Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'neutrino' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 21 wyników

  1. W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia. Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami. Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino. Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki. « powrót do artykułu
  2. Od czasu odkrycia oscylacji neutrin wiemy, że neutrina mają niezerową masę. Dotychczas nie udało się jej precyzyjnie określić. Tymczasem neutrina to najbardziej rozpowszechnione, a jednocześnie najtrudniejsze do zbadania, ze wszystkich znanych nam cząstek. Teraz międzynarodowy zespół naukowcy pracujący przy eksperymencie KATRIN przełamał ważną barierę. Po raz pierwszy wykazano, że masa neutrino jest mniejsza od 1 elektronowolta (eV). KATRIN (Karlsruhe Tritium Neutrino Experiment) znajduje się w Karlsruhe Institute for Technology w Niemczech. Uruchomiony w 2018 roku projekt to owoc współpracy Czech, Niemiec, Rosji, USA i Wielkiej Brytanii. Pracuje przy nim około 130 naukowców. Na łamach Nature ogłoszono właśnie, że podczas drugiej kampanii badawczej masę neutrina określono na 0,7 eV, a poziom ufności pomiaru wynosi 90%. W połączeniu z danymi z pierwszej kampanii badawczej KATRIN pracujący przy eksperymencie naukowcy ogłosili, że górny limit masy neutrina wynosi 0,8 eV. Tym samym wiemy, że neutrino jest o co najmniej 500 000 razy lżejsze od elektronu. Głównym elementem eksperymentu KATRIN jest największy na świecie spektrometr. Urządzenie ma 23 metry długości i 10 metrów szerokości. Wewnątrz panuje próżnia. Najpierw przeprowadzany jest rozpad beta trytu, w wyniku którego powstaje elektron i antyneutrino. Następnie elektron, bez zmiany jego energii, jest kierowany do spektrometru. Pomiary energii samego neutrina nie są możliwe, ale możemy precyzyjnie mierzyć energię elektronu. Jako, że możemy zmierzyć łączną energię elektronu i antyneutrina oraz energię samego elektronu, jesteśmy w stanie poznać energię czyli masę, antyneutrina. Gdy przed 5 laty opisywaliśmy zakończenie prac nad KATRIN i niezwykłą podróż komory próżniowej do miejsca montażu, cytowaliśmy ekspertów, którzy twierdzili, że KATRIN może być ostatnią nadzieją współczesnej fizyki,by bez nowej rewolucyjnej technologii zmierzyć masę neutrina. To koniec drogi, mówił wówczas Peter Doe, fizyk w University of Washington. Obecnie fizyk Björn Lehnert z Lawrence Berkeley National Laboratory, który pracuje przy KATRIN, mówi, że przez najbliższe 3 lata naukowcy będą  prowadzili kolejne eksperymenty, by zebrać więcej danych, jednak ze względu na sposób pracy KATRIN nie spodziewa się zmniejszenia poziomu niepewności. Czynnikiem ograniczającym KATRIN jest chemia, ponieważ używamy molekuł trytu (T2). Molekuły to złożone obiekty, mają więcej stopni swobody niż atomy, więc każdy ich rozpad jest nieco inny i inny jest ostateczny rozkład elektronów. W pewnym momencie nie będziemy już mogli udoskonalać pomiaru masy neutrina, gdyż sam początkowy rozpad jest obarczony pewnym marginesem niepewności. Jedynym sposobem na udoskonalenie pomiarów stanie się wówczas wykorzystanie trytu atomowego. Będzie z niego korzystał planowany dopiero eksperyment Project 8. Jest on bardzo obiecujący, ale miną lata zanim zostanie uruchomiony. « powrót do artykułu
  3. Międzynarodowy zespół uczonych poinformował, że neutrino podróżują szybciej od światła. Jeśli doniesienia te się potwierdzą, jesteśmy być może świadkami olbrzymiego przełomu w fizyce. Antonio Ereditato, rzecznik prasowy grupy, stwierdził, że prowadzone wielokrotnie w ciągu ostatnich trzech lat eksperymenty wykazały, że neutrino wysyłane z CERN-u do włoskiego wykrywacza neutrin Borexino przybywały tam o 60 nanosekund szybciej, niż mogłoby przybyć światło. Jesteśmy pewni naszych wyników. Sprawdzaliśmy je wielokrotnie, braliśmy pod uwagę wszystko, co mogło je zakłócić. Teraz chcemy, by sprawdziły je niezależne zespoły naukowe - mówił Ereditato. Założenie, że nic nie może podróżować szybciej niż światło wynika ze szczególnej teorii względności Einsteina. Prędkość światła i przekonanie o jej nieprzekraczalności to jeden z kluczowych elementów Modelu Standardowego. Podczas eksperymentów prowadzonych w ramach projektu OPERA z CERN-u do Gran Sasso wysłano 15 000 wiązek neutrino. CERN od Gran Sasso dzieli 730 kilometrów. Światło przebyłoby taką odległość w 2,4/1000 części sekundy. Neutrino były o 60 nanosekund szybsze. To maleńka różnica, jednak niezwykle ważna. Odkrycie jest tak niesamowite, że każdy powinien bardzo ostrożnie do niego podchodzić - dodał Ereditato.
