Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' tryt'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. W brytyjskim tokamaku Joint European Torus (JET) wkrótce rozpoczną się testy mieszanki paliwowej, która w przyszłości może zasilać ITER – największy na świecie eksperymentalny reaktor fuzyjny. Fuzja jądrowa to proces, który zachodzi w Słońcu. Jej opanowanie może zapewnić ludzkości niemal niewyczerpane źródło czystej energii. JET jest 10-krotnie mniejszy od ITER. W grudniu rozpoczęto tam eksperymenty z trytem. Tym samym po raz pierwszy od 1997 roku ludzkość prowadzi reakcje fuzji jądrowej ze znaczącymi ilościami tego pierwiastka. W czerwcu bieżącego roku rozpoczną się testy, podczas których w reakcji będą brały udział równe ilości trytu i deuteru. Dokładnie tak samo ma działać ITER, którego zadaniem będzie doprowadzenie do sytuacji, w której z fuzji jądrowej uzyskamy więcej energii niż w nią włożyliśmy. Dotychczas ludzkości nie udało się uzyskać energetycznego zysku netto z fuzji. W końcu, po latach przygotowań, udało nam się dojść do punktu, w którym możemy rozpocząć testy. Jesteśmy gotowi, mówi Joelle Mailloux, która kieruje programem naukowym w JET. Eksperymenty w JET pomogą naukowcom przewidzieć, w jaki sposób będzie zachowywała się plazma w ITER i odpowiednio dobrać parametry pracy wielkiego tokamaka. To najbliższa symulacja warunków w ITER, jaką w tej chwili możemy wykonać, wyjaśnia Tim Luce, główny naukowiec eksperymentu ITER. Testy, do których przygotowuje się JET, to kulminacja 2 dekad badań. ITER ma ruszyć w 2025 roku. Wówczas będą w nim przeprowadzane niskoenergetyczne reakcje z udziałem wodoru. Jednak od roku 2035 ma używać wyłącznie trytu i deuteru w proporcjach 1:1. Zarówno ITER jak i JET wykorzystują bardzo silne pole magnetyczne do utrzymania i ściśnięcia plazmy. Temperatura w JET może osiągnąć 100 milionów stopni Celsjusza. To wielokrotnie więcej niż w jądrze Słońca. Ostatnie eksperymenty, jakie prowadziła ludzkość z fuzją trytu były przeprowadzone właśnie w JET. Celem było ustanowienie rekordowego stosunku energii uzyskanej do energii włożonej. JET ustanowił wówczas do dzisiaj obowiązujący rekord Q=0,67. Celem tegorocznego eksperymentu jest uzyskanie podobnego wyniku i utrzymanie reakcji przez co najmniej 5 sekund. W ten sposób naukowcy chcą zdobyć dane dotyczące zachowania się plazmy przez dłuższy czas. Praca z trytem stawia przed specjalistami nowe wyzwania. Specjaliści z JET przez ostatnie 2 lata dostosowywali swoje urządzenia i przygotowywali je do pracy z tym radioaktywnym pierwiastkiem. Tryt ma bardzo krótki czas półrozpadu, w naturze występuje w ilościach śladowych, a powstaje jako półprodukt pracy elektrowni jądrowych. Całą światowa produkcja trytu to zaledwie 20 kilogramów. Po uruchomieniu eksperymentów z trytem, wnętrze JET stanie się radioaktywne i ludzie nie będą mieli do niego wstępu przez 18 miesięcy. Musieliśmy zmienić nasze procedury. Wszystko musi zadziałać za pierwszym razem. Nie będziemy mogli tam wejść i czegoś poprawić, wyjaśnia  Ian Chapman. Podczas badań JET wykorzysta mniej niż 60 gramów trytu, który będzie poddawany recyklingowi. Paliwo zawierające ułamek grama trytu będzie wstrzykiwane do tokamaka 3 do 14 razy na dobę. Każde takie wstrzyknięcie będzie stanowiło osobny eksperyment o nieco innych parametrach i z każdego naukowcy uzyskają od 3 do 10 sekund użytecznych danych. W ten sposób chcemy zweryfikować naszą obecną wiedzę i wykorzystać ją do dalszych prac, mówi Mailloux. Podczas części eksperymentów będzie używany tylko tryt, a podczas innych tryt i deuter w równych proporcjach. Dzięki obu rodzajom badań naukowcy chcą zrozumieć, jak na zachowanie się plazmy wpłynie większa masa trytu. Pierwiastek ten ma w jądrze dwa neutrony, tymczasem deuter ma jeden, a wodór – żadnego. Badania takie pozwolą przewidzieć, co w przyszłości będzie się działo w ITER. Masa izotopów wpływa bowiem na pole magnetyczne czy temperaturę plazmy. "Musimy zbadać co się tam dzieje i dlaczego się dzieje", wyjaśnia Anna White, fizyk plazmy z MIT. Inną ważną różnicą w porównaniu z ostatnimi eksperymentami z trytem z roku 1997 jest fakt, że obecnie wnętrze JET zostało wyłożone takimi materiałami osłonowymi, co wnętrze ITER. Jako, że materiały te mogą oddawać energię do plazmy i ją chłodzić, niezwykle istotnym jest zrozumienie, w jaki sposób wpływają one na fuzję. Nie należy też zapominać o jeszcze jednym bardzo ważnym czynniku. Ludziach. Ostatnie eksperymenty z trytem były prowadzone przed 24 laty. Nowe pokolenie fizyków zupełnie nie ma doświadczenia z tym pierwiastkiem. Teraz będą mieli okazję uczyć się od bardziej doświadczonych kolegów. « powrót do artykułu
  2. Jesteśmy coraz bliżej odkrycia masy neutrino. Przez długi czas sądzono, że neutrino ma zerową masę spoczynkową, jednak obecnie wiadomo, że jednak posiada masę. Najnowsze badania wykazały, że masa ta jest nie większa niż 1/500 000 masy elektronu. Udało się bowiem wyznaczyć górną granicę masy neutrino. Wynosi ona 1,1 elektronowolta. To dwukrotnie mniej niż dotychczasowa górna granica masy. We wszechświecie są miliardy razy więcej neutrino niż atomów. Zatem nawet jeśli masa każdego z nich jest niewielka, to w sumie mogą stanowić znaczną część masy wszechświata, mówi Christian Weinheimer z Uniwersytetu w Munster. Międzynarodowy zespół naukowców analizował rozpad trytu. W jego trakcie dochodzi do jednoczesnej emisji elektronu i neutrino. Mierząc energię emitowanych elektronów naukowcy byli w stanie bardziej precyzyjnie niż dotychczas określić masę neutrino. Jesteśmy dumni i szczęśliwi, stwierdza Weinheimer. Brał on udział w pracach międzynarodowej grupy naukowców, którzy stali za eksperymentem Karlsruhe Tritium Neutrino. Na potrzeby badań powstał specjalny spektrometr o wysokości 24 metrów. To bardzo, bardzo ekscytujące. To najbardziej precyzyjny pomiar ze wszystkich, cieszy się Melissa Uchida z University of Cambridge. Jej zdaniem istnieje szansa, że w ciągu kilku najbliższych lat poznamy masę neutrino. W końcu będziemy w stanie ułożyć puzzle dotyczące powstania wszechświata, dodaje uczona. « powrót do artykułu
×
×
  • Create New...