Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' reakcja termojądrowa' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 5 wyników

  1. Zespół z Lawrence Livermore National Laboratory po raz drugi uzyskał w wyniku fuzji jądrowej (reakcji termojądrowej) więcej energii niż zostało wprowadzone do kapsułki paliwowej. Pierwszy raz o takim wydarzeniu usłyszeliśmy w grudniu ubiegłego roku. Teraz energii uzyskano więcej niż wówczas. Szczegóły poznamy podczas zbliżających się konferencji naukowych oraz z opublikowanych artykułów w recenzowanych magazynach. Musimy jednak pamiętać, że mamy tutaj do czynienia z przełomem naukowym, jednak do wykorzystania energii z fuzji jądrowej droga jeszcze daleka. Obecnie potrafimy uzyskiwać energię w elektrowniach atomowych z rozpadu cięższych atomów na lżejsze. Elektrownie atomowe to ekologiczne i stabilne źródło energii, jednak wytwarzają wysoce radioaktywne odpady, które pozostają radioaktywne przez setki i tysiące lat, ponadto opierają się na ograniczonych zasobach paliwa. Wedle różnych szacunków paliwa do nich wystarczy na od 90 do ponad 130 lat. Fuzja jądrowa pozbawiona jest tych wad. Polega ona na łączeniu dwóch izotopów wodoru – zwykle deuteru i trytu – w cięższy hel. Powstają przy tym co prawda odpady promieniotwórcze, ale ich promieniotwórczość jest stosunkowo niska i przestają one sprawiać problem w ciągu kilkudziesięciu lat. Ponadto dysponujemy praktycznie nieograniczonymi zasobami wodoru. Dlatego też od dziesiątków lat naukowcy pracują nad opanowaniem fuzji jądrowej i uzyskaniu z niej zysku energetycznego netto. Dotychczas się to nie udało. W grudniu ubiegłego roku naukowcy z National Ignition Facility poinfomrowali o uzyskaniu z fuzji jądrowej większej ilości energii niż została wprowadzona do kapsułki z paliwem w celu rozpoczęcia reakcji. Było to ważne wydarzenie z naukowego punktu widzenia. Jednak nie z praktycznego. Ilość energii potrzebna do przeprowadzenia eksperymentu była bowiem co najmniej 100-krotnie większa, niż ilość energii uzyskanej. Teraz ten sam zespół uzyskał więcej energii niż w grudniu. « powrót do artykułu
  2. Zaledwie kilka tygodni po tym, jak National Ignition Facility doniosło o przełomowym uzyskaniu w reakcji termojądrowej większej ilości energii niż wprowadzono jej do paliwa, największy projekt energii fuzyjnej – ITER – informuje o możliwym wieloletnim opóźnieniu. International Thermonuclear Experimental Reactor (ITER) to międzynarodowy projekt, w ramach którego na południu Francji powstaje największy z dotychczas zbudowanych reaktorów termojądrowych. Ma to być reaktor eksperymentalny, który dostarczy około 10-krotnie więcej energii niż zaabsorbowana przez paliwo. Dla przypomnienia, NIF dostarczył jej 1,5 raza więcej. Budowa ITER rozpoczęła się w 2013 roku, a w roku 2020 rozpoczęto montaż jego reaktora, tokamaka. Pierwsza plazma miała w nim powstać w 2025 roku. Jednak Pietro Barabaschi, który od września jest dyrektorem projektu, poinformował dziennikarzy, że projekt będzie opóźniony. Zdaniem Barabaschiego, rozpoczęcie pracy reaktora w 2025 roku i tak było nierealne, a teraz pojawiły się dwa poważne problemy. Pierwszy z nich, to niewłaściwe rozmiary połączeń elementów, które należy zespawać, by uzyskać komorę reaktora. Problem drugi to ślady korozji na osłonie termicznej. Usunięcie tych problemów "nie potrwa tygodnie, ale miesiące, a nawet lata", stwierdził menedżer. Do końca bieżącego roku poznamy nowy termin zakończenia budowy reaktora. Barabaschi pozostaje jednak optymistą i ma nadzieję, że opóźnienia uda się nadrobić i w roku 2035 reaktor będzie – jak się obecnie planuje – pracował z pełną mocą. Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy. Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Jest ona niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów. Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. W końcu, nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. « powrót do artykułu
  3. Większość przedsiębiorstw działających na rynku energii fuzyjnej przewiduje, że pierwszy prąd z elektrowni termojądrowych trafi do sieci już w latach 30. obecnego stulecia. Tak wynika z pierwszego raportu na temat światowego stanu energetyki fuzyjnej. Został on opublikowany przez Fusion Industry Association (FIA) oraz UK Atomic Energy Authority (UKAEA). Reaktory fuzyjne wytwarzają energię metodą fuzji jądrowej, w czasie której lżejsze pierwiastki łączą się w cięższe. Taki proces zachodzi na Słońcu. Fuzja to pod wieloma względami najdoskonalsze źródło czystej energii. Ilość energii, jaką może dostarczyć zupełnie zmieni reguły gry. Paliwo do fuzji jądrowej można uzyskać z wody, a Ziemia jest pełna wody. To niemal niewyczerpane źródło energii. Musimy tylko dowiedzieć się, jak go używać, mówiła niedawno profesor Maria Zuber, wiceprezydent MIT ds. badawczych. Informowaliśmy wówczas o przełomie dokonanym na MIT i możliwości pojawienia się za 4 lata reaktora, który wytworzy energię netto. Obecnie na całym świecie istnieje co najmniej 35 firm działających na rynku fuzji jądrowej. Większość z nich to przedsiębiorstwa z USA i Europy. Dwanaście z tych 35 firm zadeklarowało, że dopiero rozpoczyna działalność lub też woli nie ujawniać swojego istnienia, zatem nie zostały uwzględnione w raporcie. Z pozostałych 23 firm kolejny tuzin działa nie dłużej niż 5 lat. Wśród 23 uwzględnionych w raporcie firm w USA działa 13, a w Europie 7, czego 5 w Wielkiej Brytanii. Z raportu The Global Fusion Industry in 2021 dowidujemy się, że prywatne przedsiębiorstwa zajmujące się fuzją termojądrową otrzymały od lat 90. finansowanie w wysokości ponad 1 miliarda 872 milionów USD, z czego 1,786 miliarda pochodziło ze źródeł prywatnych, a 85 milionów ze dotacji rządowych. W przedsiębiorstwa te inwestują m.in. Bezos Expeditions, Breakthrough Energy Ventures, Capricorn Investment Group, Chevron Technology Ventures, Google, Eni, Wellcome Trust czy Oxford Sciences Innovation. Nie każde z badanych przedsiębiorstw przyznało, jakie finansowanie otrzymało. Informacji takiej udzieliło 18 firm. Najwięcej pieniędzy, bo aż 85% całego finansowania, trafiło do 4 największych graczy na tym rynku. Są to Commonwealth Fusion Systems (USA, powstało w 2018 r.), General Fusion (Kanada, 2002 r.), , TAE Technologies (USA, 1998 r.) oraz Tokamak Energy (Wielka Brytania, 2009 r.). Głównym celem firm pracujących nad fuzją jądrową jest produkcja energii elektrycznej, jednak niemal połowa takich przedsiębiorstw planuje też wykorzystanie tej technologii jako napędu pojazdów kosmicznych, napędu statków i okrętów, pozyskiwania wodoru i dostarczania