzięki spożywaniu ugotowanych pokarmów zużywamy mniej energii na trawienie, dzięki czemu powstaje nadwyżka energetyczna służąca do rozwoju innych elementów organizmu. Gotowane jedzenie jest bardziej miękkie, co prowadzi do zmian w budowie żuchwy i czaszki. Sam proces jedzenie oraz trawienia trwa też krócej, co daje dodatkowy czas, w którym mogą rozwijać się nowe umiejętności społeczne i poznawcze. Niektórzy naukowcy twierdzą nawet, że to jedzenie ryb spowodowało gwałtowne przyspieszenie ewolucji człowieka, gdyż zawierają one m.in. kwasy tłuszczowe omega-3, cynk, jod i inne elementy przyczyniające się do rozwoju mózgu. Autorzy najnowszych badań twierdzą nawet, że to lokalizacja słodkowodnych jezior zdeterminowała drogę, którą nasi przodkowie opuścili Afrykę. Jeziora zapewniały nie tylko wodę pitną, ale dawały też dostęp do ryb, a na nie można było dość łatwo i bez większego ryzyka polować, zdobywając bardzo pożywne jedzenie. Dowody archeologiczne ze stanowiska Gesher Benot Ya’aqov wskazują, że na osadnictwo na brzegach Jeziora Hula trwało nieprzerwanie przez dziesiątki tysięcy lat. Są one obecne w ponad 20 warstwach. Znaleziono w nich ślady kultury materiałowej homininów, w tym narzędzia z krzemienia, wapienie i bazaltu, pozostałości po spożywanych roślinach, rybach i ssakach lądowych. « powrót do artykułu
  5. Palczak madagaskarski, nazywany też aj-ajem, dołączył właśnie do grupy znanych zwierząt dłubiących w nosie. Jakiś czas temu sfilmowano go, jak wkłada zakończony hakowatym pazurem długi środkowy palec do jamy nosowej, a następnie go oblizuje. Zachowanie zostało przeanalizowane w artykule, który parę dni temu ukazał się w Journal of Zoology. Jedna z jego autorek, dr Anne-Claire Fabre, prof. Uniwersytetu w Bernie, która jest również kuratorką w dziale ssaków Muzeum Historii Naturalnej w stolicy Szwajcarii, podkreśla, że istnieje bardzo mało badań poświęconych zagadnieniu, czemu zwierzęta, w tym ludzie, w ogóle wyewoluowali impuls do dłubania w nosie. Sądzimy, że zachowanie to jest niedostatecznie zbadane, ponieważ postrzega się je jako zły nawyk. Dłubanie w nosie (rhinotillexis) definiuje się jako czynność wydobywania z nosa zaschniętej wydzieliny bądź ciał obcych. Zjadanie wydzieliny nazywa się mukofagią. Niekiedy dłubanie w nosie przyjmuje postać kompulsji - rhinotillexomanii. Zrozumienie przyczyn występowania rhinotillexis ma więc spore znaczenie dla jakości życia i zdrowia niektórych osób. Słabo poznane zachowanie Nieliczne badania dotyczyły korzyści i negatywnych skutków tego zachowania. Niektóre wskazywały na jego rolę w rozprzestrzenianiu szkodliwych bakterii. Inne wspominają o korzyściach dla układu odpornościowego. Dłubanie może też pozwalać usunąć podrażnienia. Nie mamy pojęcia o roli [tego zachowania]. Abstrahując od obrzydzenia, jakie wzbudza, może przynosić pewnym gatunkom korzyści. Uważam, że powinniśmy to zbadać - podkreśla dr Fabre. Bez względu na przyczynę, nie jest to wyłącznie ludzki nawyk. Od czasu do czasu stwierdza się go bowiem u co najmniej 12 gatunków naczelnych, w tym u szympansów, makaków, kapucynek, orangutanów czy goryli. Przypadek Kali Palczak madagaskarski dopiero dołączył do tego grona. Roberto Portela Miguez z Muzeum Historii Naturalnej w Londynie, jeden ze współautorów tekstu pt. „A review of nose picking in primates with new evidence of its occurrence in Daubentonia madagascariensis”, mówi, że aj-aj jest ikonicznym gatunkiem i po obejrzeniu filmu aż trudno było mu uwierzyć, że nikt wcześniej tego nie zaobserwował. Zwykle palczak wykorzystuje swój cienki, długi środkowy palec do opukiwania pni drzew i wyciągania owadów oraz ich larw przez szczeliny.   Dr Fabre wyjaśnia, że nagrała to zachowanie w 2015 r., obserwując aj-aje z Duke Lemur Centre. Byłam naprawdę zaskoczona, zwłaszcza że w nosie zwierzęcia - samicy Kali - zniknął dosłownie cały 8-cm palec. Zastanawiałam się, gdzie ten palec się znajduje. To zainspirowało dalsze badania. Powstał model 3D, w którym wykorzystano skany tomograficzne głowy i dłoni aj-aja. Okazało się, że palec przechodzi przez całą jamę nosową i sięga aż do gardła. Przegląd literatury Wraz z kolegami po fachu dr Fabre zajęła się przeglądem literatury przedmiotu. Porównania z innymi gatunkami sugerują, że dłubiącymi w nosie są zwierzęta, które dobrze sobie radzą z manipulowaniem obiektami. Kapucynki wyróżniają się, na przykład, na tle bliskich krewnych, ponieważ potrafią precyzyjnie chwytać, poruszając niezależnie palcami. Odkryliśmy, że [opisywane] zachowanie występuje u gatunków, które cechują się wysokim poziomem zręczności palców. Nienaczelne mogą nie być na tyle sprawne, by móc dłubać w nosie, dlatego ten fenomen występuje u nas i naszych bliskich krewnych - wyjaśnia Portela Miguez. Wiele naczelnych wykorzystuje do dłubania w nosie narzędzia, co może poszerzać grono poza zwierzęta, które mają palce na tyle małe, by zmieściły się one w nozdrzach. Część zwierząt opisanych w artykule żyła w niewoli, niewykluczone więc, że w grę wchodziły nieprawidłowe zachowania. Naukowcy twierdzą jednak, że nie eliminuje to bynajmniej możliwości, że dłubanie w nosie jest rozpowszechnionym zachowaniem, które należy po prostu właściwie zrozumieć. Wyzwania badawcze Dr Fabre dodaje, że zachowanie to może być trudne do wychwycenia; zwierzęta trzeba by obserwować w sposób ciągły. Interesująco byłoby [przy tym] wypytać badaczy, czy zaobserwowali dłubanie w nosie na wolności i popracować z przedstawicielami innych dziedzin, aby ustalić, czy dłubanie spełnia jakąś funkcję, czy nie. Dłubanie w nosie odnotowano zarówno u małp wąsko-, jak i szerokonosych. Ponieważ w studium uwzględniono zaledwie 12 gatunków, trudno powiedzieć, czy zachowanie pochodzi od wspólnego przodka, czy też rozwinęło się niezależnie - podsumowuje dr Fabre. « powrót do artykułu
  6. Odkryliśmy, że podobny do dzisiejszego rozwój ciąży pojawił się około 200–300 tysięcy lat przed powstaniem współczesnych gatunków ludzi. Mógł to być decydujący element naszej ewolucji, umożliwiający pojawienie się dużego mózgu, mówi Tesla Monson z Western Washington University. Ludzki płód rośnie znacząco szybciej niż np. płód goryli. O ile małemu człowiekowi przybywa średnio 11,6 grama dziennie, mały goryl przybiera średnio 8,2 grama dziennie. Z badań przeprowadzonych na podstawie skamieniałych zębów wynika, że ten szybszy wzrost ludzkich płodów pojawił się mniej niż milion lat temu. Mógł jednak odegrać znaczącą rolę w ewolucji. Naukowcy badający ewolucję ludzkiej ciąży musieli dotychczas polegać na badaniu skamieniałych miednic i rzadkich zachowanych szczątków niemowląt. Monson i jej koledzy zauważyli, że wśród naczelnych wzrost płodu jest ściśle powiązany ze stosunkiem długości 1. i 3. zęba trzonowego. Na tej podstawie naukowcy stworzyli model matematyczny, który przewidywał tempo wzrostu płodów na podstawie zębów trzonowych 608 naczelnych, w tym wielkich małp Afryki i małp z Azji. Następnie wykorzystali ten model do określenia tempa rozwoju płodu 13 gatunków hominidów. Okazało się, że od czasu oddzielenia się linii ewolucyjnych człowieka i szympansa tempo wzrostu naszej linii rozwojowej ciągle się zwiększało, aż około miliona lat temu zaczęło być bardziej podobne do przebiegu ciąży u człowieka współczesnego niż u innych małp. Sami autorzy badań przyznają, że nie wiedzą, co wspólnego mogą mieć stosunki długości zębów trzonowych z tempem wzrostu płodu i podkreślają, że wnioskowanie o przebiegu ciąży na podstawie skamieniałości może być obarczone dużym ryzykiem błędu. Z drugiej jednak strony zauważają, że moment pojawienia się „współczesnego” typu ciąży jest skorelowany ze zwiększeniem rozmiarów miednicy i mózgu u naszych przodków. Naukowcy, którzy nie brali udziału w badaniach, mówią, że uzyskane wyniki są przekonujące, a wykorzystana metoda – bardzo obiecująca. « powrót do artykułu
  7. Ludzie są jednym z niewielu gatunków, których samice żyją długo po utracie zdolności do rozmnażania się. To zaskakująca cecha, gdyż biologia większości zwierząt jest zoptymalizowana pod kątem przekazania genów. O tym, jaką korzyść może odnosić nasz gatunek z długiego życia kobiet pisaliśmy niedawno. Jednak w jaki sposób cecha ta w ogóle pojawiła się u H. sapiens? Naukowcy z Kalifornii twierdzą, że istnienie babek możemy zawdzięczać m.in. ... rzeżączce. Uczeni z Wydziału Medycyny Uniwersytetu Kalifornijskiego w San Diego (UCSD) już 7 lat temu odkryli u ludzi unikatowy zestaw mutacji genetycznych, chroniących przed demencją i spadkiem zdolności poznawczych. Teraz na łamach Molecular Biology and Evolution opisują swoje badania nad jednym z tych genów i nad próbą opisania jego historii ewolucyjnej. Porównanie genomu ludzkiego i szympansiego pokazało, że posiadamy unikatową wersję genu receptora CD33 obecnego w komórkach układu odpornościowego. Standardowy receptor CD33 wiąże się z kwasem sjalowym. To cukier, którym pokryte są komórki ludzkiego organizmu. Gdy komórka układu odpornościowego wyczuje za pomocą CD33 kwas sjalowy, rozpoznaje komórę organizmu i nie atakuje jej. Receptor CD33 jet też obecny w komórkach mikrogleju w mózgu. To makrofagi biorące udział w odpowiedzi immunologicznej i odgrywającą ważną rolę w usuwaniu uszkodzonych komórek mózgu oraz płytek amyloidowych zaangażowanych