Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' tokamak'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 8 results

  1. Naukowcy z Politechniki Łódzkiej będą prowadzić badania nad systemem monitorującym wytwarzanie plazmy termojądrowej. Jak podkreślono w komunikacie prasowym uczelni, finansowanie przyznała [doktorantowi Bartłomiejowi Jabłońskiemu] europejska organizacja EUROfusion w konkursie na projekty dotyczące rozwiązania problemów naukowych związanych z fuzją termojądrową. Opiekunami grantu są dr hab. inż. Dariusz Makowski i dr hab. inż. Wojciech Tylman. Projekt będzie realizowany we współpracy z dr. Marcinem Jakubowskim z Instytutu Fizyki Plazmy im. Maxa Plancka w Greifswaldzie, dr. Raphaelem Mitteau z centrum badań jądrowych CEA i specjalistami z International Thermonuclear Experimental Reactor (ITER). W ramach trzyletniego grantu prowadzone będą badania naukowe nad nowymi metodami przetwarzania obrazów w czasie rzeczywistym oraz wykorzystaniem uczenia maszynowego i sieci neuronowych do ochrony i sterowania urządzeniami do wytwarzania plazmy termojądrowej. Głównym celem projektu jest opracowanie metodyki oraz algorytmów sterowania plazmą, jak również zabezpieczenia maszyny, wykorzystując obrazy z kamer termowizyjnych dla wyładowań plazmowych dłuższych niż 30 minut – wyjaśnia dr hab. inż. Dariusz Makowski. Urządzenia, które powstaną dzięki polskim naukowcom zostaną wykorzystane zarówno w niemieckim stellaratorze Wendelstein 7-X, jak we francuskim tokamaku WEST. Wyniki prac urządzeń do obrazowania zachowania plazmy są niezwykle ważne dla rozwoju przyszłych technologii fuzyjnych. Specjaliści mają nadzieję, że dzięki temu lepiej będą rozumieli plazmę i opracują doskonalsze metody jest utrzymania i kontroli. Reakcja termojądrowa (fuzja jądrowa) to zjawisko polegające na łączeniu się lżejszych jąder w jedno cięższe. W jej wyniku powstaje duża ilość energii. Gdyby udało się ją opanować, mielibyśmy do dyspozycji praktycznie niewyczerpane źródło taniej i bezpiecznej energii. Fuzja ma więc wiele zalet w porównaniu z reakcją rozszczepienia jąder cięższych atomów na lżejsze, którą wykorzystujemy w elektrowniach atomowych. Problem w tym, że wciąż nie potrafimy opanować reakcji termojądrowej i uzyskać z niej nadmiarowej energii, gotowej do komercyjnego wykorzystania System monitorujący plazmę będzie zatem przydatny dla rozwoju obu konkurencyjnych technologii reaktorów jądrowych – tokamaka i stellaratora. Bardziej znany z nich jest tokamak, którego koncepcja została stworzona w latach 50. przez radzieckich uczonych. Główna komora tokamaka ma kształt torusa, w którym za pomocą elektromagnesów tworzony jest pierścień plazmy. Przez ostatnich kilkadziesiąt lat świat kładł duży nacisk na rozwój tokamaków. Najbardziej znanym urządzeniem tego typu jest powstający we Francji międzynarodowy ITER. A wspominany tutaj WEST, a konkretnie jego wcześniejsza wersja Tore Supra, to światowy rekordzista pod względem utrzymania plazmy w tokamaku (6 minut 30 sekund). Jedną z alternatyw dla tokamaków są stellaratory. Charakteryzuje je znacznie bardziej skomplikowana budowa, przez co nie wiązano z nimi tak wielkich nadziei jak z tokamakami. Mają jednak liczne zalety, których brak tokamakom. Przykładem stellaratora jest wspomniany tutaj Wendelstein 7-X (W7-X), w który zainwestowała też Polska. Ostatnio informowaliśmy o badaniach, które mogą spowodować, że stellaratory wyjdą z cienia tokamaków i będziemy dysponowali co najmniej dwie rzeczywiście konkurencyjnymi rozwiązaniami reaktora do fuzji jądrowej. « powrót do artykułu