ciepła na potrzeby przemysłu. Przedsiębiorstwa z rynku fuzyjnego zatrudniają przede wszystkim inżynierów, którzy stanowią 51% ich załóg. Kolejnych 26% pracowników to naukowcy. Najpopularniejszymi rozwijanymi technologiami są magnetyczne uwięzienie plazmy, nad którym pracuje 13 z 23 ankietowanych przedsiębiorstw oraz magnetyczno-inercyjne uwięzienie plazmy (5 przedsiębiorstw). Najbardziej interesująca zaś była odpowiedź na pytanie, kiedy po raz pierwszy, gdzieś na świecie do sieci trafi prąd z elektrowni termojądrowej. Aż 17 przedsiębiorstw odpowiedziało, że stanie się to w przyszłej dekadzie. Z kolei 11 uważa, że w przyszłej dekadzie fuzja zostanie po raz pierwszy wykorzystana w roli napędu w przestrzeni kosmicznej. Największym i najbardziej znanym projektem związanym z fuzją jądrową jest budowany we Francji międzynarodowy reaktor ITER, który ma rozpocząć pracę jeszcze przed końcem dekady. Będzie to jednak reaktor eksperymentalny, który nie będzie wytwarzał energii netto. Innymi słowy, pochłonie więcej energii niż wytworzy. Podobnym projektem jest brytyjski STEP. Ma on ruszyć w latach 40. To zaś pokazuje, że firmy prywatne, chociaż ze znacznie mniejszym rozgłosem, planują zastosowanie fuzji jądrowej w praktyce znacznie szybciej, niż organizacje rządowe. Jednak będą to robiły na znacznie mniejszą skalę. Nasz raport pokazuje, że prywatny rynek fuzji jądrowej, bez rozgłosu, szybko przybliża nas do chwili rozpoczęcia komercyjnego dostarczania energii z reaktorów termojądrowych, mówi Melanie Windridge z FIA. Jej zdaniem pierwsze prywatne reaktory termojądrowe zaczną działać w latach 30., a w kolejnej dekadzie dostarczą energię na zasadach komercyjnych. « powrót do artykułu
  4. Jednym z największych problemów, z jakim stykają się specjaliści pracujący przy fuzji jądrowej, są swobodnie przyspieszające elektrony, które w końcu osiągają prędkości bliskie prędkości światła czyli stają się cząstkami relatywistycznymi. Tak szybkie elektrony uszkadzają tokamak, w których przeprowadzana jest reakcja termojądrowa. Naukowcy z Princeton Plasma Physics Laboratory (PPPL) wykorzystali nowatorskie narzędzia diagnostyczne, dzięki którym są w stanie zarejestrować narodziny takich elektronów oraz liniowy i wykładniczy wzrost ich energii. Musimy być w stanie zarejestrować te elektrony przy ich początkowym poziomie energii, a nie dopiero wówczas, gdy mają maksymalną energię i przemieszczają się niemal z prędkością światła, wyjaśnia fizyk Luis Delgado-Aparicio, który stał na czele zespołu badawczego pracującego przy Madison Symmetric Torus (MST) na University of Wisconsin-Madison. Następnym krokiem będzie zoptymalizowanie sposobów na powstrzymanie tych elektronów, zanim ich liczba zacznie się lawinowo zwiększać, dodaje uczony. Reakcja termojądrowa czyli fuzja jądrowa, zachodzi m.in. w gwiazdach. Gdyby udało się ją opanować, mielibyśmy dostęp do niemal niewyczerpanego źródła czystej i bezpiecznej energii. Zanim jednak to się stanie, konieczne jest pokonanie kilku poważnych przeszkód. Dlatego też PPPL we współpracy z University of Wisconsin zainstalowało w MST specjalną kamerę, która już wcześniej sprawdziła się w tokamaku Alcator C-Mod w Massachusetts Institute of Technology. Kamera ta rejestruje nie tylko właściwości plazmy, ale również dystrybucję energii w