Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'reaktor termojądrowy'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Naukowcy z Narodowego Centrum Badań Jądrowych (NCBJ) wykonali niesłychanie precyzyjne obliczenia poziomów energetycznych i przejść kwantowych pomiędzy dziesiątkami tysięcy poziomów energetycznych jonów wolframu - jednego z najważniejszych materiałów konstrukcyjnych przyszłych reaktorów termojądrowych. Ich praca ukazała się w prestiżowym czasopiśmie Atomic Data and Nuclear Data Tables. Jednym z podstawowych wyzwań przy konstruowaniu reaktorów termojądrowych, takich jak ITER czy DEMO, jest usuwanie z plazmy zbędnych produktów reakcji syntezy jądrowej i odprowadzanie ciepła. Do tego celu służy diwertor - układ zlokalizowany na jednej z wewnętrznych ścian reaktora termojądrowego, w którym - dzięki specjalnej konfiguracji pola magnetycznego - są zakrzywiane tory jonów cięższych pierwiastków "zanieczyszczających" plazmę. Przekierowane jony grzęzną w specjalnych tarczach, oddając im swoją energię, która odprowadzana jest przez systemy chłodzenia. W przypadku reaktora ITER jako materiał płyty diwertora wybrano wolfram, który jest metalem o najwyższej temperaturze topnienia, ma dużą odporność termiczną i niski współczynnik erozji, a także niską tzw. retencję trytu - wyjaśnia profesor Jacek Rzadkiewicz, dyrektor Departamentu Aparatury i Technik Jądrowych NCBJ, jeden z dwóch współautorów właśnie opublikowanego artykułu naukowego. Pomimo niskiego współczynnika erozji jony wolframu mogą migrować do struktur plazmowych, w szczególności tych tworzących się w sąsiedztwie płyty diwertora. Spektroskopia atomowa jonów wolframu daje unikalną możliwość poznania właściwości takich struktur plazmowych oraz procesów atomowych prowadzących do ich powstawania. Co więcej, wiedza ta umożliwia kontrolę gęstości mocy w najbliższym sąsiedztwie płyty diwertora i tym samym pozwala na zapewnienie bezpiecznej pracy reaktora termojądrowego. Praca opublikowana w podstawowym referencyjnym czasopiśmie Atomic Data and Nuclear Data Tables, przygotowana wyłącznie przez autorów z NCBJ, przedstawia wyniki obszernych, benedyktyńskich obliczeń, przeprowadzonych dla ponad 27 tysięcy poziomów atomowych jonów ośmiokrotnie zjonizowanych atomów wolframu oraz dla ponad 300 milionów przejść między nimi. W naszych obliczeniach zastosowaliśmy relatywistyczną wielokonfiguracyjną metodę Diraca-Hartree-Focka - opowiada dr Karol Kozioł z Zakładu Detektorów i Diagnostyki Plazmy NCBJ. Bogata struktura spektroskopowa kilkukrotnie zjonizowanych atomów wolframu jest wynikiem możliwości występowania jonów w wielu stanach atomowych, leżących często blisko siebie, między którymi mogą zachodzić różne przejścia radiacyjne (w tym tzw. przejścia wzbronione). Analiza skomplikowanej struktury poziomów energetycznych jonów wolframu wymagała użycia precyzyjnych narzędzi teoretycznych i prowadzenia zaawansowanych analiz, np. analizy wpływu tzw. wirtualnych korelacji elektronowych na energię wzbudzonych stanów atomowych jonów. Przeprowadzone obliczenia w sposób istotny uzupełniają bazę danych spektroskopowych - dodaje profesor Rzadkiewicz. Powinny one przyczynić się do dalszego rozwoju diagnostyk rentgenowskich i diagnostyk w zakresie ultrafioletu próżniowego dla struktur plazmowych tworzących się w sąsiedztwie płyty diwertora. Synteza termojądrowa to niezwykle obiecujące źródło czystej, praktycznie niewyczerpalnej energii. Energia w reaktorach termojądrowych nie pochodzi z rozszczepienia