  2. Przed dwoma dniami odbyła się oficjalna uroczystość, podczas której zainaugurowano montaż reaktora termojądrowego, tokamaka ITER. Dziesięć lat po rozpoczęciu budowy projekt ITER wszedł w decydującą fazę. W miesiącach poprzedzających niedawną uroczystość do Francji dostarczono główne elementy tokamaka, w tym cewki toroidalne – jedna Europy i dwie z Japonii. Kilka dni przed uroczystością z Korei dotarła pierwsza część komory próżniowej. Rozpoczynamy montaż ITER. To historyczny moment. Mija sto lat od chwili, gdy naukowcy zrozumieli, że Słońce i gwiazdy są zasilane przez fuzję jądrową, i sześć dekad od czasu, gdy w Związku Radzieckim zbudowano pierwszy tokamak. [...] Musimy jak najszybciej zastąpić paliwa kopalne [...] Posuwamy się do przodu tak szybko, jak to możliwe, mówił dyrektor generalny ITER, Bernard Bigot. ITER ma być urządzeniem badawczym. Największym dotychczas zbudowanym tokamakiem i pierwszym, w którym uzyskany zostanie dodatni bilans energetyczny. Naukowcy od kilkudziesięciu lat pracują nad fuzją termojądrową, ale dopiero niedawno udało się uzyskać z takiej reakcji więcej energii niż w nią włożono. Dokonali tego w 2013 roku specjaliści z amerykańskiego National Ignition Facility. Z fuzją termojądrową wiązane są olbrzymie nadzieje na uzyskanie źródła naprawdę czystej bezpiecznej energii. Różnica pomiędzy reaktorem fuzyjnym, a standardowym reaktorem atomowym polega na tym, że w reaktorze atomowym energię uzyskuje się z rozpadu ciężkich izotopów radioaktywnych. Zaś w elektrowni termojądrowej ma ona powstawać w wyniku łączenia się lekkich izotopów wodoru. Proces ten, podobny do procesów zachodzących w gwiazdach, niesie ze sobą dwie olbrzymie korzyści. Po pierwsze w reaktorze termojądrowym nie może zajść niekontrolowana reakcja łańcuchowa, podobna do tej, jaka zaszła w Czarnobylu. Po drugie, nie powstają tam odpady radioaktywne, które trzeba by przez tysiące lat przechowywać w specjalnych bezpiecznych warunkach. Fuzja jądrowa ma olbrzymi potencjał. Z 1 grama wodoru i trytu można teoretycznie uzyskać tyle energii, co ze spalenia 80 000 ton ropy naftowej. Deuter i tryt są łatwo dostępnymi, powszechnie występującymi na Ziemi pierwiastkami. ITAR zaś posłuży to badań i stworzenia technologii, które pozwolą na zbudowanie komercyjnych elektrowni fuzyjnych. Obecnie przewiduje się, że pierwszy zapłon ITER nastąpi w 2025 roku, a 10 lat później rozpoczną się regularne prace z kontrolowaną syntezą termojądrową. Obecnie przewiduje się, że pierwsze komercyjne elektrownie termojądrowe powstaną w latach 50. obecnego wieku. Uczestnikami projektu ITER są Unia Europejska, Chiny, Indie, Japonia, Korea Południowa, Rosja i Stany Zjednoczone. UE pokrywa 45,4% kosztów projektu, a pozostałe koszty są po równo (po 9,1%) podzielone pomiędzy resztę członków. « powrót do artykułu
  3. Stellaratory, skomplikowane urządzenia do wytwarzania plazmy i przeprowadzania kontrolowanej reakcji termojądrowej, zawsze pozostawały w cieniu tokamaków. W stellaratorze plazma uzyskiwana jest w komorze o złożonym kształcie, przypominającym kilkukrotnie skręconą wstęgę Mobiusa, a potrzebne do pracy cewki muszą mieć najróżniejsze kształty dostosowane do kształtu komory. To czyni stellaratory bardzo złożonymi urządzeniami, ale ich olbrzymią zaletą jest fakt, że – inaczej niż w tokamakach – plazma stabilizuje się sama. Trudności w wyprodukowaniu odpowiednich cewek magnetycznych oraz utrata temperatury spowodowana złożonym kształtem komory stellaratora powodowały, że więcej słyszeliśmy i pisaliśmy o tokamakach. Jednak to się może zmienić. Naukowcy z niemieckiego Instytutu Fizyki Plazmy im. Maxa Plancka (IPP) we współpracy z