  4. Fizycy z Oak Ridge National Laboratory zaobserwowali nowy rodzaj interakcji neutrin. Naukowcy pracujący przy eksperymencie COHERENT nie tylko poszerzyli naszą wiedzę z dziedziny fizyki, ale również udoskonalili technologię wykrywaczy neutrin i zdobyli nowe informacje na temat tego, co dzieje się w przestrzeni kosmicznej. Prawdopodobnie badanie neutrin pozwoli nam z czasem odpowiedzieć na wiele otwartych obecnie pytań, mówi profesor Rex Tayloe z Indiana University, który nadzorował instalację, pracę i analizę danych z kriogenicznego argonowego wykrywacza neutrin Spallation Neutron Source (SNS). Grupa Tayloe'a zaobserwowała, że niskoenergetyczne neutrina wchodzą w interakcje z jądrami argonu w procesie nazwanym koherentnym elastycznym rozpraszaniem neutrino-jądro (CEvNS, coherent elastic neutrino-nucleus scattering). Neutrino uderzając w jądro argonu przekazuje mu minimalną ilość energii, co powoduje, że jądro jest niemal niezauważalnie odrzucane. Podstawą do przeprowadzonych obecnie badań było studium opisane w 2017 roku w Science, podczas którego zauważono pierwsze oznaki procesu CEvNS, jaki miał miejsce, gdy neutrino wchodziły w interakcje ze znacznie cięższymi jądrami cezu i jodu. Wówczas odrzut cięższych jąder był jeszcze mniejszy niż zaobserwowany obecnie. Model Standardowy przewiduje istnienie koherentnego elastycznego rozpraszania neutrino na jądrze. Zaobserwowanie interakcji neutrino z argonem, najlżejszym jądrem w przypadku którego interakcję tą udało się zmierzyć, pozwoliło na potwierdzenie wcześniejszych obserwacji prowadzonych z cięższymi jądrami. Wykonane przez nas dokładne pomiary pozwalają na określenie granic dla alternatywnych modeli teoretycznych, stwierdziła rzecznik prasowa COHERENT fizyk Kate Scholberg z Duke University. Yuri Efremenko, fizyk z Univeristy of Tenessee, którego zadaniem było stworzenie bardziej czułych fotodetektorów, powiedział: Argon stał się dla nas rodzajem „drzwi”. Proces CEvNS jest jak budynek, o którym wiemy tyle, że powinien istnieć. Pierwsze pomiary z udziałem cezu i jodu były jednymi z „drzwi”, którymi weszliśmy do budynku. Teraz otworzyliśmy „drzwi” argonowe. Pomiary dokonane z udziałem argonu są zgodne z granicami błędu dopuszczonymi przez Model Standardowy. Jednak zwiększenie precyzji pomiarów może pozwolić na odkrycie czegoś nowego. Szukamy sposobów na zaburzenie Modelu Standardowego. Uwielbiamy go, to bardzo skuteczny model. Ale istnieją kwestie, których na jego gruncie nie można wyjaśnić. Podejrzewamy, że w tych drobnych kwestiach, gdzie możemy zaburzyć Model Standardowy, kryją się odpowiedzi na wielkie pytania o naturę wszechświata, antymaterię czy ciemną materię, dodaje fizyk Jason Newby. Teraz, po 18 miesiącach prowadzenia eksperymentów, w czasie których zarejestrowano 159 wydarzeń CEvNS - co jest zgodne z Modelem Standardowym – naukowcy poinformowali o wynikach swoich prac na łamach Physical Review Letters. « powrót do artykułu
  5. Naukowcy skupieni wokół GRAND Collaboration chcą wybudować gigantyczny wykrywacz neutrin obejmujących powierzchnię... 200 000 km2. Siedzibą GRAND (Giant Radio Array for Neutrino Detection) jest francuskie Narodowe Centrum Badań Naukowych (CNRS). GRAND Collaboration odbyła już kilka warsztatów i stworzyła plan budowy gigantycznego detektora. Uczestnicy GRAND chcą poszukiwać i badań neutrin o bardzo wysokich energiach. Dotychczas takich neutrin nie udało się zaobserwować. Takie neutrina mogą pochodzić z dwóch źródeł. Jednym z nich jest ultrawysokoenergetyczne promieniowanie kosmiczne (UHE), a drugie źródło to interakcja UHE z mikrofalowym promieniowaniem tła. Naukowców z GRAND szczególnie interesują neutrina taonowe. Neutrina takie powinny być stosunkowo łatwe do wykrycia. Naukowcy z GRAND uważają, że istnieje duże prawdopodobieństwo, iż neutrina z UHE wchodzą w interakcje z materią. Ze wszystkich trzech rodzajów neutrin obecnych w UHE neutrina elektronowe zostają uwięzione w materii, z którą wchodzą w interakcje, a neutrina mionowe przechodzą przez tę materię. Uczeni chcą złapać neutrino taonowe, które wchodzi w reakcje z materią i rozpada się w odległości do 50 kilometrów od miejsca interakcji. Olbrzymi teleskop GRAND miałby rejestrować te rozpady. Z kolei materia, z którą neutrina taonowe mają wchodzić w interakcje to sama Ziemia. Koncepcja jej wykorzystania nie jest nowa. A pomysłodawcy GRAND Collaboration chcą w tym celu wykorzystać tereny górskie. Spróbują złapać neutrina taonowe, które przeszły przez skorupę ziemską i rozpadają się w powietrzu, powodując cały deszcz cząstek. Pomysł GRAND polega na ustawieniu 200 000 specjalnych czujników. Potrzeba jednego takiego czujnika na 1 km2. Każda z takich stacji będzie składała się ze specjalnej anteny, wzmacniacza oraz sprzętu do rejestrowania i przechowywania danych. Dotychczas naukowcom udało się zebrać około 160 000 euro i stworzyć 35 prototypowych stacji. Teraz zaczynają wdrażać pilotażowy program GRANDProto300, w ramach którego kosztem 1,6 miliona euro chcą ustawić swoje czujniki na powierzchni 300 km2. Mają nadzieję, że w ciągu najbliższych 5–10 lat koszt pojedynczej stacji spadnie do około 500 USD. W ten sposób koszty całego projektu, zakładającego budowę czujników oraz stworzenie hotspotu z pełnowymiarową anteną na każde 10 000 km2 powinny zamkną się kwotą 200 milionów euro.   « powrót do artykułu
  6. Dzięki wykryciu neutrin pochodzących z jądra Słońca fizycy byli w stanie potwierdzić ostatni brakujący element opisu fuzji zachodzącej wewnątrz naszej gwiazdy. Potwierdzili tym samym obowiązujący od dziesięcioleci model teoretyczny przewidujący, że część energii słonecznej pochodzi z łańcucha reakcji, w którym udział mają atomy węgla i azotu. W procesie tym cztery protony łączą się w jądro helu. Dochodzi do uwolnienia dwóch neutrin, innych cząstek subatomowych i olbrzymich ilości energii. Ten cykl węglowo-azotowo-tlenowy (CNO) nie odgrywa większej roli w Słońcu, gdzie dzięki niemu powstaje mniej niż 1% energii. Uważa się jednak, że gdy gwiazda się starzeje, zużywa wodór i staje się czerwonym olbrzymem, wówczas rola cyklu CNO znacząco rośnie. O odkryciu poinformowali naukowcy pracujący przy włoskim eksperymencie Borexino. To wspaniałe, że udało się potwierdzić jedno z podstawowych założeń teorii dotyczącej gwiazd, mówi Marc Pinsonnealut z Ohio State University. Borexino już wcześniej jako pierwszy wykrył neutrina pochodzące z trzech różnych etapów reakcji zachodzącej w Słońcu, która odpowiada za produkcję większości energii naszej gwiazdy. Dzięki obecnemu odkryciu Borexino w pełni opisał dwa procesy zasilające Słońce, mówi rzecznik eksperymentu Gioacchino Branucci z Uniwersytetu w Mediolanie. Kończymy wielkim bum!, dodał Marco Pallavicini z Uniwersytetu w Genui. Może to być bowiem ostatnie odkrycie Borexino, któremu grozi zamknięcie z powodu ryzyka dla źródła wody pitnej. Odkrycie neutrin pochodzących z cyklu węglowo-azotowo-tlenowego nie tylko potwierdza teoretyczne modele procesów zachodzących w Słońcu, ale rzuca też światło na strukturę jego jądra, szczególnie zaś na koncentrację w nim metali. Tutaj trzeba podkreślić, że astrofizycy pod pojęciem „metal” rozumieją wszelkie pierwiastki o masie większej od wodoru i helu. Liczba neutrin zarejestrowanych przez Borexino wydaje się zgodna ze standardowym modelem przewidującym, że metaliczność jądra jest podobna do metaliczności powierzchni. To ważne spostrzeżenie, gdyż w ostatnim czasie pojawiało się coraz więcej badań kwestionujących taki model. Badania te sugerowały, że metaliczność jądra jest niższa niż powierzchni. A jako, że to skład pierwiastków decyduje o tempie przepływu energii z jądra, badania te sugerowały jednocześnie, że jądro jest nieco chłodniejsze niż sądzono. Jako, że proces, w którym powstają neutrina jest niezwykle wrażliwy na temperaturę, dane zarejestrowane przez Borexino wskazują raczej na starsze wartości temperatury, nie na te sugerowane przez nowe badania. « powrót do artykułu