w pojawianie się choroby Alzheimera. Jednak standardowe receptory CD33, przyłączając się do kwasu sjalowego uszkodzonych komórek i płytek tłumią działanie mikrogleju, zwiększając ryzyko demencji. I tutaj właśnie pojawia się nowy wariant genu. W pewnym momencie ewolucji w naszych organizmach pojawiła się zmutowana forma CD33, której brakuje miejsca przyłączania się do kwasu sjalowego. Zmutowany receptor nie reaguje więc na obecność tego cukru w uszkodzonych komórkach i płytkach amyloidowych, dzięki czemu mikroglej może je usuwać. Skądinąd wiemy, że wyższy poziom zmutowanych CD33 jest powiązany z lepszą ochroną przeciwko pojawieniu się choroby Alzheimera. Profesor Ajit Varki i jego koledzy z UCSD postanowili sprawdzić, kiedy zmutowany wariant CD33 się pojawił. Odkryli istnienie silnej pozytywnej presji selektywnej, której istnienie wskazuje, że jakiś czynnik napędza ewolucję genu tak, że jest ona szybsza niż spodziewana. Zauważyli też, że zmutowanego CD33 nie mieli ani neandertalczycy ani denisowianie. To było dla nas zaskoczeniem, gdyż większość genów, którymi różnimy się od szympansa, jest obecna także u neandertalczyków. To zaś sugerowało, że mądrość i opieka ze strony zdrowych dziadków mogła być tym, co dało nam przewagę nad innymi homininami, mówi Varki. Przeprowadzone badania sugerują, że elementem, który dał nam tę przewagę i który w tak decydujący sposób wpłynął na naszą ewolucję mogły być takie patogeny jak dwoinka rzeżączki (Neisseria gonorrhoeae) oraz paciorkowiec bezmleczności (Streptococcus agalactiae). Bakterie te chowają się w otoczce z kwasu sjalowego. Więc na podobieństwo wilka w owczej skórze są w stanie oszukać układ odpornościowy. Dlatego też Varki, profesor patologii Pascal Gagneux i ich zespół sugerują, że presja ze strony tych patogenów spowodowała, że pojawił się wariant CD33, który potrafił rozpoznać niebezpieczne bakterie. Przypuszczenie to potwierdzili odkrywając, że jedna ze specyficznych dla ludzi mutacji powoduje, że układ odpornościowy jest w stanie rozpoznać przeciwnika. Jako, że oba wspomniane patogeny przenoszone są drogą płciową, naukowcy sądzą, że najpierw ludzie nabyli zmutowany wariant CD33 by chronił nas przed zachorowaniem w okresie rozrodczym. Z czasem mutacja ta została przejęta przez mózg w celu ochrony go przed demencją. Możliwe, że CD33 to jeden z wielu genów wybranych w trakcie ewolucji do ochrony przed patogenami. Później zaś nasze organizmy ponownie go wybrały, ze względu na ochronę przed demencją i innymi chorobami związanymi z wiekiem, mówi Gagneux. « powrót do artykułu
  8. Długie życie kobiet po menopauzie to zagadka. Zgodnie z obowiązującym poglądem, selekcja naturalna promuje tych, którzy mogą się rozmnażać. Dlatego w pierwszych dekadach życia nasze organizmy lepiej radzą sobie z pojawiającymi się mutacjami. Jednak po okresie reprodukcyjnym, mechanizm ochronny zostaje wyłączony, po menopauzie komórki stają się bardziej podatne na mutacje. Dla większości zwierząt oznacza to szybką śmierć. Wyjątkiem są tu ludzie i niektóre walenie. Z ewolucyjnego punktu widzenia długie życie po menopauzie to zagadka. Nie zyskujemy bowiem kilku lat. Mamy cały długi etap życia po przekroczeniu zdolności do reprodukcji, mówi profesor antropologii Michael Gurven z Uniwersytetu Kalifornijskiego w Santa Barbara. Naukowiec przywołuje tutaj przykład naszych bliskich krewnych, szympansów, u których dobrze widać związek pomiędzy płodnością a zdolnością do przeżycia, a długość życia tych zwierząt spada wraz ze spadkiem zdolności reprodukcyjnych. Gurven we współpracy z ekologiem populacyjnym Razielem Davisonem opublikowali artykuł, w którym rzucają wyzwanie przekonaniu, że po okresie reprodukcyjnym ochronne mechanizmy doboru naturalnego u ludzi zostają wyłączone. Obaj uczeni stwierdzają, że długie życie po utracie zdolności do reprodukcji nie jest u ludzi tylko i wyłącznie zasługą postępów medycyny i opieki zdrowotnej. Wyewoluowaliśmy możliwość długiego życia, stwierdza Gurven. A długie życie wynika z wartości, jakie niesie ze sobą obecność starszych dorosłych. Taki pomysł krążył wśród naukowców już od pewnego czasu. My go sformalizowaliśmy i zadaliśmy pytanie, jakie wartości – z ewolucyjnego punktu widzenia – wnoszą starsi dorośli. Jeną z prób wyjaśnienia tego fenomenu jest hipoteza babki, mówiąca, że kobieta po menopauzie, pomagając swojej córce w wychowaniu dzieci, wpływa na polepszenie jej kondycji fizycznej, dzięki czemu córka może mieć więcej dzieci, co z kolei zwiększa szanse przetrwania genów matki. Zatem nie chodzi tutaj o reprodukcję, a rodzaj pośredniej reprodukcji. Możliwość wykorzystania całej puli zasobów, a nie tylko zasobów własnych, zupełnie zmienia reguły gry wśród zwierząt społecznych, wyjaśnia Davison. Gurven i Davison przyjrzeli się elementowi, który jest motywem centralnym hipotezy babki, czyli transferom międzygeneracyjnym, a mówiąc prościej – dzieleniem się zasobami pomiędzy młodszym a starszym pokoleniem. Najbardziej widocznym przejawem takiego dzielenia się zasobami jest podział pożywienia wśród społeczności nieuprzemysłowiony. Od chwili urodzin muszą minąć mniej więcej 2 dekady, by człowiek zaczął wytwarzać więcej pożywienia, niż sam konsumuje, mówi Gurven, który badał demografię i gospodarkę boliwijskiego ludu Tsimane i innych rdzennych mieszkańców Ameryki Południowej. Zanim dzieci dorosną, będą w stanie o siebie zadbać i stać się produktywnym członkiem społeczności, dorośli muszą włożyć dużo wysiłku w zdobycie i przygotowanie dla nich żywności. Jest to możliwe dlatego, że dorośli są w stanie wytworzyć więcej żywności niż tylko na własne potrzeby. Ta zdolność pojawiła się w naszej ewolucji już dawno i jest obecna też w wysoko rozwiniętych społeczeństwach przemysłowych. W naszym modelu duże nadwyżki wytwarzane przez dorosłych pozwalają poprawić szanse na przeżycie i płodność krewniaków oraz innych członków grupy, którzy również dzielą się swoimi nadwyżkami. Patrząc tylko z punktu widzenia produkcji żywności widzimy, że najwyższą wartość mają tutaj ludzie w wieku rozrodczym. Gdy jednak wykorzystaliśmy dane demograficzny i gospodarcze z wielu różnych społeczności łowiecko-zbierackich i rolniczych okazało się, że nadwyżki dostarczane przez starszych dorosłych, również mają pozytywny wpływ na grupę. Obliczyliśmy, że dłuższe życie starszych osób ma wartość kilku dodatkowych dzieci, mówi Davison. Okazuje się jednak, że osoby starsze mają swoją wartość, ale tylko do pewnego wieku. Nie wszystkie babki są cenne. Mniej więcej w połowie 7. dekady życia w społecznościach łowiecko-zbierackich i rolniczych starsze osoby zaczynają zużywać więcej zasobów, niż dostarczają. Ponadto w tym czasie większość ich wnuków już ich nie potrzebuje, więc grupa krewnych, która korzysta z ich pomocy jest mała. Żywność to jednak nie wszystko. Starsze osoby uczą i socjalizują dzieci. To właśnie na tym polega ich największa wartość. Nie dostarczają już tak dużych nadwyżek żywności, jak kiedyś, ale dzielą się z wnukami swoimi umiejętnościami i doświadczeniem oraz odciążają rodziców od opieki nad dziećmi. Gdy zdasz sobie sprawę z tego, że starsi pomagają młodszemu pokoleniu w utrzymaniu kondycji pozwalającej mu na wytwarzanie dużych nadwyżek, łatwo zauważysz, że to spora korzyść z obecności starszych aktywnych osób. Starsi nie tylko dają coś grupie, ale ich użyteczność dla grupy powoduje, że i oni coś od niej otrzymują. Czy to nadwyżki żywności, czy to ochronę i opiekę. Innymi słowy, współzależności występują w obie strony, od starszych do młodszych i od młodszych do starszych, wyjaśnia Gurven. Zdaniem obu badaczy, w toku ludzkiej ewolucji stosowane przez naszych przodków strategie i długoterminowe inwestycje w kondycję grupy skutkowały zarówno wydłużonym dzieciństwem jak i niezwykle długim życiem po okresie rozrodczym. Dla kontrastu możemy się tutaj przyjrzeć szympansom, które są w stanie zadbać o siebie już przed osiągnięciem 5. roku życia. Jednak zdobywanie przez nie pokarmu wymaga mniejszych umiejętności i wytwarzają one niewielkie nadwyżki. Mimo to, jak sugerują Gurven i Davison, gdyby przodek szympansa szerzej dzielił się żywnością z grupą, także i u nich pojawiłyby się mechanizmy preferujące długowieczność. To pokazuje, że naszą długowieczność zawdzięczamy współpracy. Szympansie babki rzadko robią coś dla swoich wnucząt, dodaje Gurven. « powrót do artykułu