naukowcami z amerykańskiego Princeton Plasma Physics Laboratory (PPPL) wykazali właśnie, że w największym na świecie i najnowocześniejszym stellaratorze Wendelstein 7-X (W7-X) w niemieckim Greifswald uzyskano temperaturę dwukrotnie wyższą niż temperatura jądra Słońca. Udało się to dzięki instrumentowi diagnostycznemu XICS, który jest wspólnym dziełem Novimira Pablanta z PPPL i Andreasa Langenberga z IPP. Instrument ten wykazał, że udało się znacznie zmniejszyć utratę ciepła w stellaratorze. Dotychczas klasyczne stellaratory traciły go znacznie więcej niż tokamaki. Słabą stroną stellaratorów jest wchodzenie cząstek w tryb transportu neoklasycznego, który przejawia się m.in. wypchnięciem zanieczyszczeń do centrum plazmy i jej szybkim wychłodzeniem [...]. W urządzeniach typu stellarator neoklasyczne uwięzienie cząstek jest dużo większe niż w tokamakach. [...] Do zalet tokamaka można przede wszystkim zaliczyć jego prostą budowę (geometrię) oraz zdecydowanie niższy transport neoklasyczny niż w stellaratorze, stwierdza Natalia Wendler w rozprawie doktorskiej pt. Badania plazmy przy użyciu systemu diagnostycznego PHA na stellaratorze Wendelstein 7-X. W najnowszym raporcie opublikowanym na łamach Nature eksperci informują, że udało im się zmniejszyć transport neoklasyczny za pomocą odpowiednio ukształtowanych magnesów. To olbrzymi sukces, który daje nadzieję, że w końcu uda się opanować fuzję jądrową. Reakcja termojądrowa (fuzja jądrowa) to zjawisko polegające na łączeniu się lżejszych jąder w jedno cięższe. W jej wyniku powstaje duża ilość energii. Gdyby udało się ją opanować, mielibyśmy do dyspozycji praktycznie niewyczerpane źródło taniej i bezpiecznej energii. Fuzja ma więc wiele zalet w porównaniu z reakcją rozszczepienia jąder cięższych atomów na lżejsze, którą wykorzystujemy w elektrowniach atomowych. Problem w tym, że wciąż nie potrafimy opanować reakcji termojądrowej i uzyskać z niej nadmiarowej energii, gotowej do komercyjnego wykorzystania Stellarator to jedno z pierwszych urządzeń fuzyjnych. Wymyślił je w latach 50. XX wieku fizyk Lyman Spitzer, późniejszy założyciel Princeton Plasma Physics Laboratory. Swoją drogą Spitzer był też pomysłodawcą budowy teleskopów kosmicznych. Jak już wspomnieliśmy, stellaratory bardziej tracą ciepło niż tokamaki, ale mają też liczne zalety. Swoją przewagę opierają na możliwości pracy ciągłej, niemalże braku niestabilności typu MHD oraz gwałtownych wygaśnięć reakcji związanych z przekraczaniem limitu Greenwalda, którego się nie obserwuje w tej konstrukcji. To wszystko sprawia, że stellaratory mogłyby być o wiele bardziej  atrakcyjne  dla przyszłej elektrowni termojądrowej, gdyby udało się tylko poprawić neoklasyczne utrzymanie naładowanych cząstek. Mimo to przez ostatnie 60 lat zdecydowanie większy nacisk był kierowany na badanie tokamaków, co zaowocowało znaczącym postępem w tej dziedzinie, czytamy w pracy Natalii Wendler. Teraz w uruchomionym przed kilkoma laty stellaratorze W7-X udało się wykazać, że urządzenia te nie muszą tracić tak dużo ciepła. Badania przeprowadzone za pomocą instrumentu XICS wykazały bowiem, że osiągnięto tam tak wysoką temperaturę jonów, że nie byłoby to możliwe bez znacznej redukcji transportu neoklasycznego. Pomiary potwierdzono za pomocą nieco mniej dokładnego narzędzia CXRS. Wyniki tych badań wskazują, że stellaratory oparte na architekturze W7-X mogą być kluczowymi reaktorami, za pomocą których uda nam się opanować fuzję jądrową. Jednak redukcja transportu neoklasycznego nie jest jedynym problemem, z którym musimy się zmierzyć. Jest jeszcze cały szereg zagadnień, w tym poradzenie sobie z pracą ciągłą i zmniejszenie transportu turbulentnego, mówi Pablant. Transport turbulentny powoduje wiry i fale przechodzące przez plazmę, które są drugą najważniejszą przyczyną utraty ciepła. W przyszłym roku W7-X znowu ruszy pełną parą. W stellaratorze przez ostatnie trzy lata montowano nowy system chłodzenia, który umożliwi dłuższą pracę. « powrót do artykułu