czasie i przestrzeni. To pozwala uczonym obserwować m.in. wspomniane elektrony, które powstają przy niskich energiach. Badania nad superszybkimi elektronami prowadzone są w MST, gdyż urządzenie to skonstruowane jest tak, że elektrony te nie zagrażają jego pracy. Możliwości, jakimi dysponuje Luis, odnośnie zlokalizowania miejsca narodzin i początkowego liniowego wzrostu energii tych elektronów, a następnie ich śledzenia, są fascynujące. Następnym etapem będzie porównanie uzyskanych wyników z modelami komputerowymi. To pozwoli nam na lepsze zrozumienie tego zjawiska i może prowadzić w przyszłości do opracowania metod zapobiegających tworzeniu się takich elektronów, mówi profesor Carey Forest z University of Wisconsin. Chciałbym zebrać wszystkie doświadczenia, jakich nabyliśmy podczas pracy z MST i zastosować je w dużym tokamaku, stwierdza Delgado-Aparicio. Niewykluczone, że już wkrótce dwaj doktorzy, których mentorem jest Delgado-Aparicio, będą mogli wykorzystać te doświadczenia w Tungsten Einvironment in Steady-state Tokamak (WEST) we Francji. Chcę razem z nimi wykorzystać kamery do rejestrowania wielu różnych rzeczy, takich jak transport cząstek, ogrzewanie falami radiowymi, badanie szybkich elektronów. Chcemy dowiedzieć się, jak spowodować, by elektrony te stały się mniej szkodliwe. A to może być bardzo bezpieczny sposób pracy z nimi. Z Delgado-Aparicio współpracuje kilkudziesięciu specjalistów, w tym naukowcy Uniwersytetu Tokijskiego, japońskich Narodowych Instytutów Badań i Technologii Kwantowych i Radiologicznych czy eksperci ze szwajcarskiej firmy Dectris, która wytwarza różnego typu czujniki. « powrót do artykułu
  5. Jackson Oswalt jest oficjalnie – czego dowodzi wpis do Księgi rekordów Guinnessa 2021 – najmłodszą osobą w historii, która przeprowadziła fuzję jądrową. Mieszkaniec Memphis w stanie Tennessee dokonał tego na kilka godzin przed swoimi... 13. urodzinami. Osiągnięcie nastolatka zostało zweryfikowane przez Fusor.net, The Open Source Fusor Research Consortium oraz Richarda Hulla, który zajmuje się fuzją jądrową i prowadzi listę naukowców-amatorów, którzy przeprowadzili fuzję jądrową w domu. Jackson zainteresował się fuzją w wieku 12 lat, gdy przeczytał o niej w internecie. Zainteresowała go też postać Taylora Wilsona, samouka w dziedzinie fizyki jądrowej, który przeprowadził fuzję w wieku 14 lat. W końcu nastolatek postanowił samodzielnie zbudować fuzor. Samodzielnie zaprojektował i zbudował odpowiednie urządzenie, fuzor, i połączył w nim dwa atomy deuteru. Młody człowiek przyznaje, że czasami ogarniało go zwątpienie, a rodzina i przyjaciele nie do końca rozumieli, co robi i jak planuje przeprowadzić syntezę jądrowa w domu. W końcu jednak się udało i wydane na fuzor 10 000 dolarów nie poszło na marne. Dnia 19 stycznia 2018 roku na kilka godzin przed swoimi 13 urodzinami Oswalt wykorzystał napięcie 50 000 woltów i połączył dwa atomy deuteru. Kolejne miesiące zajęło mu sprawdzanie wszystkiego i potwierdzanie swojego osiągnięcia. Musiał czekać kolejne miesiące, zanim wyniki jego pracy zostały niezależnie zweryfikowane. Obecnie Jackson ma 15 lat i – jak sam przyznaje – nie ma już tyle czasu co kiedyś. Rozgląda się jednak za kolejnym ambitnym celem naukowym do osiągnięcia.   « powrót do artykułu
×
×
  • Dodaj nową pozycję...