  9. Wiemy, że psy pochodzą od wilka szarego, a do ich udomowienia doszło w epoce lodowej przed co najmniej 15 000 lat. Jednak o miejscu i procesie udomowienia najlepszego przyjaciela człowieka wiemy niewiele. Teraz międzynarodowa grupa genetyków i archeologów, pracująca pod kierunkiem specjalistów z Instytutu Francisa Cricka odkryła, że psy pochodzą od co najmniej dwóch populacji wilków. Uczeni przeanalizowali genomy 72 prehistorycznych wilków, które żyły w Europie, Ameryce Północnej i na Syberii w czasie ostatnich 100 000 lat. Po analizie genomów w 9 różnych laboratoriach naukowcy stwierdzili, że dawne jak i współczesne psy są bliżej spokrewnione z prehistorycznymi wilkami z terenu Azji niż z terenu Europy. To wskazuje, że miejsca udomowienia należy szukać na wschodzie. Jednak uczeni zauważyli coś jeszcze. Znaleźli otóż dowody, że w tworzeniu DNA psów wzięły udział dwie oddzielne populacje wilków. Wydaje się, że wczesne psy z północno-wschodniej Europy, Syberii i obu Ameryk mają wspólnego przodka pochodzącego ze źródła znajdującego się na wschodzie. Jednak wczesne psy z Bliskiego Wschodu, Afryki i południa Europy mają w swoim genomie ślady dodatkowego źródła, powiązanego z wilkami z Bliskiego Wschodu. Fenomen ten można wyjaśnić w różnoraki sposób. Wilk mógł zostać udomowiony więcej niż raz, a później doszło do wymieszania populacji. Inna możliwość jest taka, że do udomowienia doszło raz, ale wczesne psy mieszały się z wilkami. Obecnie nie jesteśmy w stanie stwierdzić, który z tych scenariuszy jest prawdziwy. W trakcie naszych badań znakomicie zwiększyliśmy liczbę zsekwencjowanych genomów prehistorycznych wilków, co pozwoliło nam na stworzenie szczegółowego drzewa genealogicznego wilka, obejmującego również okres, gdy pojawiły się psy. Próbując umieścić psy na tym drzewie odkryliśmy, że pochodzą one od co najmniej dwóch populacji wilków – źródła wschodniego, które przyczyniło się do powstania wszystkich psów, oraz źródła zachodniego, które wzięło udział w powstaniu niektórych psów, mówi jeden z głównych autorów badań, Anders Bergström. Obecnie naukowcy pracują nad genomami prehistorycznych wilków z obszarów, których dotychczas nie badali, w tym z obszarów bardziej nie południe. Wspomniane 72 wilki, których genomy badano, żyły na przestrzenie około 30 000 pokoleń. To pozwoliło naukowcom na zbudowanie obrazu zmian wilczego DNA. Zauważyli na przykład, że na przestrzeni około 10 000 lat wariant genu IFT88, który wpływa na rozwój czaszki i szczęk, zmienił swój stopień rozpowszechnienia z bardzo rzadkiego do obecnego u każdego wilka, a współcześnie występuje u wszystkich wilków i psów. Być może rozpowszechnienie się tego wariantu można przypisać zmianom w dostępnym rodzaju ofiar w okresie epoki lodowej, co preferowało wilki o określonym kształcie czaszki. Pontus Skoglund z Instytutu Cricka stwierdził, że oto po raz pierwszy naukowcy bezpośrednio prześledzili zmiany wywołane selekcją naturalną u dużego zwierzęcia na przestrzeni 100 000 lat, badając te zmiany w czasie gdy rzeczywiście zachodziły, a nie próbując rekonstruować je na podstawie współczesnego DNA. Trafiliśmy na kilkanaście przypadków, gdy jakaś mutacja rozprzestrzeniała się po całej światowej populacji wilków. Było to możliwe, gdyż gatunek ten miał ze sobą liczne kontakty, pokonując olbrzymie przestrzenie. To prawdopodobnie dzięki takiemu utrzymywaniu długodystansowej łączności wilki przetrwały epokę lodową, która zabiła wiele dużych gatunków mięsożerców. « powrót do artykułu
  10. Gdy człowiek zaczął używać kamiennych narzędzi, wszystko się zmieniło. Narzędzia, zarówno te celowo modyfikowane,  jak i niemodyfikowane, zwiększyły nisze ekologiczne zajmowane przez naszych przodków. Pozwoliły na korzystanie z nowych zasobów pożywienia. Nasi przodkowie mogli dzięki nim zabijać zwierzęta, dzielić ich mięso, korzystać ze skór, rozbijać kości, obrabiać twarde rośliny. To zaś doprowadziło do zmian ewolucyjnych. Dostęp do większej ilości bardziej zróżnicowanego pożywienia, wytwarzanie i posługiwanie się kamiennymi narzędziami doprowadziły do ewolucji uzębienia, morfologii dłoni czy rozmiarów mózgu. Jednak mimo tego, jak ważnym wydarzeniem było używanie narzędzi, wciąż niewiele wiemy o tym, jak do tego doszło. Jednym ze sposób na badanie procesu adaptacji takich narzędzi jest przyglądanie się naszym najbliższym przodkom, wielkim małpom. Naukowcy z Uniwersytetów w Tybindze, Barcelonie, Oslo i Instytutu Antropologii Ewolucyjnej im. Maxa Plancka badali orangutany pod kątem zarówno samodzielnego jak i społecznego uczenia się wytwarzania i używania kamiennych narzędzi. Kamienne narzędzia, ze względu na ich odporność na destrukcyjne procesy zewnętrzne, są najczęściej spotykanymi narzędziami znajdowanymi przez archeologów. Wśród narzędzi typowych dla wczesnej epoki kamienia znajdziemy zarówno celowo modyfikowane kamienie o ostrych krawędziach, jak i niemodyfikowane kamienie wykorzystywane w roli młotków czy kowadeł. Nasi przodkowie korzystali z nich już 3,3 miliona lat temu, mówi główna autorka badań, doktor Alba Motes-Rodrigo. Wykorzystanie tych kamieni było kamieniem milowym ludzkiej ewolucji. Naukowcy przeprowadzili serię eksperymentów z orangutanami, które nie miały doświadczenia w używaniu narzędzi. Dwóm samcom z Zoo Kristiansand w Norwegii dostarczono młot do betonu, kawałek czertu (twardej skały krzemionkowej) oraz dwie skrzynki zawierające owoc. Aby dostać się do skrzynek trzeba było w jednej z nich przeciąć linę (symulowała ona ścięgno zwierzęce, a w drugiej silikonową membranę symulującą skórę. Oba zwierzęta uderzały młotkiem w ściany i podłogę, ale żaden z nich nie spróbował użyć go do odłupania z czertu zaostrzonego fragmentu. W drugim z eksperymentów orangutanom dostarczono różne materiały, a wśród nich był wykonany ludzką ręką krzemienny odłupek. Tym razem jedna z małp próbowała użyć odłupka do przecięcia silikonowej membrany. W trzecim z eksperymentów wzięły udział trzy samice orangutanów z Twycross Zoo w Wielkiej Brytanii. Tym razem sprawdzano, czy małpy mogą nauczyć się wykonywania kamiennych narzędzi obserwując człowieka. Po pokazie jedna z małp użyła młotka, by uderzyć nim w krawędź czertu, tak, jak zademonstrował to człowiek. Autorzy badań twierdzą, że są one pierwszymi, podczas których obserwowano, by orangutan spontanicznie wykorzystywał narzędzie do cięcia. Nasze badania sugerują, że dwa główne warunki wstępne dotyczące użycia kamiennych narzędzi – zdolność do uderzania kamieni młotem oraz rozpoznanie ostrych kamieni jako narzędzi do cięcia – mogły istnieć już u naszego ostatniego przodka z orangutanami, przed 13 milionami lat, czytamy na łamach PLOS One. Stwierdziliśmy też, że orangutany spontanicznie uderzają kamieniami w inne kamienie, co czasem może prowadzić do pojawiania się ostrych odłupków. « powrót do artykułu
  11. Termity oddzieliły się od innych karaczanów przed 150 milionami lat i wyewoluowały do życia społecznego. Obecnie niektóre gatunki termitów tworzą gigantyczne kolonie składające się z milionów osobników żyjących w ziemi. Inne, w tym termity żyjące w drewnie, żyją w niedużych koloniach liczących kilka tysięcy osobników. Naukowcy z Okinawy odkryli, że termity drzewne odbyły dziesiątki podróży transoceanicznych, dzięki którym są tak zróżnicowane jak obecnie. Termity drzewne, Kalotermitidae, są często postrzegane jako prymitywne, gdyż tworzą małe kolnie i oddzieliły się od innych termitów dość wcześnie, już około 100 milionów lat temu. Jednak tak naprawdę niewiele wiemy o tej rodzinie termitów, mówi główny autor badań, doktor Aleš Buček z Okinawskiego Podyplomowego Uniwersytetu Nauki i Technologii (OIST) . Dotychczas większość badań nad tą rodziną koncentrowało się nad jednym gatunkiem, często występującym w domach mieszkalnych i traktowanym jak szkodnik. Naukowcy z OIST przez 30 lat kolekcjonowali przedstawicieli Kalotermitidae. Do analizy wybrali przedstawicieli 120 gatunków. Niektóre z nich były reprezentowane przez wiele próbek zebranych w różnych miejscach. Te 120 gatunków to ponad 25% wszystkich znanych Kalotermitidae. W OIST wykonano sekwencjonowanie DNA owadów. Okazało się, że w ciągu ostatnich 50 milionów lat termity przekroczyły oceany co najmniej 40 razy, pływając m.in. pomiędzy Ameryką Południową a Afryką. W skali milionów lat podróże te skutkowały dużym różnicowaniem się Kalotermitidae. One są bardzo dobre w podróżach transoceanicznych. Ich domem jest drewno, które spełnia rolę niewielkiego statku, mówi Buček. Z badań wynika, że większość rodzajów Kalotermitidae pochodzi z Ameryki Południowej. Uczeni potwierdzili też, że w ostatnich wiekach ludzie wzięli udział w większości procesu rozprzestrzeniania się termitów. Badania podważają też powszechne przekonanie, jakoby termity drzewne wiodły prymitywny tryb życia. Okazało się bowiem, że wśród najstarszych gatunków Kalotermitidae są i takie, które tworzą wielkie kolonie zamieszkujące różne kawałki drewna połączone ze sobą podziemnymi tunelami. To pokazuje, jak mało wiemy o termitach, zróżnicowaniu ich styli życia oraz organizacji ich życia społecznego. Im więcej dowiemy się o ich zachowaniu i ekologii, tym lepiej odtworzymy ewolucję ich życia społecznego i dowiemy się, dlaczego odniosły taki sukces, dodaje profesor Tom Bourguignon, jeden z autorów badań. « powrót do artykułu