  4. Jednym z największych problemów, z jakim stykają się specjaliści pracujący przy fuzji jądrowej, są swobodnie przyspieszające elektrony, które w końcu osiągają prędkości bliskie prędkości światła czyli stają się cząstkami relatywistycznymi. Tak szybkie elektrony uszkadzają tokamak, w których przeprowadzana jest reakcja termojądrowa. Naukowcy z Princeton Plasma Physics Laboratory (PPPL) wykorzystali nowatorskie narzędzia diagnostyczne, dzięki którym są w stanie zarejestrować narodziny takich elektronów oraz liniowy i wykładniczy wzrost ich energii. Musimy być w stanie zarejestrować te elektrony przy ich początkowym poziomie energii, a nie dopiero wówczas, gdy mają maksymalną energię i przemieszczają się niemal z prędkością światła, wyjaśnia fizyk Luis Delgado-Aparicio, który stał na czele zespołu badawczego pracującego przy Madison Symmetric Torus (MST) na University of Wisconsin-Madison. Następnym krokiem będzie zoptymalizowanie sposobów na powstrzymanie tych elektronów, zanim ich liczba zacznie się lawinowo zwiększać, dodaje uczony. Reakcja termojądrowa czyli fuzja jądrowa, zachodzi m.in. w gwiazdach. Gdyby udało się ją opanować, mielibyśmy dostęp do niemal niewyczerpanego źródła czystej i bezpiecznej energii. Zanim jednak to się stanie, konieczne jest pokonanie kilku poważnych przeszkód. Dlatego też PPPL we współpracy z University of Wisconsin zainstalowało w MST specjalną kamerę, która już wcześniej sprawdziła się w tokamaku Alcator C-Mod w Massachusetts Institute of Technology. Kamera ta rejestruje nie tylko właściwości plazmy, ale również dystrybucję energii w czasie i przestrzeni. To pozwala uczonym obserwować m.in. wspomniane elektrony, które powstają przy niskich energiach. Badania nad superszybkimi elektronami prowadzone są w MST, gdyż urządzenie to skonstruowane jest tak, że elektrony te nie zagrażają jego pracy. Możliwości, jakimi dysponuje Luis, odnośnie zlokalizowania miejsca narodzin i początkowego liniowego wzrostu energii tych elektronów, a następnie ich śledzenia, są fascynujące. Następnym etapem będzie porównanie uzyskanych wyników z modelami komputerowymi. To pozwoli nam na lepsze zrozumienie tego zjawiska i może prowadzić w przyszłości do opracowania metod zapobiegających tworzeniu się takich elektronów, mówi profesor Carey Forest z University of Wisconsin. Chciałbym zebrać wszystkie doświadczenia, jakich nabyliśmy podczas pracy z MST i zastosować je w dużym tokamaku, stwierdza Delgado-Aparicio. Niewykluczone, że już wkrótce dwaj doktorzy, których mentorem jest Delgado-Aparicio, będą mogli wykorzystać te doświadczenia w Tungsten Einvironment in Steady-state Tokamak (WEST) we Francji. Chcę razem z nimi wykorzystać kamery do rejestrowania wielu różnych rzeczy, takich jak transport cząstek, ogrzewanie falami radiowymi, badanie szybkich elektronów. Chcemy dowiedzieć się, jak spowodować, by elektrony te stały się mniej szkodliwe. A to może być bardzo bezpieczny sposób pracy z nimi. Z Delgado-Aparicio współpracuje kilkudziesięciu specjalistów, w tym naukowcy Uniwersytetu Tokijskiego, japońskich Narodowych Instytutów Badań i Technologii Kwantowych i Radiologicznych czy eksperci ze szwajcarskiej firmy Dectris, która wytwarza różnego typu czujniki. « powrót do artykułu