  7. Rząd Japonii dał zielone światło budowie Hyper-Kamiokande, największego na świecie wykrywacza neutrin, którego konstrukcja pochłonie 600 milionów dolarów. Gigantyczna instalacja powstanie w specjalnie przygotowanej dlań grocie niedaleko kopalni w miejscowości Kamioka. Pomieści ona 250 000 ton ultraczystej wody. To 5-krotnie więcej niż obecnie używany Super-Kamiokande. Ten z kolei jest następcą 300-tonowego Kamiokande, który działał w latach 1983–1995. Dzięki olbrzymim rozmiarom Hyper-K możliwe będzie zarejestrowanie większej liczby neutrin niż dotychczas. Będą one pochodziły z różnych źródeł – z promieniowania kosmicznego, Słońca, supernowych oraz z akceleratora cząstek. Instalacja posłuży też do ewentualnej obserwacji rozpadu protonów. Istnienie takiego zjawiska przewidują niektóre rozszerzenia Modelu Standardowego, jednak dotychczas nie udało się go zarejestrować. Budowa wykrywacza ma kosztować 600 milionów dolarów, z czego Japonia pokryje 85%, a resztę sfinansują inne kraje, w tym Wielka Brytania i Kanada. Dodatkowo Japonia wyda 66 milionów dolarów na rozbudowę akceleratora J-PARC. To znajdujące się 300 kilometrów dalej urządzenie będzie źródłem neutrin dla Hyper-K. Głównym elementem nowego wykrywacza będzie zbiornik o głębokości 71 i średnicy 68 metrów. Grota, do której trafi, powstanie 8 kilometrów od istniejącej infrastruktury Kamioka, by uniknąć wibracji mogących zakłócić prace przygotowywanego właśnie do uruchomienia wykrywacza fal grawitacyjnych KAGRA. Wnętrze zbiornika Hyper-K zostanie wyłożone fotopowielaczami, które będą przechwytywały fotony powstałe w wyniku zderzeń neutrino z atomami w wodzie. Hyper-Kamiokande będzie jednym z trzech dużych instalacji służących do wykrywania neutrin, jakie mają ruszyć w nadchodzącej dekadzie. Dwa pozostałe to Deep Underground Neutrino Experiment (DUNE), który ma zacząć pracę w USA w 2025 roku oraz Jiangmen Underground Neutrino Observatory (JUNO), jaki Chiny planują uruchomić w roku 2021. Takaaki Kajita, fizyk z Uniwersytetu Tokijskiego, mówi, że naukowcy są podekscytowani możliwościami Hyper-K, który ma pozwalać na badanie różnic w zachowaniu neutrin i antuneutrin. Już w Super-K zauważono istnienie takich różnic, jednak to Hyper-K i DUNE pozwolą na ich bardziej szczegółowe zbadanie. Zaś dzięki temu, że oba detektory będą korzystały z różnej techniki – w DUNE znajdzie się płynny argon a nie woda – będzie można nawzajem sprawdzać uzyskane wyniki. Jednak,jak podkreśla Masayuki Nakahata, fizyk z Uniwersytetu Tokijskiego i rzecznik prasowy Super-K, największą nadzieją, jaką pokłada się w Hyper-K jest odkrycie rozpadu protonu. Na razie rząd Japonii nie wydał oficjalnego oświadczenia w sprawie budowy Hyper-Kamiokande. Jednak japońscy naukowcy mówią, że właśnie zaproponowano poprawkę budżetową, w ramach której przewidziano pierwszą transzę w wysokości 32 milionów dolarów na rozpoczęcie budowy wykrywacza. Poprawka musi jeszcze zostać zatwierdzona przez parlament, co prawdopodobnie nastąpi w przyszłym miesiącu. « powrót do artykułu
  8. Jesteśmy coraz bliżej odkrycia masy neutrino. Przez długi czas sądzono, że neutrino ma zerową masę spoczynkową, jednak obecnie wiadomo, że jednak posiada masę. Najnowsze badania wykazały, że masa ta jest nie większa niż 1/500 000 masy elektronu. Udało się bowiem wyznaczyć górną granicę masy neutrino. Wynosi ona 1,1 elektronowolta. To dwukrotnie mniej niż dotychczasowa górna granica masy. We wszechświecie są miliardy razy więcej neutrino niż atomów. Zatem nawet jeśli masa każdego z nich jest niewielka, to w sumie mogą stanowić znaczną część masy wszechświata, mówi Christian Weinheimer z Uniwersytetu w Munster. Międzynarodowy zespół naukowców analizował rozpad trytu. W jego trakcie dochodzi do jednoczesnej emisji elektronu i neutrino. Mierząc energię emitowanych elektronów naukowcy byli w stanie bardziej precyzyjnie niż dotychczas określić masę neutrino. Jesteśmy dumni i szczęśliwi, stwierdza Weinheimer. Brał on udział w pracach międzynarodowej grupy naukowców, którzy stali za eksperymentem Karlsruhe Tritium Neutrino. Na potrzeby badań powstał specjalny spektrometr o wysokości 24 metrów. To bardzo, bardzo ekscytujące. To najbardziej precyzyjny pomiar ze wszystkich, cieszy się Melissa Uchida z University of Cambridge. Jej zdaniem istnieje szansa, że w ciągu kilku najbliższych lat poznamy masę neutrino. W końcu będziemy w stanie ułożyć puzzle dotyczące powstania wszechświata, dodaje uczona. « powrót do artykułu
  9. Naukowcy z University of Rochester i North Carolina State University jako pierwsi w historii wykorzystali neutrino do przesłania wiadomości. Uczeni wykorzystali znajdujące się w Fermilab urządzenia NuMI (NeUtrino beam at the Main Injector) do wygenerowania 25 impulsów. Przerwy pomiędzy nimi wynosiły około 2 sekundy, a w ramach każdego impulsu wysłano 1013 neutrin. Impulsy zostały wysłane do wykrywacza MINERvA, znajdującego się w grocie w odległości około kilometra od NuMI. Neutrina, zanim dotarły do wykrywacza, musiały przejść przez 240 metrów skały. W strumieniu neutrin w postaci zer i jedynek zakodowano wyraz „neutrino“. Jego przesłanie trwało około 2,5 godziny. W tym czasie MINERvA pracował z połową mocy, gdyż planowane jego jego wyłączenie, a ponadto wykonywał swoje standardowe zadania. Oczywiście zarówno tempo przesyłania danych, jak i wymagany do tego sprzęt - sam wykrywacz MINRvA waży 170 ton - oznaczają, że obecnie neutrino nie można wykorzystać w praktyce. Jednak nie taki był cel eksperymentu. Naukowcy chcieli przetestować krążący od dłuższego czasu pomysł użycia neutrino w celu przekazywania informacji. Neutrino, w przeciwieństwie do wszelkich innych wykorzystywanych medium, ma bowiem tę zaletę, że praktycznie nie istnieją dlań żadne fizyczne przeszkody. Adresat wysłanej za ich pomocą informacji mógłby ją odebrać zarówno na ulicy, jak i na dnie najgłębszej kopalni.