  12. W magazynach Muzeum Zoologii Uniwersytetu w Cambridge odkryto słoje z nieskatalogowanymi okazami dziobaków i kolczatek sprzed 150 lat. Okazy pozyskał w XIX w. William Caldwell. Odegrały one kluczową rolę w udowodnieniu, że niektóre ssaki składają jaja. Ponieważ ta unikatowa kolekcja nie została skatalogowana, pracownicy muzeum nie mieli pojęcia o jej istnieniu. Niedawno zastępca dyrektora placówki Jack Ashby prowadził jednak badania do swojej nowej książki o australijskich ssakach, co utorowało drogę małemu „śledztwu”. Czytanie XIX-wiecznych informacji o tym, że dziobaki i kolczatki składają jaja, to jedno, a zobaczenie fizycznych okazów, które wiążą nas z tym odkryciem sprzed niemal 150 lat, to drugie - podkreślił Ashby. Z doświadczenia wiem, że na świecie nie ma kolekcji historii naturalnej z kompletnym katalogiem, dlatego podejrzewałem, że okazy Caldwella muszą gdzieś tu być - dodał. Okazało się, że miał rację. Trzy miesiące po tym, jak Ashby poprosił menedżera kolekcji Mathew Lowe'a, by miał oko na tę sprawę, znaleziono pudełko z okazami i notatką sugerującą powiązania z Caldwellem. Śledztwo Ashby'ego potwierdziło, że to rzeczywiście zbiór szkockiego zoologa. Nim Europejczycy po raz pierwszy zobaczyli dziobaki i kolczatki w latach 90. XVIII w., zakładano, że wszystkie ssaki są żyworodne. Pytanie, czy niektóre ssaki składają jaja, stało się potem jednym z najważniejszych pytań naukowych XIX w. "W XIX w. wielu konserwatywnych naukowców nie chciało wierzyć, że ssaki składające jaja mogą istnieć, ponieważ stanowiłoby to poparcie dla teorii ewolucji - idei, że jedna grupa zwierząt jest w stanie przekształcić się w inną" - wyjaśnia Ashby. Jego zdaniem, dla wielu XIX-wiecznych uczonych przyznanie, że ssaki mogą być podobne jaszczurkom czy żabom oznaczałaby degradację ssaków do poziomu zwierząt, które uznawano za niższą formę życia. W 1883 roku William Caldwell został wysłany do Australii z zadaniem jednoznacznego rozwiązania sporu o istnienie ssaków jajorodnych. Jego wyprawę finansowały University of Cambridge, Royal Society oraz rząd brytyjski. Podczas intensywnie prowadzonych prac polowych Caldwell, dzięki pomocy licznej grupy Aborygenów, zebrał około 1400 okazów. Był pierwszym, który zebrał kolekcję dokumentującą cały cykl życia ssaków jajorodnych, od zapłodnionych jaj po dorosłego osobnika. W jego zbiorach znajdziemy kolczatkowate, dziobaki i torbacze. Już w 1884 roku znalazł kolczatkę z jajem w „wylęgarce” oraz dziobaka z jajem w gnieździe, który właśnie składał kolejne jajo. Były to ostateczne dowody na istnienie ssaków jajorodnych. Ashby zwraca uwagę, że od ponad 100 lat kolczatki i dziobaki opisywane są jako dziwne i prymitywne, co jest spuścizną po ich dawnych opisach. Nie są ani dziwne, ani prymitywne. Wyewoluowały tak, jak wszystkie inne zwierzęta, po prostu nigdy nie przestały składać jaj, mówi. Zauważa, że kolczatki to najbardziej rozpowszechnione ssaki Australii. Przystosowały się do życia w różnym klimacie, od gór pokrytych śniegiem po upalne pustynie. Z kolei dziobaki, to jedyne ssaki wytwarzające jad. Kolczatki i dziobaki to jedne z nielicznych ssaków posługujących się elektrolokacją. « powrót do artykułu
  13. Na łamach Nature opublikowano artykuł, którego autorzy wykazali istnienie związku pomiędzy ewolucją człowieka a naturalnymi zmianami klimatu powodowanymi przez zjawiska astronomiczne. Od dawna podejrzewano, że klimat miał wpływ na ewolucję rodzaju Homo, jednak związek ten trudno udowodnić, gdyż w pobliżu miejsc występowania ludzkich skamieniałości rzadko można znaleźć wystarczająco dużo danych, by opisać klimatu w czasie, gdy ludzie ci żyli. Dlatego też naukowcy z Korei Południowej, Niemiec, Szwajcarii i Włoch wykorzystali model komputerowy opisujący klimat na Ziemi na przestrzeni ostatnich 2 milionów lat. To pozwoliło na określenie klimatu, jaki panował w miejscu i czasie, w którym żyli badani przez naukowców ludzi. W ten sposób opisano warunki klimatyczne preferowane przez poszczególne gatunki homininów. Stalo się to punktem wyjścia do stworzenia ewoluującej w czasie mapy z obszarami potencjalnie zamieszkanymi przez naszych przodków. Nawet jeśli różne grupy archaicznych ludzi preferowały różny klimat, to wszystkie one reagowały na zmiany klimatu wywoływane takimi zjawiskami astronomicznymi jak zmiana nachylenia ekliptyki, ekscentryczność orbity czy precesję. Zmiany takie mają miejsce w okresach od 21 tysięcy do 400 tysięcy lat, mówi Axel Timmermann, główny autor badań i dyrektor Centrum Fizyki Klimatu na Uniwersytecie Narodowym Pusan w Korei Południowej. Uczeni, żeby sprawdzić, czy związek pomiędzy zmianami klimatu a ewolucją rzeczywiście istnieje, powtórzyli swoją analizę, ale zmieniali dane dotyczące datowania poszczególnych skamieniałości, przypadkowo je między sobą podmieniając. Jeśli zmiany klimatu nie miały związku z ewolucją, to takie podmienienie danych nie powinno wpłynąć na wyniki analizy. Okazało się jednak, że wyniki analizy dla danych prawdziwych i przypadkowo wymieszanych zasadniczo się między sobą różniły. Wyraźnie widoczne były różnice we wzorcach wyboru habitatów przez Homo sapiens, Homo neanderthalensis i Homo haidelbergensis. Wyniki te pokazują, że co najmniej na przestrzeni ostatnich 500 000 lat zmiany klimatu, w tym okresy zlodowaceń, odgrywały kluczową rolę w wyborze habitatu przez te gatunki, co z kolei wpłynęło na miejsca znalezienia skamieniałości, mówi Timmermann. Postanowiliśmy też poznać odpowiedź na pytanie, czy habitaty różnych gatunków człowieka nakładały się na siebie w czasie i przestrzeni, dodaje profesor Pasquale Raia z Università di Napoli Federico II w Neapolu. Na podstawie tak uzyskanych danych dotyczących nakładających się habitatów, zrekonstruowano drzewo ewolucyjne człowieka. Wynika z niego, że neandertalczycy i denisowianie wyodrębnili się z eurazjatyckiego kladu H. heidelbergensis około 500–400 tysięcy lat temu, a H. sapiens pochodzi z południowoafrykańskiej populacji H. heidelbergensis, od której oddzielił się około 300 tysięcy lat temu. Nasza bazująca na klimacie rekonstrukcja drzewa ewolucyjnego człowieka jest więc dość podobna do rekonstrukcji wykonanej w ostatnim czasie na podstawie danych genetycznych lub danych morfologicznych. Dzięki temu możemy zaufać uzyskanym przez nas wynikom, cieszy się doktor Jiaoyan Ruan z Korei Południowej. Niezwykłej rekonstrukcji dokonano za pomocą południowokoreańskiego superkomputera Aleph, który pracował nieprzerwanie przez 6 miesięcy, by stworzyć największą z dotychczasowych symulacji przeszłego klimatu. Model obejmuje aż 500 terabajtów danych. To pierwsza ciągła symulacja ziemskiego klimatu obejmująca ostatnie 2 miliony lat i uwzględniająca pojawiania się i znikanie pokryw lodowych czy zmiany w stężeniach gazów cieplarnianych. Dotychczas paleoantropolodzy nie używali tak rozległych modeli paleoklimatycznych. Nasza praca pokazuje, jak przydatne są to narzędzia, dodaje profesor Christoph Zollikofer z Uniwersytetu w Zurichu. Uczeni mówią, ze w swoich danych zauważyli interesujący wzorzec dotyczący pożywienia. Wcześni afrykańscy hominini żyjący pomiędzy 2 a 1 milionem lat temu preferowali stabilne warunki klimatyczne, co ograniczało ich do wąskich habitatów. Przed około 800 tysiącami lat doszło do zmiany klimatu, w wyniku której grupa znana pod ogólnym terminem H. heidelbergensis dostosowała się do szerszego spektrum źródeł pożywienia, dzięki czemu mogli wędrować po całym globie, docierając do odległych regionów Europy i Azji, dodaje Elke Zeller z Korei. Nasze badania pokazują, że klimat odgrywał kluczową rolę w ewolucji rodzaju Homo. Jesteśmy, kim jesteśmy, gdyż przez wiele tysiącleci udało nam się dostosowywać do powolnych zmian klimatu, wyjaśnia profesor Timmermann. « powrót do artykułu
  14. W ramach zwycięskiego projektu konkursu SONATA BIS 11, finansowanego przez Narodowe Centrum Nauki, prof. Krzysztof Sośnica wraz z zespołem wykorzysta precyzyjne obserwacje laserowe i pomiary odległości do satelitów geodezyjnych, by dokładniej zbadać ewolucję ziemskiego pola grawitacyjnego. Dzięki obserwacjom zmieniającego się pola grawitacyjnego Ziemi, można opisać przemieszczanie się mas w systemie ziemskim, w tym zmiany w wodach lądowych, pokrywie lodowej, oceanach i atmosferze. Obserwacje te dostarczają niezbędnych informacji na temat globalnego obiegu wody, zmian w prądach powierzchniowych oceanów, utraty masy lodowców, podnoszenia się poziomu morza, przemieszczeń obciążenia powierzchniowego, a także wielu innych procesów środowiskowych. Zmiany, jakie zachodzą w polu grawitacyjnym Ziemi bezpośrednio wpływają na jej rotację, a w szczególności na współrzędne biegunowe i zmiany długości dnia od skali rocznej do wiekowej. Misje satelitarne GRACE i GRACE Follow-On zrewolucjonizowały obserwacje przemieszczania się mas w systemie ziemskim, ale dostarczają dane stosunkowo od niedawna. Naukowcy posiadają niewielką wiedzę na temat zmian pola grawitacyjnego Ziemi przed 2002 rokiem, czyli przed uruchomieniem misji GRACE. Ponadto, misja GRACE była początkowo projektowana na pięć lat, ale działała dłużej. Po 2010 roku pojawiły się poważne problemy z jej zasilaniem, skutkujące brakami w przesyle danych. Satelita GRACE Follow-On wszedł w fazę naukową w styczniu 2019 roku, czyli 16 miesięcy po wycofaniu jego poprzednika. Te wydarzenia sprawiły, że obserwacje pola grawitacyjnego Ziemi są nieciągłe, z wieloma lukami między 2010 a 2019 rokiem. Jak podkreśla prof. Krzysztof Sośnica z Instytutu Geodezji i Geoinformatyki na Uniwersytecie Przyrodniczym we Wrocławiu, misje GRACE i GRACE Follow-On nie są jedynymi misjami, które można wykorzystać do wyznaczania zmienności pola grawitacyjnego Ziemi. W badaniu procesów redystrybucji masy w dużej skali możemy zastosować precyzyjne laserowe pomiary odległości do satelitów geodezyjnych, takich jak LAGEOS-1/2, LARES, BLITS, a także Ajisai, Starlette i Stella – mówi prof. Sośnica, dodając, że satelity Starlette, Ajisai i LAGEOS od lat 80. są regularnie obserwowane przez globalną sieć stacji laserowych zapewniających pomiary odległości z