ciężkich jąder atomów uranu czy plutonu lecz - podobnie jak w gwiazdach - z łączenia się lekkich jąder izotopów wodoru i helu, "podgrzanych" do ogromnych temperatur i utrzymywanych w stanie plazmy. Niestety, mimo kilkudziesięciu lat intensywnych wysiłków międzynarodowych, do tej pory nie udało się przenieść koncepcji reaktora termojądrowego na poziom komercyjnych urządzeń technicznych wytwarzających użytkową energię. Projekt ITER, w którym w czerwcu osiągnięto kolejny kamień milowy, przybliża nas do realizacji tej idei. Przyczyniają się do tego naukowcy polscy, także badacze z NCBJ. Warto przeczytać: opis układu diwertorów na stronie projektu ITER. « powrót do artykułu
  2. Przed dwoma dniami odbyła się oficjalna uroczystość, podczas której zainaugurowano montaż reaktora termojądrowego, tokamaka ITER. Dziesięć lat po rozpoczęciu budowy projekt ITER wszedł w decydującą fazę. W miesiącach poprzedzających niedawną uroczystość do Francji dostarczono główne elementy tokamaka, w tym cewki toroidalne – jedna Europy i dwie z Japonii. Kilka dni przed uroczystością z Korei dotarła pierwsza część komory próżniowej. Rozpoczynamy montaż ITER. To historyczny moment. Mija sto lat od chwili, gdy naukowcy zrozumieli, że Słońce i gwiazdy są zasilane przez fuzję jądrową, i sześć dekad od czasu, gdy w Związku Radzieckim zbudowano pierwszy tokamak. [...] Musimy jak najszybciej zastąpić paliwa kopalne [...] Posuwamy się do przodu tak szybko, jak to możliwe, mówił dyrektor generalny ITER, Bernard Bigot. ITER ma być urządzeniem badawczym. Największym dotychczas zbudowanym tokamakiem i pierwszym, w którym uzyskany zostanie dodatni bilans energetyczny. Naukowcy od kilkudziesięciu lat pracują nad fuzją termojądrową, ale dopiero niedawno udało się uzyskać z takiej reakcji więcej energii niż w nią włożono. Dokonali tego w 2013 roku specjaliści z amerykańskiego National Ignition Facility. Z fuzją termojądrową wiązane są olbrzymie nadzieje na uzyskanie źródła naprawdę czystej bezpiecznej energii. Różnica pomiędzy reaktorem fuzyjnym, a standardowym reaktorem atomowym polega na tym, że w reaktorze atomowym energię uzyskuje się z rozpadu ciężkich izotopów radioaktywnych. Zaś w elektrowni termojądrowej ma ona powstawać w wyniku łączenia się lekkich izotopów wodoru. Proces ten, podobny do procesów zachodzących w gwiazdach, niesie ze sobą dwie olbrzymie korzyści. Po pierwsze w reaktorze termojądrowym nie może zajść niekontrolowana reakcja łańcuchowa, podobna do tej, jaka zaszła w Czarnobylu. Po drugie, nie powstają tam odpady radioaktywne, które trzeba by przez tysiące lat przechowywać w specjalnych bezpiecznych warunkach. Fuzja jądrowa ma olbrzymi potencjał. Z 1 grama wodoru i trytu można teoretycznie uzyskać tyle energii, co ze spalenia 80 000 ton ropy naftowej. Deuter i tryt są łatwo dostępnymi, powszechnie występującymi na Ziemi pierwiastkami. ITAR zaś posłuży to badań i stworzenia technologii, które pozwolą na zbudowanie komercyjnych elektrowni fuzyjnych. Obecnie przewiduje się, że pierwszy zapłon ITER nastąpi w 2025 roku, a 10 lat później rozpoczną się regularne prace z kontrolowaną syntezą termojądrową. Obecnie przewiduje się, że pierwsze komercyjne elektrownie termojądrowe powstaną w latach 50. obecnego wieku. Uczestnikami projektu ITER są Unia Europejska, Chiny, Indie, Japonia, Korea Południowa, Rosja i Stany Zjednoczone. UE pokrywa 45,4% kosztów projektu, a pozostałe koszty są po równo (po 9,1%) podzielone pomiędzy resztę członków. « powrót do artykułu
×
×
  • Create New...