  10. John Learned z University of Hawaii uważa, że cefeidy, olbrzymie gwiazdy zmienne, mogą być wykorzystywane przez zaawansowane cywilizacje do... komunikacji z innymi cywilizacjami. Cefeidy to rzadko występujące olbrzymy, których siła blasku zmienia się w regularnych cyklach, w zależności od gwiazdy, co 1 do 150 dni. Właśnie ta regularna zmienność pozwala na mierzenie odległości do tych gwiazd, pomagając określić wiek Wszechświata i prędkość jego rozszerzania się. Learned, który sam jest specjalistą od fizyki neutrino, mówi, że każda zaawansowana cywilizacja skorzysta z niezwykłych właściwości tych gwiazd i będzie je obserwowała. Stąd już tylko krok do stwierdzenia, że skoro wszystkie cywilizacje - jeśli istnieją - przyglądają się cefeidom, to gwiazdy te można by wykorzystać do przesłania informacji o swoim istnieniu. Learned wraz z kolegami uważa, że informację taką można wysłać zmieniając cykl gwiazdy. Cefeidy zmieniają się pomiędzy dwoma stanami, w jednym z nich gwiazda jest mniejsza, a wewnątrz panują olbrzymie temperatury i ciśnienie, wówczas gwiazda rozszerza się zwiększając swoją jasność. Gdy staje się większa, ciśnienie wewnątrz gwiazdy nie jest w stanie zrównoważyć jej własnej grawitacji i gwiazda ponownie staje się mniejsza, przygasając. Uczeni z University of Hawaii spekulują, że odpowiednio zaawansowana cywilizacja byłaby w stanie wystrzelić w stronę którejś z cefeid wiązkę neutrino, które podgrzeją jądro gwiazdy, wywołają wzrost ciśnienia i spowodują, że rozbłyśnie ona wcześniej niż zwykle. Taką wiązkę można uzyskać przepuszczając protony np. przez szafir, węgiel lub wolfram. Wówczas zamieni się ona w wiązkę cząsteczek subatomowych, głównie pionów, które szybko rozpadną się i powstanie wiązka neutrino. Taka seria normalnych i skróconych cykli gwiazdy mogłaby pełnić rolę "galaktycznego Internetu". Pomysł akademików z Honolulu wygląda na nieco szalony, jednak zainteresował innych naukowców. Fizyk Freeman Dyson z Institute for Advanced Study w Princeton, w którym pracowali m.in. Einstein, von Neumann i Oppenheimer, mówi: To interesujący pomysł, który można sprawdzić. Wystarczy bowiem przejrzeć zebrane dotychczas dane z obserwacji cefeid i poszukać nieregularności. To wspaniały pomysł, który przypomina starą ideę Rosjan, by od 100 lub 200 gigantycznych gwiazd odbić wiązkę o wysokiej energii, powodując tym samym anomalie w sygnałach samych gwiazd i dając w ten sposób znać innym cywilizacjom, że istniejemy - dodaje Seth Shostak z SETI. Sam Learned mówi, że wykorzystanie cefeid w roli "galaktycznego Internetu" umożliwia przesłanie niewielkiej ilości informacji. W przypadku gwiazdy o jednodniowym cyklu w ciągu roku można przesłać zaledwie 180 bitów danych. Wywołanie postulowanych przezeń zmian wymagałoby użycia olbrzymich ilości energii. Naukowcy szacują, że musiałaby ona być równa jednej milionowej energii samej gwiazdy. Zdaniem Shostaka transmisja radiowa o podobnej mocy pozwoliłaby na przesłanie większej ilości informacji na podobne odległości, co "transmisja" za pomocą cefeid. Dane dotyczące cefeid są rejestrowane od 100 lat. Ich przeanalizowanie [pod kątem występowania nieregularności - red.], zajmie absolwentowi uczelni kilka miesięcy. Jeśli okazałoby się, że nasze przypuszczenia są prawdziwe, miałoby to niewyobrażalne konsekwencje - mówi Learned.
  11. Naukowcy najpierw teoretycznie przewidzieli istnienie neutrino, a po kilkudziesięciu latach nauczyli się je wykrywać. Wtedy okazało się, że neutrino oscylują pomiędzy swoimi poszczególnymi zapachami, a zatem mają masę. Dowód na potwierdzenie oscylacji neutrin zdobyto dopiero w bieżącym roku w CERN-ie. Już sam ten fakt świadczył o tym, że Model Standardowy - przewidujący brak masy neutrin - nie jest prawdziwy. Teraz naukowcy z Fermilab przeprowadzili badania, które mogą wysłać Model Standardowy na śmietnik. Amerykanie wykorzystali detektor MiniBooNE do tworzenia neutrin z protonów wysyłanych przez akcelerator Tevatron, które były wystrzeliwane w stacjonarny cel. Zadaniem MiniBooNE'a było sprawdzenie pewnych dziwnych wyników, uzyskanych przed dziesięciu laty w Los Alamos. Sugerowały one, że antyneutrina mionowe oscylują w antyneutrina elektronowe w większym stopniu niż wynikałoby to z wyliczeń. Początkowo MiniBooNE badał neutrina mionowe i nie znalazł żadnych nieprawidłowości. jednak gdy zaczęto przyglądać się antyneutrinom mionowym okazało się, że wykryto więcej antyneutrin niż powinno ich być. Dane dotyczące liczby oraz energii wydają się zbieżne z tym, co zaobserwowano wcześniej w Los Alamos. Antyneutrina po raz kolejny zaskoczyły badaczy. Już wcześniej, również w Fermilab, zaobserwowano, że różnice mas antyneutrin mogą nie być takie same jak różnice mas neutrin.
  12. Zidentyfikowano błędy, które mogły wpłynąć na niedokładność pomiaru podczas eksperymentów, w wyniku których ogłoszono, że neutrino może poruszać się szybciej niż światło. Zespół pracujący przy eksperymencie OPERA stwierdził, że możliwe były dwa błędy związane z obsługą systemu GPS. Czas, jaki potrzebowały neutrino na pokonanie 730-kilometrowej trasy pomiędzy CERN-em a detektorem w Gran Sasso był mierzony za pomocą systemu GPS. Kluczową rolę mogły więc odegrać zegary atomowe na początku i na końcu trasy neutrino. Żeby je zsynchronizować, trzeba wysłać pomiędzy nimi sygnał, a ten też potrzebuje czasu na przebycie określonej odległości. Dlatego też dane są interplowane, w celu wyeliminowania tej różnicy czasu. OPERA przyznaje, że interpolacja mogła zostać źle wykonana. Drugi z możliwych błędów to niewłaściwe połączenie pomiędzy urządzeniem GPS, a głównym zegarem eksperymentu OPERA. Należy podkreślić, że są to na razie wstępne najbardziej możliwe wyjaśnienia. Nie wydano jeszcze ostatecznego komunikatu, gdyż oba spostrzeżenia nie zostały ostatecznie zweryfikowane. Tymczasem w Fermilab naukowcy pracujący przy eksperymencie MINOS próbują na własną rękę powtórzyć eksperyment CERN-u i sprawdzić uzyskane informacje.