dokładnością kilku milimetrów. A od początku lat 90. wiele aktywnych satelitów niskich (LEO) zostało wyposażonych w precyzyjne odbiorniki Globalnego Systemu Nawigacji Satelitarnej (GNSS), umożliwiające precyzyjne wyznaczenie orbity, a tym samym wyliczenie parametrów pola grawitacyjnego. Można ich więc użyć, by dokładniej zbadać zmiany w polu grawitacyjnym Ziemi. W projekcie wyznaczone zostaną takie wielkości jak stała grawitacji – czyli fundamentalny parametr niezbędny nie tylko w badaniach geodezyjnych, ale również w fizyce i astronomii. Sprawdzony zostanie ruch środka Ziemi wraz z ocenami i atmosferą. Środek Ziemi wykonuje niewielkie, kilkumilimetrowe ruchy za sprawą zjawisk zachodzących we wnętrzu, a przede wszystkim na powierzchni Ziemi. Figura Ziemi jest spłaszczona ze względu na ruch wirowy planety. Jednak spłaszczenie Ziemi nie jest stałe w czasie. Projekt ma za zadanie odpowiedzieć na pytanie jak zmieniało się spłaszczenie Ziemi za sprawą topniejących lodowców na Grenlandii i Antarktydzie w ciągu ostatnich 40 lat. Współrzędne geocentrum, czyli środka masy Ziemi oraz wartości spłaszczenia Ziemi będą wyznaczone z wielu źródeł, które opierają się na różnych danych oraz technikach satelitarnych i naziemnych. Różne źródła danych – satelitarne, geofizyczne oraz geodezyjne – zostaną zintegrowane z wykorzystaniem algorytmów uczenia maszynowego oraz sztucznej inteligencji. Zostanie zbadany wpływ ziemskiej grawitacji na zmienność długości doby oraz przemieszczanie się bieguna Ziemi oraz jak zmiany pola grawitacyjnego wpływają na ruch sztucznych satelitów oraz pozycje stacji GPS na powierzchni Ziemi. Projekt, który w ramach konkursu SONATA BIS 11 zdobył finansowanie z Narodowego Centrum Nauki w wysokości 2 196 000 zł zakłada wyznaczenie modeli z wykorzystaniem zintegrowanych obserwacji. Będzie łączył laserowe pomiary do satelitów geodezyjnych, współrzędnych stacji GNSS, satelitów nisko-orbitujących wyposażonych w odbiorniki GNSS, dane z satelitów GRACE oraz modele geofizyczne. W ramach tego projektu będziemy wyprowadzać i analizować czasowe, zintegrowane i wielosatelitarne modele pola grawitacyjnego Ziemi, na podstawie danych sięgających od lat 80, co da nam pełniejszy ogląd ewolucji pola grawitacyjnego – mówi prof. Sośnica. Badania te dadzą fundamentalny wgląd w procesy zachodzące w systemie ziemskim i będą miały zasadnicze znaczenie dla misji satelitarnych do obserwacji i pomiarów Ziemi wymagających wyznaczenia orbit satelitów z największą dokładnością. « powrót do artykułu
  15. Jedną z najtrudniejszych umiejętności językowych jest rozumienie składni zdań złożonych. W 2019 roku naukowcy zauważyli, że istnieje korelacja pomiędzy wysokimi umiejętnościami używania narzędzi, a zdolnością do rozumienia złożonej składni. Szwedzko-francuski zespół naukowy informuje, że obie te umiejętności – sprawnego posługiwania się narzędziami oraz złożoną składnią – korzystają z tych samych zasobów neurologicznych w tym samym regionie mózgu. To jednak nie wszystko. Okazało się, że rozwijanie jednej z tych umiejętności wpływa na drugą. Uczeni z francuskiego Narodowego Instytutu Zdrowia i Badań Medycznych (Inserm), Narodowego Centrum Badań Naukowych (CNRS), Université Claude Bernard Lyon 1, Université Lumière Lyon 2 i Karolinska Institutet zauważyli, że trening w posługiwaniu się narzędziami poprawia zdolność rozumienia złożonych zdań. I na odwrót. Jeśli ćwiczymy rozumienie złożonych zdań, poprawiają się nasze umiejętności posługiwania się narzędziami. Odkrycie to można będzie wykorzystać podczas rehabilitacji osób, które częściowo utraciły zdolności językowe. Przez długi czas uważano, że używanie języka to niezwykle złożona umiejętność, która wymaga wyspecjalizowanych obszarów mózgu. Jednak w ostatnich latach pogląd ten ulega zmianie. Kolejne badania wskazują, że ośrodki kontroli niektórych funkcji językowych, na przykład odpowiadające za rozumienie słów, są też zaangażowane w kontrolowanie funkcji motorycznych. Jednak badania obrazowe nie dostarczały dowodów na istnienie związku pomiędzy używaniem języka i narzędzi. Z drugiej jednak strony badania paloneurobiologiczne wykazały, że obszary mózgu odpowiedzialne za posługiwanie się językiem rozwijały się u naszych przodków w okresach większego rozwoju technologicznego, gdy wśród naszych praszczurów rozpowszechniało się użycie narzędzi. Naukowcy, analizujący dostępne dane, zaczęli się zastanawiać czy jest możliwe, by używanie narzędzi, operowanie którymi wymaga wykonywania złożonych ruchów, było kontrolowane przez te same obszary mózgu co używanie funkcji językowych. W 2019 roku Claudio Brozzoli z Inserm i Alice C. Roy z CNRS wykazali, że osoby, które szczególnie dobrze posługują się narzędziami, zwykle też lepiej posługują się złożoną składnią zdań w języku szwedzkim. Naukowcy postanowili bliżej przyjrzeć się temu zjawisku i zaplanowali serię eksperymentów, w czasie których wykorzystano m.in. rezonans magnetyczny. Badanych proszono o wykonanie testów związanych z użyciem 30-centymetrowych szczypiec oraz zdań złożonych w języku francuskim. Dzięki temu uczeni zidentyfikowali obszary mózgu odpowiedzialne za wykonywanie każdego z tych zadań oraz wspólnych dla obu zadań. Jako pierwsi stwierdzili, że używanie narzędzi i złożonej składni aktywuje ten sam obszar w jądrze podstawnym w mózgu. Wówczas zaczęli zastanawiać się, czy ćwicząc jedną z tych umiejętności, można by wpływać na drugą. Uczestników badań poproszono więc o wypełnienie testów rozumienia złożonych zdań. Testy takie wypełniali 30 minut przed i 30 minut po ćwiczeniu ze szczypcami. Ćwiczenie to polegało na użyciu dużych szczypiec do umieszczenia niewielkich kołków w otworach odpowiadających im kształtem, ale o różnej orientacji. Przed i po takim ćwiczeniu porównywano, jak uczestnicy badań radzą sobie z rozumieniem prostszego i bardziej złożonego zdania. Okazało się, że po ćwiczeniu ze szczypcami badani lepiej radzili sobie ze zrozumieniem trudniejszych zdań. Z kolei w grupie kontrolnej, która używała dłoni do wkładania kołków w otworach, nie zauważono tego typu poprawy rozumienia zdań. Teraz naukowcy opracowują protokoły rehabilitacji osób, które utraciły część umiejętności językowych, ale zachowały zdolności motoryczne. Jednocześnie zauważają, że ich badania lepiej pomagają nam zrozumieć ewolucję H. sapiens. Gdy nasi przodkowie zaczęli wytwarzać i używać narzędzi, znacznie zmieniło ich to mózg i wpłynęło na zdolności poznawcze, co mogło doprowadzić do pojawienia się innych funkcji, jak zdolności językowe, stwierdzają naukowcy. « powrót do artykułu
  16. Gdy przed 66 milionami lat asteroida zakończyła rządy dinozaurów na Ziemi i zabiła 3/4 gatunków zamieszkujących naszą planetę, wcześni przodkowie naczelnych i torbaczy byli jedynymi nadrzewnymi zwierzętami, które przeżyły zagładę, donoszą autorzy najnowszych badań. Jak przeżyły, skoro to gatunki nadrzewne były najbardziej narażone z powodu globalnej deforestacji wskutek masowych pożarów lasów spowodowanych upadkiem asteroidy? W artykule Ecological Selectivity and the Evolution of Mammalian Substrate Preference Across the K-Pg Boundary opublikowanym na łamach Ecology and Evolution, naukowcy z Uniwersytetów Cornell, Yale, Cambridge i City University of New York, wysuwają hipotezę, że nasi przodkowie prowadzili na tyle elastyczny tryb życie, że byli w stanie zejść z drzew, by uchronić się przed wyginięciem. Mogli nie tylko je opuścić, ale i żyć bez nich. Autorzy badań opisali, jak uderzenie meteorytu, które wyznaczyło granicę pomiędzy kredą a trzeciorzędem (granica K-T), wpłynęło na ewolucję ssaków. Jednym z możliwych wyjaśnień, w jaki sposób przodkowie naczelnych – mimo że prowadzili nadrzewny tryb życia – przetrwali przez granicę K-T zakłada pewien stopień ich elastyczności, mówi główny autor artykułu, doktorant Jonathan Hughes. Pierwsze ssaki pojawiły się około 300 milionów lat temu, a do ich znacznego zróżnicowania ewolucyjnego mogło dojść wraz z rozprzestrzenieniem się roślin kwitnących na 20 milionów lat przed granicą K-T. Gdy asteroida spadła na Ziemię, wyginęło wiele gatunków ssaków. Jednocześnie zaś gatunki, które przeżyły, zróżnicowały się, zajmując nisze ekologiczne uwolnione od dinozaurów i innych gatunków, wyjaśnia Hughes. Autorzy badań opublikowali drzewo filogenetyczne ssaków. Pogrupowali przy tym wszystkie żyjące gatunki ssaków na trzy kategorie – nadrzewne, częściowo żyjące na drzewach i nie żyjące na drzewach. Stworzyli też model komputerowy, który rekonstruował ewolucyjną historię ssaków. Model był niezwykle pomocny, gdyż mamy niewiele skamieniałości ssaków z czasów około granicy K-T i trudno jest na ich podstawie wnioskować o preferowanym habitacie gatunków. Dodatkowo naukowcy porównali te skamieniałości z żyjącymi gatunkami ssaków. Model komputerowy wykazał, że granicę K-T przetrwały głównie ssaki, które nie żyły na drzewach. Wyjątkami byli przodkowie torbaczy i naczelnych. Bez względu na to, jakie dane załadowano do modelu, za każdym razem model obliczeniowy wykazał, że przed granicą K-T przodkowie naczelnych prowadzili nadrzewny tryb życia. W przypadku torbaczy połowa symulacji wykazała, że ich przodkowie żyli na drzewach. Naukowcy sprawdzali też, jak ssaki jako grupa mogły zmieniać się w czasie. Modele wykazały, że czasach bezpośrednio przed i bezpośrednio po granicy K-T dochodzi do znacznej zmiany u ssaków jako grupy. Widoczna jest gwałtowna zmiana. Ssaki jako cała grupa przestają prowadzić nadrzewny tryb życia. Więc to nie jest tak, że nasze modele widziały tylko gatunki nie żyjące na drzewach. Nagle doszło do gwałtownej zmiany. Ssaki porzuciły drzewa, mówi Hughes. Widać zatem, że po granicy K-T gwałtownie wzrósł udział ssaków nie korzystających z drzew. Te, które nie były się w stanie bez nich obyć, wyginęły. Przodkowie naczelnych i torbaczy opuścili drzewa, co znacząco wpłynęło na ich ewolucję. « powrót do artykułu