  5. Naukowcy potwierdzili, że bor, składnik domowych środków czystości, pomaga w zwiększeniu wydajności reaktorów fuzyjnych. Specjaliści z Princeton Plasma Physics Laboratory (PPPL) przeprowadzili eksperymenty, w czasie których wykazali, że pokrycie wewnętrznych elementów tokamaka borem poprawia wydajność reakcji. Nasze eksperymenty dokładniej pokazują, jak to działa. Pozwolą nam one ocenić, czy kontrolowane wstrzykiwanie proszku z boru może być wykorzystane w przyszłości do pomocy w pracy reaktorów fuzyjnych, mówi fizyk Alessandro Bortolon, główny autor artykułu w Nuclear Fusion. Fuzja jądrowa wykorzystuje procesy podobne do tych, jakie zachodzą w Słońcu. Lżejsze pierwiastki łączą się w cięższe. W ten sposób powstaje niemal niewyczerpane źródło czystej i bezpiecznej energii. Naukowcy od dziesięcioleci próbują opanować fuzję. Najnowsze eksperymenty wykazały, że wstrzykiwanie boru pozwala na łatwiejsze uzyskanie w plazmy o odpowiednich parametrach w tokamakach, których wewnętrzne elementy pokryte są lekkimi pierwiastkami, jak węgiel. Autorzy obecnych badań bazowali na eksperymentach prowadzonych wcześniej w Axially Symmetric Divertor Experiment-Upgrade (ASDEX-U) należącym do Instytutu Fizyki Plazmy im. Maxa Plancka w Niemczech. Wówczas wykazano, że dzięki wstrzykiwaniu boru możliwe jest uzyskanie wysokiej jakości plazmy w tokamaku pokrytym wolframem. Eksperymenty dla tokamaka pokrytego węglem są ważne z dwóch powodów. Po pierwsze, wiele tokamaków korzysta z tego pierwiastka. Po drugie – pokazuje to, że wstrzykiwanie boru może być przydatne w różnego rodzaju tokamakach. Najnowsze eksperymenty uzupełniły też lukę w wiedzy dotyczącej sposobu osadzania się boru. Intuicja podpowiada, że gdy sproszkowany bor opada na plazmę, rozpuszcza się w niej i gdzieś osadza. Dotychczas jednak nikt nie próbował nawet potwierdzić istnienia w plazmie warstwy boru. Nie było na ten temat żadnych informacji. Przeprowadzone przez nas badania są pierwszymi, podczas których bezpośrednio wykazano i zmierzono to zjawisko, dodaje Bortolon. Okazuje się, że warstwa boru zapobiega zanieczyszczeniu plazmy przez materiał z samego tokamaka. Materiał taki może rozrzedzić plazmę i ją zdestabilizować. Im zaś plazma bardziej czyta, tym bardziej stabilna i tokamak może dłużej działać. Technika wstrzykiwania boru może uzupełniać lub nawet zastąpić wykorzystywaną obecnie technikę dostarczania boru do tokamaka. W chwili obecnej uzupełnienie tokamaka o bor wymaga wyłączenia go nawet na kilka dni, a wykorzystuje się w niej toksyczne gazy. Wstrzykiwanie boru eliminuje te problemy. Jeśli wykorzystujesz technikę wstrzykiwania sproszkowanego boru, nie musisz wszystkiego przerywać i wyłączać tokamaka. Nie musisz też przejmować się pracą z toksycznym gazem. Nowa technika będzie niezwykle przydatna podczas przyszłej codziennej pracy tokamaków, dodaje Bortolon. « powrót do artykułu
  6. W brytyjskim tokamaku Joint European Torus (JET) wkrótce rozpoczną się testy mieszanki paliwowej, która w przyszłości może zasilać ITER – największy na świecie eksperymentalny reaktor fuzyjny. Fuzja jądrowa to proces, który zachodzi w Słońcu. Jej opanowanie może zapewnić ludzkości niemal niewyczerpane źródło czystej energii. JET jest 10-krotnie mniejszy od ITER. W grudniu rozpoczęto tam eksperymenty z trytem. Tym samym po raz pierwszy od 1997 roku ludzkość prowadzi reakcje fuzji jądrowej ze znaczącymi ilościami tego pierwiastka. W czerwcu bieżącego roku rozpoczną się testy, podczas których w reakcji będą brały udział równe ilości trytu i deuteru. Dokładnie tak samo ma działać ITER, którego zadaniem będzie doprowadzenie