  13. Gdy przed trzema tygodniami świat obiegła sensacyjna wiadomość o przekroczeniu prędkości światła przez neutrino, setki naukowców ruszyły do pracy, zastanawiając się nad wyjaśnieniem tego fenomenu. Do zbiorów arXiv trafiło już ponad 80 prac, których autorzy próbują opisać nowo odkryte zjawisko. Niektóre z nich sugerują powstanie nowej fizyki, w której np. neutrino podróżują przez dodatkowe wymiary, inni twierdzą, że odkrycie naukowców pracujących przy eksperymencie OPERA da się wyjaśnić na gruncie istniejących teorii. W jednym z artykułów zwrócono uwagę, że gdy w 1987 roku zaobserwowano potężną supernową (SN 1987A), pochodzące z niej neutrino dotarły na Ziemię trzy godziny wcześniej niż zauważono emitowane przez eksplozję światło. Wówczas wyjaśniono to zjawisko faktem, że dla neutrino cała materia jest praktycznie przezroczysta, mogą one podróżować bez przeszkód. Tymczasem fotony są wielokrotnie pochłaniane, odbijane i ponownie emitowane. Naukowcy doszli wówczas do wniosku, że z tego też powodu fotony wydostały się z eksplodującej gwiazdy później niż neutrino. Autorzy współczesnego opracowania wyliczają, że gdyby neutrino podróżowały szybciej od światła, a różnica w prędkości byłaby taka, jaką uzyskano w eksperymencie OPERA, to neutrino ze wspomnianej supernowej powinny dotrzeć do nas ponad cztery lata przed fotonami. Tymczasem różnica wynosiła trzy godziny. Z kolei laureat Nagrody Nobla Sheldon Glashow i jego koledzy zwracają uwagę, że zgodnie z Modelem Standardowym neutrino o wystarczająco dużej energii powinno doprowadzić do powstania par elektron-pozytron. W procesie tym, zwanym emisją Cohena-Glashowa, dochodzi jednak do zmniejszenia energii neutrino, co z kolei prowadzi do spowolnienia jego ruchu. Tym samym neutrino nie mogłoby przekroczyć prędkości światła. Ronald A.J. van Elburg zauważa natomiast, że pomiary odległości i czasu podróży neutrino były wykonywane za pomocą systemu GPS. System ten korzysta z satelitów, które bez przerwy krążą wokół Ziemi. Sama Ziemia również się obraca, a zatem źródło neutrino (CERN) i wykrywacz neutrino w Gran Sasso zmieniały w czasie eksperymentów położenie względem siebie. Elburg wylicza, że zmiany położenia powinny doprowadzić do niedokładności pomiaru wynoszącej 64 nanosekundy. Tymczasem uczeni z Włoch informowali, że neutrino przybyły o 60 nanosekund szybciej od światła, co potwierdzałoby obliczenia Elburga. Środowisko naukowe ciągle toczy gorące spory mające na celu wyjaśnienie wyników eksperymentu OPERA. Nam pozostaje czekać, aż uczeni wypracują wspólny pogląd na ten temat.
  14. Międzynarodowy zespół naukowców pracujący w ramach znajdującego się w Japonii eksperymentu T2K zaobserwował sygnały, które mogą być przełomem w dziedzinie badań neutrino i symetrii pomiędzy materią a antymaterią. Zauważone sygnały sugerują, że neutrino może oscylować pomiędzy swoimi trzema rodzajami. Na razie nie udało się potwierdzić tych obserwacji, gdyż T2K wyłączono po trzęsieniu ziemi z marca bieżącego roku. W ubiegłym roku informowaliśmy, że eksperyment OPERA zanotował zmianę neutrina mionowego w taonowe. Teraz wszystko wskazuje na to, że neutrino mionowe może zamieniać się w neutrino elektronowe. Jeśli spostrzeżenia się potwierdzą, otworzy to drogę do nowych badań i koncepcji w fizyce cząstek i budowie wszechświata. Pojawią się nowe pomysły, których celem będzie rozwiązanie problemu widocznej we wszechświecie asymetrii pomiędzy materią a antymaterią. Chcemy poradzić sobie z tym problemem, ale najpierw musimy potwierdzić, że różne zapachy neutrino mogą spontanicznie między sobą oscylować. Jak dotąd nasze eksperymenty przynoszą pozytywne rezultaty - mówi profesor Dave Wark z Impterial College London, który przewodzi brytyjskiemu zespołowi pracującemu w T2K. Eksperyment T2K wykorzystuje niezwykły wykrywacz neutrin Super-Kamiokande. Jest on ukryty na głębokości 1000 metrów pod górą Kamioka w pobliżu miasta Hida. W jego skład wchodzi olbrzymi stalowy zbiornik o średnicy 39,3 metra i wysokości 41,4 m, który mieści 50 000 ton niezwykle czystej wody. Wewnątrz zbiornika znajdują się tysiące czujników. Podczas badań T2K naukowcy używali akceleratora Japan Proton Accelerator Research Centre (J-Parc), który pod ziemią wystrzeliwał strumień neutrino mionowych w kierunku znajdującego się 295 kilometrów dalej Super-Kamiokande. Czujniki Super-K rejestrowały rzadkie i słabe rozbłyski światła, powstające w wyniku interakcji neutrin z cząsteczkami wody. Przed trzęsieniem ziemi, które zniszczyło laboratorium T2K, uczeni obserwowali pojawienie się neutrin elektronowych w Super-K. Wydaje się zatem, że neutrina mionowe emitowane przez J-Parc zmieniły się w neutrina elektronowe. Na razie jednak danych jest zbyt mało, by jednoznacznie ogłosić, że doszło do oscylacji. Laboratorium będzie nieczynne do stycznia przyszłego roku. Na potwierdzenie oscylacji neutrin mionowych w elektronowe będziemy musieli poczekać co najmniej rok.