  17. Czaszka z Harbin, znaleziona w rzece Songhua w Chinach, należy do nieznanego dotychczas gatunku człowieka, twierdzi profesor Qiag Ji z Hebei GEO University. Wiek czaszki określono na co najmniej 146 000 lat. Odkrywcy nazwali nowy gatunek Homo longi. Mówią też o nim Dragon Man od Smoczej Rzeki (Long Jiang) w prowincji Heilongjiang. Czaszka zachowała się niemal w całości. Chris Stringer z brytyjskiego Muzeum Historii Naturalnej, który również ją badał mówi, że to znaczący element układanki dotyczącej ewolucji człowieka, skamieniałość, która przez wiele lat będzie zdradzała swoje tajemnice. To jedna z najlepiej zachowanych skamieniałości człowieka. Czaszka, znana jako czaszka z Harbin, została znaleziona prawdopodobnie w 1933 roku podczas budowy mostu przez rzekę Songhua w mieście Harbin. W 2018 roku została podarowana Hebei GEO University.Teraz dokonano ponownych badań. Ich autorzy nie poprzestali na porównywaniu kształtów i rozmiarów poszczególnych elementów. Wykorzystali analizę filogenetyczną, by sprawdzić, jak jest ona umiejscowiona w ewolucji człowieka. Analiza wykazała, że H. sapiens, H. neanderthalensis oraz grupa, do której należał Dragon Man, miały wspólnego przodka. Badania wskazują też, że Dragon Man był bliżej spokrewniony z H. sapiens niż z neandertalczykiem. Jak mówi Stringer, rozmiary mózgoczaszki mieszczą się w przedziale mózgoczaszek neandertalczyków i naszego gatunku, a są większe od mózgoczaszek H. naledi, H. erectus, a nawet niektórych H. heidelbergensis. Kilka innych cech bardziej przypomina H. sapiens. Dlatego też Stringer uważa, że Homo longi i niektóre inne skamieniałości ze środkowego plejstocenu, które znaleziono na trenie Chin, stanowią trzecią – obok H. sapiens i H. neanderthalensis – główną linię rozwojową człowieka na terenie Azji Wschodniej. Myślę, że to osobny gatunek, chociaż klasyfikowałbym go, wraz ze szczątkami z Dali, jako Homo daliensis. Chińscy badacze mają jednak inne zdanie. Bazując na porównaniach morfologicznych i analizach filogenetycznych, uważamy, że czaszki z Dali i Hualongdong należą do H. daliensis. Natomiast czaszka z Harbin wykazuje cechy wyraźnie różne od czaszek z Dali i Hualongdon. Uważamy, że należy ją uznać za należącą do nowego gatunku. Biorąc pod uwagę podobieństwa pomiędzy czaszką z Harbin a żuchwą z Xiahe, stwierdzamy, że należą one do nowego gatunku, Homo longi. « powrót do artykułu
  18. Po porównaniu masy mózgów i ciał 1400 żyjących i wymarłych gatunków ssaków naukowcy doszli do wniosku, że mózgi ssaków nie powiększały się liniowo. Grupa 22 naukowców, w tym biologów, antropologów i statystyków ewolucyjnych, wykorzystała w swoich badaniach m.in. skamieniałości 107 ssaków, w tym najstarszej małpy Europy czy prehistorycznych waleni. Okazało się, że zwierzęta o dużych mózgach, jak słonie czy delfiny, powiększały ten organ w różny sposób. Na przykład w przypadku słoni w toku ewolucji dochodziło do zwiększania rozmiarów ciała, ale jeszcze szybciej zwiększały się rozmiary mózgu. Tymczasem delfiny zmniejszały swoje ciała, jednocześnie zwiększając mózg. U wielkich małp, wśród których widzimy bardzo duże zróżnicowanie stosunku wielkości mózgu do ciała, generalny trend ewolucyjny prowadził do zwiększania i rozmiarów ciała i rozmiarów mózgu. Jednak u homininów było inaczej. W przypadku naszych kuzynów widzimy relatywne zmniejszenie rozmiarów ciała i zwiększenie rozmiarów mózgu w porównaniu do wielkich małp. Autorzy badań uważają, że te złożone wzorce ewolucji mózgu wskazują na konieczność przemyślenia paradygmatu mówiącego, iż porównanie stosunku wielkości mózgu do wielkości ciała wskazuje na stopień rozwoju inteligencji. Wiele zwierząt o dużych mózgach, jak słonie, delfiny czy wielkie małpy mają wysoki stosunek wielkości mózgu do wielkości ciała. Ale nie zawsze wskazuje to na inteligencję. Na przykład uszanka kalifornijska ma dość niską masę mózgu w stosunku do masy ciała, a wykazuje się wysoką inteligencją, mówi biolog ewolucyjny Jaroen Smaers ze Stony Brook University. Jeśli weźmiemy pod uwagę historię ewolucyjną uszanki zauważymy, że w jej przypadku istniała silna presja na zwiększanie rozmiaru ciała, prawdopodobnie ze względu na zróżnicowanie morskich mięsożerców i przystosowanie do częściowego życia na lądzie. Zatem w przypadku uszanki niski stosunek masy mózgu do masy ciała wynika nie z presji na zmniejszanie rozmiarów mózgu, a na zwiększanie rozmiarów ciała. Obaliliśmy dogmat, że ze stosunek rozmiarów mózgu do reszty organizmu można wnioskować o inteligencji. Czasem duże mózgi to wynik stopniowego zmniejszania rozmiarów ciała, co miało pomóc w dostosowaniu się w nowego habitatu czy sposobu poruszania się. Nie ma to więc nic wspólnego z inteligencją. Jeśli chcemy wykorzystywać relatywnym rozmiar mózgu do wnioskowania o zdolnościach poznawczych, musimy przyjrzeć się też historii ewolucyjnej gatunku i sprawdzić, jak rozmiary mózgu i ciała zmieniały się w czasie", wyjaśnia Kamran Safi z Instytutu Zachowania Zwierząt im. Maxa Plancka. Autorzy badań wykazali też, że do największych zmian w mózgach ssaków doszło po dwóch wielkich kataklizmach – masowym wymieraniu sprzed ok. 66 milionów lat i zmianie klimatu sprzed 23–33 milionów lat. Gdy 66 milionów lat temu wyginęły dinozaury widoczna jest radykalna zmiana rozmiarów mózgu u takich ssaków jak gryzonie, nietoperze i mięsożercy, którzy wypełnili nisze po dinozaurach. Mniej więcej 30 milionów lat później, podczas ochłodzenia klimatu w oligocenie doszło do jeszcze głębszych zmian w mózgach niedźwiedzi, waleni, fok i naczelnych. Olbrzymim zaskoczeniem było zauważenie, że do największych zmian w relatywnej wielkości mózgów dzisiejszych ssaków doszło w wyniku katastrofalnych wydarzeń, z którymi mieli do czynienia ich przodkowie, mówi Smaers. Mózgi delfinów, słoni i wielkich małp wyewoluowały do dużych rozmiarów względem rozmiarów ich ciał po przemianach klimatycznych sprzed 23–33 milionów lat. Stosunek rozmiarów mózgu do rozmiarów ciała nie jest bez związku z ewolucją inteligencji. Jednak często może w większym stopniu wskazywać na dostosowanie się do presji środowiskowej niż na sam rozwój inteligencji, mówi Smaers. Szczegóły badań opublikowano w artykule The evolution of mammalian brain size. « powrót do artykułu
  19. Analiza szczątków 36 ofiar dżumy dymieniczej z masowego XVI-wiecznego grobu na terenie Niemiec dostarczyła pierwszych dowodów na to, że proce ewolucyjny napędzany tą chorobą mógł doprowadzić do pojawienia się odporności na nią u przyszłych pokoleń. Odkryliśmy, że markery nieswoistego układu odpornościowego u współczesnych mieszkańców miasta występują częściej, niż u ofiar dżumy. To zaś wskazuje, że mogły się one pojawić w odpowiedzi na jej epidemię, mówi profesor Paul Norman z University of Colorado. Naukowcy z Kolorado i Instytutu im. Maxa Plancka zebrali DNA ofiar dżumy z miasta Ellwangen. Do powtarzających się epidemii dochodziło tam w XVI i XVII wieku. Materiał porównawczy stanowiło DNA 50 współczesnych mieszkańców miasta. W DNA zbadano rozkład częstotliwości szerokiego zakresu genów odpowiedzialnych za pracę układu odpornościowego. Badania wykazały, że u obecnych mieszkańców miasta patogen – i najprawdopodobniej była to powodująca dżumę bakteria Yersinia pestis – doprowadził do zmian w dystrybucji odmian genów dwóch receptorów rozpoznających wzorce oraz w czterech ludzkich antygenach leukocytarnych (HLA). Wspomniane receptory i antygeny są odpowiedzialne za zainicjowanie i odpowiedź na infekcję. Uważamy, że zmiany te to skutek wystawienia populacji na kontakt z Y. pestis w XVI wieku, mówi Norman. To pierwszy dowód na istnienie procesu ewolucyjnego, napędzanego przez Y. pestis, który mógł prowadzić do kształtowania się pewnych genów układu odpornościowego wśród ludności Ellwangen, a prawdopodobnie w całej Europie. Z wcześniejszych badań wiemy, że dżuma nęka ludzkość od około 5000 lat. Możemy więc przypuszczać, że wspomniane geny odporności mogły zostać wstępnie wyselekcjonowane już bardzo dawno temu, ale ostatnio, podczas nowożytnych epidemii, dokonała się ich szybka ostateczna selekcja. Mimo, że śmiertelność nieleczonej dżumy jest bardzo wysoka, jest prawdopodobne, iż poszczególne osoby są odporne, inne zaś bardziej podatne, na poważne zachorowanie z powodu naturalnego polimorfizmu układu odpornościowego. Każda zmiana rozkładu częstotliwości występowania odmian genów, do której dochodzi w czasie epidemii, może być dowodem na adaptację, który możemy wykryć u współczesnych ludzi, piszą autorzy badań. Sądzę, że nasze badania pokazują, iż możemy badać te same rodziny genów podczas współczesnych epidemii. Wiemy bowiem, że geny te są zaangażowane w odpowiedź immunologiczną organizmu, stwierdza Norman. Badania pokazały też, że – niezależnie od tego, jak śmiercionośna jest choroba – zawsze ktoś ją przetrwa. To rzuca światło na naszą ewolucję. Zawsze będą ludzie, którzy mają jakiś stopień odporności. Oni nie chorują ciężko, nie umierają i populacja się odradza, dodaje Norman. « powrót do artykułu