do sytuacji, w której z fuzji jądrowej uzyskamy więcej energii niż w nią włożyliśmy. Dotychczas ludzkości nie udało się uzyskać energetycznego zysku netto z fuzji. W końcu, po latach przygotowań, udało nam się dojść do punktu, w którym możemy rozpocząć testy. Jesteśmy gotowi, mówi Joelle Mailloux, która kieruje programem naukowym w JET. Eksperymenty w JET pomogą naukowcom przewidzieć, w jaki sposób będzie zachowywała się plazma w ITER i odpowiednio dobrać parametry pracy wielkiego tokamaka. To najbliższa symulacja warunków w ITER, jaką w tej chwili możemy wykonać, wyjaśnia Tim Luce, główny naukowiec eksperymentu ITER. Testy, do których przygotowuje się JET, to kulminacja 2 dekad badań. ITER ma ruszyć w 2025 roku. Wówczas będą w nim przeprowadzane niskoenergetyczne reakcje z udziałem wodoru. Jednak od roku 2035 ma używać wyłącznie trytu i deuteru w proporcjach 1:1. Zarówno ITER jak i JET wykorzystują bardzo silne pole magnetyczne do utrzymania i ściśnięcia plazmy. Temperatura w JET może osiągnąć 100 milionów stopni Celsjusza. To wielokrotnie więcej niż w jądrze Słońca. Ostatnie eksperymenty, jakie prowadziła ludzkość z fuzją trytu były przeprowadzone właśnie w JET. Celem było ustanowienie rekordowego stosunku energii uzyskanej do energii włożonej. JET ustanowił wówczas do dzisiaj obowiązujący rekord Q=0,67. Celem tegorocznego eksperymentu jest uzyskanie podobnego wyniku i utrzymanie reakcji przez co najmniej 5 sekund. W ten sposób naukowcy chcą zdobyć dane dotyczące zachowania się plazmy przez dłuższy czas. Praca z trytem stawia przed specjalistami nowe wyzwania. Specjaliści z JET przez ostatnie 2 lata dostosowywali swoje urządzenia i przygotowywali je do pracy z tym radioaktywnym pierwiastkiem. Tryt ma bardzo krótki czas półrozpadu, w naturze występuje w ilościach śladowych, a powstaje jako półprodukt pracy elektrowni jądrowych. Całą światowa produkcja trytu to zaledwie 20 kilogramów. Po uruchomieniu eksperymentów z trytem, wnętrze JET stanie się radioaktywne i ludzie nie będą mieli do niego wstępu przez 18 miesięcy. Musieliśmy zmienić nasze procedury. Wszystko musi zadziałać za pierwszym razem. Nie będziemy mogli tam wejść i czegoś poprawić, wyjaśnia  Ian Chapman. Podczas badań JET wykorzysta mniej niż 60 gramów trytu, który będzie poddawany recyklingowi. Paliwo zawierające ułamek grama trytu będzie wstrzykiwane do tokamaka 3 do 14 razy na dobę. Każde takie wstrzyknięcie będzie stanowiło osobny eksperyment o nieco innych parametrach i z każdego naukowcy uzyskają od 3 do 10 sekund użytecznych danych. W ten sposób chcemy zweryfikować naszą obecną wiedzę i wykorzystać ją do dalszych prac, mówi Mailloux. Podczas części eksperymentów będzie używany tylko tryt, a podczas innych tryt i deuter w równych proporcjach. Dzięki obu rodzajom badań naukowcy chcą zrozumieć, jak na zachowanie się plazmy wpłynie większa masa trytu. Pierwiastek ten ma w jądrze dwa neutrony, tymczasem deuter ma jeden, a wodór – żadnego. Badania takie pozwolą przewidzieć, co w przyszłości będzie się działo w ITER. Masa izotopów wpływa bowiem na pole magnetyczne czy temperaturę plazmy. "Musimy zbadać co się tam dzieje i dlaczego się dzieje", wyjaśnia Anna White, fizyk plazmy z MIT. Inną ważną różnicą w porównaniu z ostatnimi eksperymentami z trytem z roku 1997 jest fakt, że obecnie wnętrze JET zostało wyłożone takimi materiałami osłonowymi, co wnętrze ITER. Jako, że materiały te mogą oddawać energię do plazmy i ją chłodzić, niezwykle istotnym jest zrozumienie, w jaki sposób wpływają one na fuzję. Nie należy też zapominać o jeszcze jednym bardzo ważnym czynniku. Ludziach. Ostatnie eksperymenty z trytem były prowadzone przed 24 laty. Nowe pokolenie fizyków zupełnie nie ma doświadczenia z tym pierwiastkiem. Teraz będą mieli okazję uczyć się od bardziej doświadczonych kolegów. « powrót do artykułu