  15. Indyjskie Ministerstwo Środowiska i Lasów wydało zgodę na zbudowanie detektora neutrin. Tym samym usunięto najpoważniejszą przeszkodę, która stała na drodze projektu naukowego o wartości 250 milionów dolarów. Indyjskie Obserwatorium Neutrin (INO - Indian Neutrino Observatory) powstanie na terenie rezerwatu Bodi West Hills. Znajdują się tam strome, wysokie wzgórza, dzięki czemu wystarczy wydrążyć w nich około 2-kilometrowy poziomy tunel, by znaleźć się w miejscu, nad którym będzie 1300 metrów granitowych skał. Będą one działały jak izolacja, która ochroni wykrywacz neutrin przed innymi cząstkami z kosmosu. Neutrino to jedna z cząstek elementarnych. Należy ona do grupy leptonów i wyróżniamy trzy typy neutrin: taonowe, mionowe oraz elektronowe. Neutrino ma zerowy ładunek elektryczny i niemal nie ma masy. Cząstka jest tak przenikliwa, że na przykład planety nie stanowią dla niej żadnej przeszkody. W każdej chwili przez nasze ciała, przez budynki i przez samą Ziemię przelatuje niezliczona liczba neutrin. Ich głównym źródłem jest oddziaływanie promieni kosmicznych w górnych warstwach atmosfery. Neutrina emitują też np. gwiazdy i reaktory atomowe. Cząsteczki te są bardzo łakomym kąskiem dla astronomów. Podróżują z prędkością światła od źródeł promieniowania, a na swej drodze nie napotykają niemal żadnych przeszkód. Neutrina powstają np. we wnętrzach gwiazd i bez najmniejszych problemów przemierzają przestrzeń kosmiczną. Badanie neutrin pozwala więc naukowcom wysnuć wnioski na temat samych źródeł, z których zostały wyemitowane. Z tego, co wiemy obecnie, zdecydowana większość istniejących neutrin pochodzi z samych początków wszechświata, powstały w momencie Wielkiego Wybuchu. Do budowy INO zostanie wykorzystanych 50 000 ton namagnesowanego żelaza, detektor będzie zatem największym magnesem na świecie. Neutrino będą oddziaływały z żelazem ułożonym w warstwy, wybijając z niego naładowane cząstki, które będą zaginane przez pole magnetyczne. Pomiędzy warstwami zostanie umieszczonych około 30 000 czujników badających te cząstki. Dzięki nim dowiemy się wielu interesujących rzeczy o samym neutrin. Ponadto, w przeciwieństwie do większości wykrywaczy neutrin, INO będzie w stanie badać też antyneutrina. Co więcej, w przyszłości indyjski detektor - dzięki swojemu położeniu geograficznemu - może zostać wykorzystany do łapania i badania neutrin generowanych przez "fabryki neutrin", które być może powstaną przy CERN-ie lub Fermilab. Znalezienie odpowiedniego miejsca dla INO nie było łatwe. Wcześniej chciano wybudować je na terenie rezerwatu w górach Nilgiri, gdzie istnieje podziemna elektrownia z 13 kilometrami tuneli. Jednak, jako że na potrzeby laboratorium musiałaby powstać droga dojazdowa, która przecięłaby trasy wędrówki słoni, Ministerstwo Środowiska nie wyraziło zgody na tę lokalizację.
  16. Uczniowie i studenci na całym świecie uczą się, że rozpad promieniotwórczy odbywa się ze stałą prędkością, dzięki czemu można wykorzystać węgiel C-14 do precyzyjnego datowania. Jednak naukowcy z dwóch renomowanych uczelni Stanford University i Purdue University sądzą, że rozpad nie jest równomierny, a wpływ na jego prędkość ma... Słońce. Profesor fizyki Ephraim Fischenbach z Purdue potrzebował długiej listy przypadkowo generowanych liczb. Uczeni używają ich do najróżniejszych obliczeń, jednak uzyskanie list jest bardzo trudne. Powinny to być bowiem liczby losowe, a więc na ich wybór nie powinno nic wpływać. Fischenbach postanowił zatem wykorzystać radioaktywne izotopy jako źródło liczb. Co prawda np. kawałek cezu-137 rozpada się - jak dotąd sądzono - ze stałą prędkością, jednak wiadomo, że do rozpadu poszczególnych atomów dochodzi w całkowicie nieprzewidywalny, przypadkowy sposób. Naukowiec chciał zatem wykorzystać materiał radioaktywny i licznik Geigera i notując czas upływający pomiędzy momentami rozpadu poszczególnych atomów uzyskać szereg przypadkowych liczb. Fischenbach chciał najpierw wybrać najlepszy materiał radioaktywny, więc wraz ze swoimi kolegami zaczął przeglądać publikacje na temat ich rozpadu. I odkryli znajdujące się w nich różnice w pomiarach. Naukowcy, zdumieni tym faktem, porównali dane zebrane przez amerykańskie Brookhaven National Laboratory oraz niemiecki Federalny Instytut Fizyki i Techniki. Tutaj czekała ich jeszcze większa niespodzianka. Okazało się bowiem, że tempo rozpadu zarówno krzemu-32 jak i radu-226 wykazywało sezonowe odchylenia. Latem rozpad pierwiastków był nieco szybszy niż zimą. Wszyscy myśleliśmy, że mamy tu do czynienia z błędami pomiarowymi [różne pory roku charakteryzują się przecież różną temperaturą czy wilgotnością, co może wpływać na instrumenty pomiarowe - red.], ponieważ byliśmy przekonani, że tempo rozpadu jest stałe - mówi emerytowany profesor fizyki, ekspert fizyki słońca Peter Sturrock ze Stanford University. Rozwiązanie zagadki nadeszło, przynajmniej częściowo, 13 grudnia 2006 roku, gdy w nocy w laboratorium Purdue University inżynier Jere Jenkins zanotowanł niewielkie spowolnienie tempa rozpadu manganu-54. Nastąpiło ono na 1,5 doby przed pojawieniem się flary słonecznej. Uczeni opisali swoje spostrzeżenia i w kolejnych artykułach stwierdzili, że zmiany w tempie rozpadu izotopów związane są z ruchem obrotowym Słońca, a najbardziej prawdopodobną ich przyczyną jest wpływ neturin na izotopy. Zresztą sam Sturrock poradził kolegom z Purdue, by przyjrzeli się rozpadowi, a z pewnością stwierdzą, że zmiany następują co 28 dni. Tymczasem okazało się, że zmiany zachodzą co... 33 dni. To, jak uważa Sturrock wskazuje, wbrew intuicji, że wnętrze naszej gwiazdy - w którym zachodzą reakcje - wiruje wolniej niż jej obszar zewnętrzny. Jednak te spostrzeżenia nie wyjaśniają kolejnej, wielkiej tajemnicy. W jaki sposób neutrino miałyby wpływać na materiał radioaktywny na tyle, by zmienić tempo jego rozpadu. Z punktu widzenia standardowych teorii to nie ma sensu - mówi Fischbach. A Jenkins dodaje: Sugerujemy, że coś, co nie wchodzi w interakcje z niczym zmienia coś, co nie może być zmienione. Uczonym pozostaje więc do rozwiązania poważna zagadka. Albo nasza wiedza o neutrino wymaga weryfikacji, albo też na rozpad ma wpływ nieznana jeszcze cząstka.