  20. Naukowcy z Uniwersytetu Przyrodniczego w Poznaniu we współpracy ze specjalistami z Uniwersytetu w Cambridge i Czeskiego Uniwersytetu Rolniczego w Pradze postanowili przyjrzeć się zmianom na znakach drogowych z całego świata dotyczących ostrzeżeń przed kolizjami ze zwierzętami. Pierwotnie znaki drogowe służyły ostrzeganiu kierowców, motocyklistów i rowerzystów przed ryzykiem kolizji ze zwierzętami. - Interakcje między ludźmi i zwierzętami przybiera wiele form i niestety jedną z najbardziej szkodliwych, zarówno dla ludzi, jak i dla dzikich zwierząt, są zderzenia zwierząt z pojazdami drogowymi. Skutkuje to poważnymi kosztami ekologicznymi i finansowymi, a przede wszystkim zagrożeniem dla zdrowia i życia użytkowników dróg – podkreśla prof. Piotr Tryjanowski. Coraz częściej znaki drogowe służą jednak ochronie zwierząt, np. informują o migracjach płazów, np. żab. Dla kierowcy nie stanowią one zagrożenia. Najprawdopodobniej świadczy to o zmianie naszego stosunku wobec zwierząt – sugeruje poznański badacz. W wyniku przeprowadzonych analiz zaobserwowano, że na świecie coraz więcej gatunków zwierząt jest prezentowanych na znakach drogowych. Można wręcz powiedzieć, że podlegają one ewolucji – zauważa prof. Piotr Tryjanowski z Uniwersytetu Przyrodniczego w Poznaniu, pierwszy autor pracy właśnie opublikowanej na łamach czasopisma Global Ecology and Conservation. Znaki drogowe pojawiły się w przestrzeni publicznej wraz z początkiem motoryzacji. Dość szybko też państwa podjęły decyzję, aby zharmonizować oznakowanie, tak aby było ono zrozumiałe również dla kierowców, motocyklistów czy rowerzystów przyjeżdżających z innych państw. Już w 1931 r. w Genewie została przyjęta Konwencja o ujednoliceniu sygnałów drogowych. W związku z rozwojem motoryzacji następował wzrost różnych ostrzeżeń, form organizacji ruchu, przepisów adresowanych do wyspecjalizowanych grup użytkowników dróg. W konsekwencji zaistniała potrzeba ponownego uporządkowania oznakowania i służyła temu Konwencja wiedeńska o znakach i sygnałach drogowych z 1968 r. Konwencja wiedeńska wyróżnia zasadniczo dwa typy znaków ostrzegawczych o zwierzętach: gospodarskich i dzikich. Polskie przepisy są tu dokładnym odwzorowaniem konwencji: krowa symbolizuje wszelkie zwierzęta gospodarskie, jeleń dzikie – podkreśla dr Michał Beim z Uniwersytetu Przyrodniczego. Konwencja zostawia niejako furtkę na dodatkowe znaki. I coraz więcej państw z tego korzysta. Niemcy po długiej debacie publicznej dopuściły znak ostrzegający przed płazami, które symbolizuje żaba. Identyczne znaki są na Białorusi. Czeskie prawo natomiast wprowadziło system otwarty i na znakach drogowych można znaleźć m.in. koty, gęsi, węże – zauważa dr Beim omawiając sytuację w sąsiednich krajach. Największą ciekawostką są znaki dynamicznej treści w Słowenii wyświetlające ostrzeżenie przed niedźwiedziami na podstawie ich pozycji podawanej przez nadajniki GPS w obrożach. Autorzy zauważają, że również w Polsce coraz częściej pojawiają się postulaty dotyczące nowych znaków drogowych. Na razie prawo dopuszcza jedynie tabliczkę pod znakiem „inne niebezpieczeństwo”. I na polskich drogach można znaleźć opisy na niej „jeże”, „płazy” itd. Nim polscy ustawodawcy zdecydują się wprowadzić nowe znaki drogowe, będą musieli odpowiedzieć sobie na pytanie o liczbę znaków drogowych. Zbyt duża liczba znaków może utrudniać ich zrozumienie, a w konsekwencji może nie przynieść oczekiwanych rezultatów. W przyszłości problem kolizji z dużymi dzikimi zwierzętami może zostać rozwiązany podobnie, jak problem kolizji z ludźmi. Odpowiednie urządzenia i algorytmy rozpoznawania obrazów powinny poradzić sobie z zauważeniem na drodze jelenia, wilka czy niedźwiedzia i rozpocząć hamowanie. Problemem będzie jednak dla nich zauważenie małych zwierząt. I tutaj z pomocą mogą przyjść znaki. Samochód przejeżdżający przez okolice, w której np. migrują żaby, może pobrać odpowiednie dane ze znaku i przez jakiś czas szczególnie „przyglądać się” drodze w poszukiwaniu tych zwierząt. Więcej szczegółów na temat badań znajdziemy w artykule On the origin of species on road warning signs: A global perspective « powrót do artykułu
  21. Odkrycie mikroorganizmu, który zatrzymał swoją ewolucję na miliony lat może mieć olbrzymie znaczenie dla biotechnologii oraz samego rozumienia ewolucji mikroorganizmów. Musimy być bardzo ostrożni, gdy robimy założenia odnośnie tempa ewolucji i interpretujemy drzewo życia. Możliwe, że niektóre organizmy mogą wejść w okres ewolucyjnego sprintu, a inne niemal zatrzymują ewolucję, mówi Eric Becraft, główny autor badań z Bigelow Laboratory for Ocean Sciences i University of Northern Alabama. Mikroorganizm ten to Candidatus Desulforudis audaxviator, odkryty w 2008 roku przez zespół Tullia Onstotta, który również brał udział w obecnych badaniach. Został znaleziony w południowoafrykańskiej kopalni złota, niemal 3 kilometry pod powierzchnią Ziemi. Czerpie on energię z reakcji chemicznych wywoływanych przez naturalny rozpad pierwiastków promieniotwórczych. Żyje w wypełnionych wodą zagłębieniach w skałach w ekosystemie niezależnym od światła słonecznego czy innych organizmów. Jako, że ma on unikatową biologię i jest całkowicie izolowany, naukowcy chcieli prześledzić jego ewolucję. Przeszukali inne głęboko położone miejsca i znaleźli Candidatus Desulforudis audaxviator w innych kopalniach w RPA oraz w Kalifornii i na Syberii. Jako, że każde z tych środowisk jest inne pod względem chemicznym, dało im to szansę, by sprawdzić, jak różnice środowiskowe wpłynęły na ewolucję mikroorganizmu. Postrzegaliśmy te mikroorganizmy jak mieszkańców izolowanych wysp, jak np. zięby, które Darwin badał na Galapagos, mówi Ramunas Stepanauskas z Bigelow Laboratory. Uczeni przeanalizowali genomy 126 mikroorganizmów w trzech kontynentów i stwierdzili, że są one... niemal identyczne. To było szokujące. Były takie same. To nas zaskoczyło, stwierdził Stepanaukas. Przeprowadzono więc dodatkowe badania, które wykazały, że mikroorganizmy te nie są w stanie przebywać dużych odległości, nie mogą przetrwać na powierzchni, ani przeżyć w obecności tlenu. Upewnili się też, że nie doszło do zanieczyszczenia próbek. W tej chwili najlepsze wyjaśnienie jest takie, że mikroorganizmy nie zmieniły się zbytnio od czasu, gdy przez 175 milionami lat doszło do rozpadu superkontynentu Pangea. To żywe skamieliny z tamtego okresu. To brzmi niesamowicie i jest sprzeczne ze współczesnym rozumieniem ewolucji mikroorganizmów, dodaje Stepanauskas. Naukowcy spekulują, że zatrzymanie ewolucji u tego gatunku to wynik silnych mechanizmów obronnych przeciwko mutacjom. Jeśli mają racje, możemy mieć do czynienia z bardzo rzadkim mechanizmem, na którym może skorzystać biotechnologia. Nauka ta szeroko wykorzystuje bowiem pochodzącą od mikroorganizmów polimerazę DNA. To enzym katalizujący syntezę DNA w czasie replikacji lub naprawy. Szczególnie wartościowe są te enzymy, które są w stanie dokonać katalizy tworząc kopie o jak najmniejszej liczbie różnic z oryginałem. Istnieje wysokie zapotrzebowanie na polimerazę DNA, która nie popełnia zbyt wiele błędów. Takie enzymy są potrzebne do sekwencjonowania DNA, terapii genowej czy tworzenia testów diagnostycznych, wyjaśnia Stepanauskas. Poza zastosowaniami czysto praktycznymi, odkrycie zatrzymanej ewolucji to dowód, że różne gałęzie mikroorganizmów na drzewie życia mogą znacząco różnić się tempem ewolucji od czasu, gdy miały ostatniego wspólnego przodka. Zrozumienie tego jest niezbędne do zrozumienia historii życia na Ziemi, dodaje Becraft. « powrót do artykułu