  7. Koreańskie „sztuczne słońce” ustanowiło nowy rekord utrzymując przez 20 sekund plazmę o temperaturze jonów przekraczającej 100 milionów stopni Celsjusza. Tym samym specjaliści z Korea Superconducting Tokamak Advanced Research (KSTAR) we współpracy z kolegami z Uniwerystetu Narodowego w Seulu oraz amerykańskiego Columbia University dwukrotnie poprawili swój ubiegłoroczny rekord, kiedy to plazma o takiej temperaturze została utrzymana przez 8 sekund. W Korei dokonuje się więc szybki postęp. Dość wspomnieć, że pierwszą plazmę o temperaturze jonów 100 milionów stopni uzyskano w 2018 roku i wówczas utrzymano ją przez 1,5 sekundy. Obecnie istnieje kilka reaktorów fuzyjnych, w których możan uzyskać plazmę o temperaturze co najmniej 100 milionów stopni Celsjusza, jednak nikomu nie udało się utrzymać jej przez 10 sekund lub dłużej. Przed miesiącem dokonali tego Koreańczycy i Amerykanie pracujący przy KSTAR. "Technologie potrzebne do długotrwałego utrzymania plazmy o temperaturze 100 milionów stopni są kluczowymi technologiami potrzebnymi do produkcji energii z reakcji termojądrowej. Sukces KSTAR to ważny punkt zwrotny w staraniach o stworzenie technologii pozwalających na długie utrzymanie plazmy. To krytyczna częć komercyjnych reaktorów fuzyjnych przyszłości", mówi Si-Woo Yoon, dyrektor KSTAR Research Center. Koreańskie centrum współpracuje m.in. z ITER i prowadzi wiele badań związanych z energią termojądrową. Celem KSTAR jest opracowanie technologii, która do roku 2025 pozwoli na utrzymanie przez 300 sekund plazmy o temperaturze jonów ponad 100 milionów stopni Celsjusza.   « powrót do artykułu
  8. Chińskie konsorcjum zdobyło zamówienie na budowę TAC-1, głównego elementu tokamaka ITER. Wspomniane konsorcjum tworzą Instytut Fizyki Plazmy, Instytuty Hefei Nauk Fizycznych, Chińska Inżynieria Energetyki Jądrowej, China Nuclear Industry 23 Construction, Południowozachodni Instytut Fizyki oraz Framatom. Na jego czele stoi Luo Delong, dyrektor generalny Centrum Wykonawczego Chińskiego Międzynarodowego Programu Energii Fuzyjnej. ITER (International Thermonuclear Experimental Reactor Project) to jeden z najbardziej ambitnych projektów mających na celu stworzenie reaktora fuzyjnego. Jego głównym zadaniem jest budowa wielkiego tokamaka, w którym będą zachodziły procesy podobne do tych, jakie zachodzą na Słońcu. Ma być to szansa na stworzenie niewyczerpanego źródła czystej energii. W prace nad ITER zaangażowanych jest 35 krajów, a siedmiu członków tworzących ITER to Chiny, UE, Indie, Japonia, Korea Południowa, Rosja i USA. TAC-1, na wykonanie którego kontrakt zdobyli Chińczycy to główna część tokamaka. Składa się ona z siedmiu innych części, w tym systemów magnesów, układów diagnostycznych czy osłony. Chiński Instytut Fizyki Plazmy (ASIPP) posiada już własny niewielki tokamak, który służy badaniom nad fuzją jądrową. Doświadczenie zdobyte przez chińskich naukowców i inżynierów zapewniło im przewagę nad konkurencją i było jedym z czynników, które zdecydowały o przyznaniu im kontraktu na TAC-1. Przedstawiciele ASIPP przyznają, że to największy kontrakt w historii ich instytucji. Wcześniej prowadzili prace m.in. w rosyjskim tokamaku NICA (Nuclotron-based Ion Collider Facility), niemieckim ASDEX Upgrade (Axially Symmetric Divertor Experimebnt) oraz francuskim WEST (W Environment in Steady-state Tokamak). « powrót do artykułu
×
×
  • Create New...