  17. Neutrina fascynują fizyków od czasu, kiedy były jeszcze teoretycznym pomysłem Wolfganga Pauliego, który zapostulował ich istnienie w 1930 roku. Praktyczne potwierdzenie ich istnienia w latach sześćdziesiątych nie zakończyło fascynacji - wciąż pozostawały mało uchwytne i tajemnicze. Zagadka, z jaką nauka mierzyła się w ostatnich latach, to tzw. oscylacja neutrin, czyli zamiana neutrina mionowego w neutrino taonowe. Zagadkę rozwiązała OPERA. Znikanie jednego rodzaju neutrin obserwowano już wielokrotnie, ale próby zarejestrowania oczekiwanego pojawienia się, jakie podejmowano przez ostatnie kilkanaście lat, spełzały na niczym. Fiaskiem zakończyły się między innymi eksperymenty CHORUS i NOMAD, przeprowadzanie w europejskim CERN. Dopiero później nowe teoretyczne badania dowiodły, że aparatura rejestrująca powinna znajdować w znacznie większej odległości od źródła. Stąd pomysł eksperymentu OPERA (Oscillation Project with Emulsion-tRacking Apparatus). Aparaturę reejstrującą umieszczono aż 730 kilometrów od synchrotronu CERN w Genewie, we włoskim Narodowym Laboratorium Gran Sasso (Laboratori Nazionali del Gran Sasso). W ciągu trzech milisekund wiązka neutrin przebywała tę odległość, biegnąc pod malowniczymi krajobrazami połowy Europy. Tak działo się od 2006 roku, kiedy zainaugurowano projekt. 31 maja tego roku odnotowano pierwszy sukces: zamianę neutrina mionowego w neutrino tau. Potwierdzenie słuszności koncepcji oscylacji neutrinowej uzupełnia obraz Modelu Standardowego, otwierając drzwi do nowych koncepcji w fizyce cząstek, kosmologii i astrofizyce. Eksperyment OPERA jest efektem współpracy zespołów naukowych z wielu krajów: Belgii, Chorwacji, Francji, Niemiec, Izraela, Włoch, Japonii, Korei, Rosji, Szwajcarii, Tunezji i Turcji.
  18. Wykrywanie neutrin - bardzo przenikliwych cząstek elementarnych - to wciąż niespełnione marzenie wielu dziedzin nauki. Już w latach sześćdziesiątych, kiedy udało się złapać pierwsze sztuki, marzono np. o astronomii neutrinowej. Niestety, w XXI detekcja neutrin wciąż jest trudnym zagadnieniem, a neutrinowa astronomia - w powijakach. Neutrino - to cząstka o prawie zerowej masie i wielkiej przenikliwości, nie ulegająca tzw. oddziaływaniom silnym i elektromagnetycznym. Pędzące neutrino przechodzi przez całą naszą planetę łatwiej, niż światło przez szkło. Polowanie na neutrina przypomina więc łapanie komarów siatką na motyle, a cząstki te, przebywające bez trudu największe odległości, mogłyby nam wiele zdradzić z tajemnic Wszechświata. Jak więc w ogóle można takie neutrino zarejestrować? Jedyną przeszkodą dla nich są jądra atomowe, uderzenie neutrina powoduje rozpad jądra, który można zarejestrować. Problem w tym, że szansa na to jest niezwykle mała. Drugi problem w tym, że znacznie częściej w jądra trafiają inne cząstki. Dlatego detektory neutrin buduje się głęboko pod ziemią lub pod wodą, w opuszczonych kopalniach. Staranna izolacja pomaga izolować aparaturę od promieniowania kosmicznego, choć nadal problemem są „fałszywe alarmy", powodowane np. przez rozpad promieniotwórczych izotopów w materiałach, z których zbudowany jest detektor. Nieoczekiwaną pomocą w skonstruowaniu nowego detektora neutrin we Włoszech będzie... ołów wydobyty z zatopionego dwa tysiące lat temu rzymskiego okrętu, który zostanie użyty do ekranowania aparatury. Może budzić nasze zdziwienie, czemu ten ołów ma być lepszy? Chodzi właśnie o izotopy. Ołów zawsze zawiera pewną ilość swojego radioaktywnego izotopu, ołowiu-210. Rozpad jego cząstek może, jak powiedzieliśmy, zakłócać działanie precyzyjnych detektorów. Ponieważ okres połowicznego rozpadu ołowiu-210 wynosi 22 lata, po dwóch tysiącleciach jego ilość zmalała sto tysięcy razy, więc praktycznie w ogóle już go nie ma. To czyni go idealnym do ekranowania wyjątkowo precyzyjnej aparatury. Okręt wydobyto dwadzieścia lat temu i już wtedy 150 ołowianych sztabek otrzymał Włoski Narodowy Instytut Fizyki Nuklearnej (INFN), który sfinansował wydostanie okrętu z ładunkiem kwotą 300 milionów lirów. Teraz otrzymał dodatkowo sto dwadzieścia ołowianych sztabek. Z powodów historycznych z każdej sztabki zostanie odcięta część z napisami, pozostałość będzie przetopiona i wykorzystana do budowy podziemnych laboratoriów w Gran Sasso, w Apeninach, półtora kilometra pod ziemią, gdzie zbudowany będzie detektor neutrin. Przy okazji zostaną przeprowadzone badania próbek wydobytych materiałów: ołowiu i miedzi, które pozwolą dowiedzieć się więcej o technologiach, jakie stosowano w starożytnym Rzymie.
  19. Komunikacja z łodziami podwodnymi to poważne wyzwanie technologiczne i wojskowe. Patrick Huber, fizyk z Virginia Tech uważa, że problem uda się rozwiązać, wykorzystując do przesyłania informacji... neutrino. Nowoczesne okręty podwodne mogą całymi tygodniami przebywać w ukryciu na głębokości poniżej 200 metrów. Mają jednak bardzo poważną wadę. Komunikacja z nimi możliwa jest tylko wówczas, gdy znajdują się blisko powierzchni. To naraża okręt na wykrycie i atak wroga. Problemem jest przesyłanie fal radiowych, które w wodzie rozchodzą się bardzo słabo. Tylko fale o ekstremalnie niskiej częstotliwości (ELF), wynoszącej poniżej 100 herców mogą przebyć większe odległości. Jednak przesyłanie danych z ich wykorzystaniem odbywa się niezwykle powoli, z prędkością zaledwie 1 bita na minutę. Okręty podwodne wykorzystują fale o bardzo niskiej częstotliwości (VLF), dochodzącej do kilku kilkoherców. Informacje można wówczas wysłać z prędkością nawet 50 bitów na sekundę, jednak odległość, jaką są w stanie przebyć fale jest mocno niezadowalająca. Bardzo interesującą propozycją jest wykorzystanie neutrino, problem jednak w tym, że przenikają one dosłownie przez wszystko, a więc ich wykrycie jest niemal niemożliwe. Jednak Peter Huber twierdzi, że gdyby udało się z nich skorzystać, prędkość przesyłania danych można by zwiększyć do 100 bitów na sekundę, informacje przebywałyby duże odległości i można by je wysyłać i odbierać nawet w maksymalnym zanurzeniu. Huber teoretyzuje, że do wysyłania neutrino można wykorzystać już istniejące techniki. W laboratoriach neutrino są tworzone poprzez przyspieszanie mionów do wysokich energii. Gdy miony ulegają rozpadowi, powstają neutrino. Wykrywa się je w procesie odwrotnym, czyli gdy neutrino reagują z materią, powstają miony, które można łatwo wykryć. Problem w tym, że tego typu eksperymenty można przeprowadzać w specjalnych laboratoriach. Na przykład w Fermi National Accelerator Laboratory przeprowadza się eksperymenty, podczas których wysyła się strumień neutrino do położonego 700 kilometrów dalej kolosalnego wykrywacza mionów nieczynnej kopalni w Minnesocie. Detektor waży 5000 ton i w ciągu dwóch lat pracy wykrył jedynie 730 mionów. Huber uważa, że przyszłe generacje akceleratorów będą wielokrotnie mniejsze i bardziej poręczne w użyciu. Da się je zatem zastosować np. w bazach wojskowych czy zwykłych budynkach. Uczony jest bardziej kreatywny, jeśli chodzi o same metody wykrywania mionów. Jego zdaniem można pokryć łódź podwodną rodzajem tapety, działającej jak wykrywacz mionów. W ten sposób uzyskamy duży, cylindryczny detektor mionów o średnicy około 10 i długości 100 metrów. Miony będą wpadały do łodzi z jednej strony i wychodziły z drugiej. Pomiary po obu stronach pozwolą na precyzyjne wykrywanie neutrino. Naukowiec uważa też, że można wykorzystać promieniowanie Czerenkowa, czyli zjawisko świecenia w materii szybko poruszających się naładowanych cząstek. Takimi cząstkami byłyby miony wędrujące przez wodę w kierunku łodzi podwodnej. Wystarczyłoby "tylko" odfiltrować zakłócenia wywoływane luminescencją organizmów żywych czy światłem słonecznym. Zdaniem Hubnera, w przyszłości nie będzie z tym więĸszych problemów. Warto tutaj zauważyć, że, o ile pomysły uczonego są warte rozważenia, to zapewniają one jedynie wysyłanie wiadomości do łodzi podwodnej. Komunikacja w drugą stronę wciąż stanowi poważny problem.