  22. Wyjście zwierząt z wody na ląd to jedno z najważniejszych wydarzeń w ewolucji. Kluczem do zrozumienia, jak do tego doszło, jest odkrycie, kiedy i jak wyewoluowały płuca i kończyny. Wykazaliśmy, że biologiczne podstawy do ich ewolucji istniały na długo przed tym, zanim pierwsze zwierzę wyszło na brzeg, mówi profesor Guojie Zhang z Uniwersytetu w Kopenhadze. Nie od dzisiaj wiemy, że człowiek oraz inne kręgowce wyewoluowały z ryb. Przed około 370 milionami lat na ląd zaczęły wychodzić pierwsze prymitywne czworonogi, ryby, które zmieniły płetwy na kończyny i były w stanie oddychać powietrzem atmosferycznym. Okazuje się jednak, że zmiana płetw na kończyny i umiejętność oddychania poza wodą są znacznie starsze. Naukowcy z Uniwersytetu w Kopenhadze przeprowadzili badania genetyczne, które dowiodły, że już 50 milionów przed wyjściem czworonogów na ląd istniał kod genetyczny umożliwiający zmianę płetw na łapy i pozwalający na oddychanie powietrzem atmosferycznym. Co więcej, geny te wciąż istnieją u ludzi i wielopłetwcowatych. Badania, opublikowane na łamach pisma Cell, zmieniają tradycyjne spojrzenie na ciąg wydarzeń, które doprowadziły do pojawienia się pierwszych zwierząt lądowych. Uczeni od pewnego czasu podejrzewają, że płetwy piersiowe wielopłetwcowatych, ryb potrafiących poruszać się po lądzie podobnie jak czworonogi, odpowiadają płetwom, jakie posiadał nasz wspólny przodek z rybami. Teraz, dzięki mapowaniu genomu wykonanemu przez uczonych z Kopenhagi, dowiadujemy się, że staw łączący metapterygium z radialiami płetw jest homologiem – czyli ma wspólne pochodzenie ewolucyjne – stawu łokciowego u człowieka. Sekwencja DNA kontrolująca rozwój stawu łokciowego H. sapiens istniała już u wspólnego przodka prymitywnych ryb i kręgowców lądowych i wciąż u nich istnieje. Jednak w pewnym momencie ewolucji sekwencję tę utraciły ryby z podgromady doskonałokształtnych. Wielopłetwcowate i niektóre inne prymitywne ryby posiadają parę płuc przypominających ludzkie płuca. Właśnie przeprowadzone badania wykazały, że ich płuca funkcjonują podobnie jak płuca niszczuki krokodylej i dochodzi u nich do ekspresji tych samych genów co w ludzkich płucach. Jednocześnie wykazano, że w tkance płuc i pęcherza pławnego mamy do czynienia z bardzo podobną ekspresją genów, co wskazuje, że są organami homologicznymi. Tak zresztą uważał już Darwin. Jednak o ile Darwin sądził, że pęcherz pławny przekształcił się w płuca, to obecne badania sugerują, że wyewoluował on z płuc. Ich autorzy sądzą, że nasi wcześni rybi przodkowie posiadali prymitywne płuca. W toku ewolucji część ryb zachowała te płuca, co pozwoliło im z czasem wyjść na ląd i przyczyniło się do pojawienia się czworonogów, a u części ryb z płuc powstał pęcherz pławny, prowadząc do powstania doskonałokształtnych. Badania te pokazują, skąd wzięły się różne organy naszego ciała i ich funkcję są zapisane w kodzie genetycznym. Niektóre z funkcji związanych z płucami i kończynami nie pojawiły się w czasie, gdy pierwsze zwierzęta wyszły na ląd, ale były zakodowane w genomie na długo zanim pierwsza ryba zaczęła prowadzić lądowy tryb życia. Co ciekawe, te sekwencje genetyczne są wciąż obecne w rybich „żywych skamielinach”, dzięki czemu możemy je badać, mówi Guojie Zhang. « powrót do artykułu
  23. Ludzie, w porównaniu do naszych najbliższych kuzynów – szympansów – są szczególnie podatni na rozwój złośliwych nowotworów pochodzących z tkanki nabłonkowej. Nawet wówczas, gdy brak genetycznej podatności na takie choroby czy gdy nie mają styczności z czynnikami ryzyka, np. z tytoniem. Badania przeprowadzone w Uniwersytecie Kalifornijskim w San Diego (UCSD) pozwalają wyjaśnić, dlaczego tak się dzieje. Na łamach FASEB BioAdvances ukazał się artykuł, którego autorzy informują, że za co najmniej część tej podatności możemy obwiniać unikatową mutację genetyczną, która pojawiła się w czasie ewolucji Homo sapiens. W pewnym momencie ludzkiej ewolucji gen SIGLEC12, a konkretnie proteina Siglec-12, którą gen ten koduje na potrzeby układu odpornościowego, uległ mutacji. W jej wyniku utracił on zdolność rozróżniania pomiędzy własnymi a obcymi mikroorganizmami, mówi profesor Ajit Varki z San Diego School of Medicine i Moores Cancer Center. Jednak gen ten nie zniknął z populacji. Wydaje się, że ta dysfunkcyjna proteina Siglec-12 zaczęła czynić szkody u mniejszości ludzi, których organizmy wciąż ją wytwarzają. Podczas badań zdrowych i nowotworowych tkanek naukowcy zauważyli, że około 30% osób, które wciąż wytwarzają proteiny Siglec-12 jest narażonych na niemal 2-krotnie wyższe ryzyko pojawienia się zaawansowanego nowotworu niż ludzie, którzy Siglec-12 nie wytwarzają. Pomimo utraty ważnego miejsca wiązania kwasu sjalowego proteina Siglec-12 rekrutuje białko Shp2 i przyspiesza wzrost guza w modelu mysim. Sądzimy, że ta dysfunkcyjna proteina Siglec-12 ułatwia u ludzi rozwój złośliwych nowotworów, co zgadza się ze znanymi sygnaturami nowotworów Shp2-zależnych. Jak dodaje Ajit Varki, badania takie mogą przydać się w diagnostyce i leczeniu nowotworów. Uczeni już opracowali test z moczu, który pozwala na wykrycie dysfunkcyjnej proteiny. Być może będziemy też w stanie selektywnie wykorzystać przeciwciała przeciwko Siglec-12 podczas chemioterapii i dostarczać je do komórek nowotworowych, bez szkodzenia zdrowym komórkom, dodaje. « powrót do artykułu
  24. Stawonogi to od 500 milionów lat najbardziej rozpowszechniony typ zwierząt na Ziemi. Stanowią one aż 80% wszystkich żyjących współcześnie gatunków. Jednak dotychczas istniało poważne brakujące ogniwo ich ewolucji. Teraz naukowcy z Instytutu Geologii i Paleontologii Chińskiej Akademii Nauk informują o odkryciu skamieniałości stawonoga, który przypominał krewetkę i miał pięcioro oczu. Wyniki swoich badań opublikowali na łamach Nature. Skamieniałość należąca do gatunku Kylinxia to bardzo rzadka chimera. Łączy ona cechy morfologiczne różnych zwierząt, przez co przypomina „kylin”, chimerę z tradycyjnej chińskiej mitologii, mówi profesor Huang Diying. Kylinxia jest wyjątkowa m.in. przez to, że w skamieniałości zachowały się oczy, układ pokarmowy i układ nerwowy. Zwierzę ma cechy charakterystyczne stawonoga, takie jak stwardniały oskórek, kończyny posiadające stawy i tułów złożony z segmentów. Jednocześnie u stworzenia widać cechy wcześniejszych form, jak pięcioro oczu znane ze skamieniałości Opabinii czy przydatki, które znamy ze skamieniałości największego kambryjskiego drapieżnika z rodzaju Anomalocaris. Przedstawiciele Anomalocaris mogli mieć nawet 2 metry długości. Rodzaj ten uważany jest za przodka stawonogów. Jednak pomiędzy stawonogami a Anomalocaris istnieją olbrzymie różnice morfologiczne, które stanowią ewolucyjną zagadkę. Chińscy naukowcy przeprowadzili szczegółową analizę szczątków Kylinxia. Wykazali, że pierwsze przydatki Anomalocaris i stawonogów są homologiczne, zatem mają podobną pozycję, strukturę i pochodzenie ewolucyjne. Z kolei analizy filogenetyczne wskazują, że istnieje pokrewieństwo pomiędzy przednimi przydatkami Kylinxia, przydatkami przy otworze gębowym podtypu szczękoczułkopodobnych (tutaj należą m.in. pajęczaki) oraz czułkami żuwaczkowców (m.in. wije, skorupiaki). Nasze badania wykazały, że na drzewie ewolucyjnym Kylinxia znajduje się dokładnie pomiędzy Anomalocaris a prawdziwymi stawonogami. Innymi słowy, znaleźliśmy ewolucyjne korzenie prawdziwych stawonogów, mówi współautor badań, profesor Zhu Maoyan. Kylinxia [...] uzupełnia lukę pomiędzy Anomalocaris i prawdziwymi stawonogami, jest zaginionym elementem ewolucji stawonogów, dodaje doktor Zeng Han. « powrót do artykułu
  25. Very Large Telescope zauważył sześć galaktyk zgromadzonych wokół supermasywnej czarnej dziury z czasów, gdy wszechświat liczył sobie mniej niż miliard lat. Po raz pierwszy zauważono takie zgrupowanie z czasów tak nieodległych od Wielkiego Wybuchu. Odkrycie pomaga lepiej zrozumieć, w jaki sposób supermasywne czarne dziury mogą powstawać i ewoluować tak szybko. Głównym celem naszych badań było lepsze zrozumienie jednych z najbardziej niezwykłych obiektów astronomicznych – supermasywnych czarnych dziur istniejących już we wczesnym wszechświecie. Dotychczas nikt nie potrafi dobrze wyjaśnić ich istnienia, mówi główny autor badań, Marco Mignoli z Narodowego Instytutu Astrofizyki w Bolonii. Nowe obserwacje ujawniły istnienie galaktyk znajdujących się w okolicach supermasywnej czarnej dziury, a całość otoczona jest „pajęczą siecią” gazu rozciągającego się na obszarze 300-krotnie większym niż obszar Drogi Mlecznej. Olbrzymia ilość gazu zasila zarówno galaktyki, jak i czarną dziurę. Naukowcy szacują, że czarna dziura ma masę miliarda mas Słońca, a otaczająca całość gazowa struktura powstała, gdy wszechświat liczył sobie zaledwie 900 milionów lat. Obecnie uważa się, że pierwsze czarne dziury powstały z pierwszych gwiazd, które się zapadły. Musiały one błyskawicznie ewoluować, skoro po 900 milionach lat istnienia wszechświata osiągały masę miliarda Słońc. Astronomowie mają jednak problemy z wyjaśnieniem tej ewolucji. Takie czarne dziury musiałyby bowiem bardzo szybko wchłaniać olbrzymie ilości materii. Odkrycie galaktyk otaczających czarną dziurę i spowijającej wszystko sieci gazu może wyjaśniać tę błyskawiczną ewolucję. Powstaje jednak pytanie, w jaki sposób dochodzi do tworzenia się „pajęczej sieci” gazu. Astronomowie sądzą, że bierze w tym udział ciemna materia. To ona przyciąga gaz, który tworzy olbrzymie struktury, wystarczające, by wyewoluowały z nich zarówno galaktyki, jak i czarne dziury. Nasze badania wspierają hipotezę mówiącą, że najbardziej odległe masywne czarne dziury tworzą się i rosną w masywnym halo ciemnej materii. Dotychczas takich struktur nie wykrywaliśmy, gdyż ograniczały nas nasze możliwości obserwacyjne, wyjaśnia współautor badań Colin Norman z Uniwersytetu Johnsa Hopkinsa. Zaobserwowane teraz galaktyki są jednymi z najsłabiej świecących, jakie udało się zarejestrować.  Aby je zauważyć, konieczne były wielogodzinne obserwacje za pomocą jednych z najpotężniejszych teleskopów optycznych. Dzięki temu uczeni dowiedli też, że istnieje związek pomiędzy czterema galaktykami, a czarną dziurą Sądzimy, że obserwujemy wierzchołek góry lodowej. Że te galaktyki, które widzimy, są najjaśniejszymi, jakie się tam znajdują, przyznaje Barbara Balmaverde z Narodowego Instytutu Astrofizyki w Turynie. Pozostaje tylko mieć nadzieję, że jeszcze większe teleskopy optyczne, jak budowany właśnie Extremely Large Telescope, pozwolą dostrzec więcej szczegółów. « powrót do artykułu
×
×
  • Create New...