  20. Europejscy fizycy poinformowali, że 2 października udało im się sfotografować neutrino. Sfotografowana cząstka została przesłana pod Ziemią z instytutu CERN w Szwajcarii od Włoskiego Instytutu Badań Nuklearnych w San Grasso. Podróż na odległość 730 kilometrów zajęła jej około 2,4 milisekundy. Neutrino to cząstka elementarna pozbawiona ładunku elektrycznego, która ma masę bliską zeru. Dlatego też bez wysiłku przenika przez materię. Każdego dnia przez nasze ciała przenikają biliony takich cząstek. Naukowcy wyróżniają trzy rodzaje neutrino: neutrino elektronowe, neutrino mionowe i neutrino taonowe. Od 2006 roku CERN zaczął ‘wystrzeliwać’ neutrino ze swojego akceleratora w pobliżu Genewy. Część z nich wykryto w detektorze Borexino w San Grasso. Ostatnio naukowcy postanowili wykorzystać specjalną błonę, stworzoną z warstw ołowiu i błony filmowej, by uwiecznić na niej efekt uderzenia neutrino. W San Grasso zainstalowano 60 000 takich błon. W jedną z nich trafiło neutrino mionowe pozostawiając widoczne ślady. Uczeni mówią, że ich doświadczenie być może pozwoli na rozwiązanie jednej z największych zagadek astronomii – odnalezienie zaginionej masy wszechświata. Naukowcy oceniają bowiem, że masa, którą jesteśmy w stanie zobaczyć, stanowi około 10% rzeczywistej masy wszechświata. Przez wiele lat sądzono, że neutrino nie mają masy. Dopiero eksperymenty przeprowadzone w japońskim laboratorium Super-Kamiokande wykazały, że jednak ją mają. Europejskie doświadczenia pozwolą potwierdzić i uszczegółowić japońskie dane. CERN wysłał w kierunku San Grasso neutrino mionowe z nadzieją, że na błonie zostanie uwidocznione neutrino taonowe. Jeśli by się tak stało, byłoby to potwierdzeniem teorii, że neutrino mogą oscylować pomiędzy swoimi trzema formami. A występowanie takiej oscylacji można wyjaśnić tylko tym, że neutrino ma masę. Na razie w Borexino nie złapano neutrino taonowego. Naukowcy chcą zwiększyć liczbę zainstalowanych błon do 150 000.
  21. Międzynarodowy zespół naukowców po raz pierwszy wykrył niskoenergetyczne neutrino i zbadał z jaką częstotliwością cząstki te docierają na Ziemię. Odkrycie, dokonane za pomocą detektora Borexino, potwierdza teorie dotyczące budowy Słońca i innych gwiazd. Przy okazji potwierdzono teorię, że neutrino oscyluje pomiędzy trzema formami: elektronową, mionową i taonową. W środku naszej gwiazdy zachodzi nieprzerwana zamiana wodoru w hel. Przy okazji produkowane są olbrzymie ilości energii. W wyniku reakcji zachodzących w Słońcu powstają też neutrina, które po około ośmiu minutach od powstania docierają do Ziemi. Tymczasem energia cieplna powstała w tym samym momencie dociera do nas dopiero po 50 000 lat, gdy wydostanie się na powierzchnię Słońca. Badania wnętrza gwiazdy są możliwe m.in. dzięki badaniom neutrino. Naukowców szczególnie interesują neutrino powstające w fazie 7Be, krytycznej dla tworzenia się słonecznej energii. W ciągu ostatnich 10 lat uczeni obserwowali neutrino podczas licznych eksperymentów. Były to jednak cząstki odznaczające się wysoką energią, które są dość rzadkie (występują w stosunku 1:10000 w porównaniu do neutrino niskoenergetycznych). Niewiele więc mówiły o budowie Słońca i tym, co dzieje się w jego wnętrzu. Naukowców interesują jednak bardziej neutrino niskoenergetyczne. Tych nie udało się dotychczas zaobserwować. Umożliwił to dopiero Borexino, wyjątkowy detektor umieszczony ponad kilometr pod Ziemią. Borexino znajduje się pod górą Gran Sasso w Apeninach. Detektor jest kulą o średnicy 18 metrów, którą zbudowano z ułożonych koncentrycznie paneli, mających zatrzymywać wszelkie promieniowanie. Naukowcy chcą za jego pomocą badać neutrino, które bardzo słabo reagują z wszelką materią. Dlatego też konieczne stało się odfiltrowanie wszelkich innych cząstek docierających z kosmosu. Celowi temu służy zarówno głębokość, na jakiej umieszczono Borexino, jak i wyjątkowo czyste materiały (miliony razy bardziej czyste niż wykorzystywane przy produkcji układów scalonych), z których zostało stworzone. Ponadto otoczono je 2400 tonami wody, która stanowi dodatkowy filtr. Wewnątrz wspomnianej kuli znajdują się dwie mniejsze zbudowane z nylonu umieszczone jedna w drugiej. Obie zawierają specjalny organiczny płyn, z tym, że płyn w środkowej kuli jest czystszy. Borexino wypełnione jest siecią 2200 czujników, które rejestrują rozbłyski światła (fotony) powstające, gdy neutrino zderzy się z elektronem w płynie organicznym. Zbudowanie tak skomplikowanego urządzenia badawczego okazało się konieczne. Obserwacje wysokoenergetycznych neutrino wydawały się potwierdzać obowiązujące teorie, jednak nie dawały ostatecznego dowodu. Do jego uzyskanie konieczne było schwytanie niskoenergetycznego neutrino. O tym, jak trudnej sztuki dokonano może świadczyć chociażby fakt, że w każdej sekundzie przez ciało każdego mieszkańca Ziemi przenika około 100 bilionów neutrino nie czyniąc nam żadnej szkody.
×
×
  • Dodaj nową pozycję...