Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' proton'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 3 results

  1. Serfując po internecie, zostawiamy wiele cyfrowych odcisków palców, jednak istnieją skuteczne sposoby na zachowanie prywatności w sieci. Dowiedz się, z jakich narzędzi możesz skorzystać, aby ochronić swoją prywatność i zadbać o bezpieczeństwo danych osobowych! #1: Sieć TOR TOR to bardzo proste w obsłudze narzędzie, ochraniające cenne dla nas informacje. Jego działanie polega na tym, iż sieć ta prowadzi ruch internetowy przez wiele węzłów (dane przechodzą przez parę komputerów dołączonych do sieci). Dzięki czemu nasza aktywność w internecie pozostaje anonimowa. Dane pozostają zaszyfrowane, a komunikacja odbywa się w sposób całkowicie anonimowy. Zalety korzystania z sieci TOR: •    to narzędzie bezpłatne, niewymagające rejestracji •    zapewnia anonimowość, nie rejestruje naszej aktywności wynikającej z przeglądania stron •    jest trudne do wyłączenia, gdyż serwery Tora są rozmieszczona na całym świecie, nie ma centrali czy głównego serwera Zobacz: https://www.torproject.org #2: VPN Wirtualna sieć prywatna to narzędzie łączące nasze urządzenie przez bezpieczny tunel ze zdalnym serwerem, w wybranym przez nas kraju. Zadaniem VPN jest zamaskowanie naszego adresu IP, dzięki czemu wydaje się, że mamy dostęp do internetu z lokalizacji zdalnego serwera, a nie rzeczywistej lokalizacji. Oprócz tego sieć ta szyfruje dane, co gwarantuje jak najlepszą ochronę anonimowości w internecie. Nikt nie jest w stanie zobaczyć, co aktualnie oglądamy, czy gdzie przebywamy. Żadna witryna internetowa nie wykorzysta informacji o naszej  aktywności przeglądania, aby wybrać reklamy zgodne z zainteresowaniami. Sieć korzysta z szyfrowania, które można porównać do trzymania danych w niezniszczalnym sejfie, jedynie osoby znające hasło mogą się do nich dostać. Zalety korzystania a VPN: •    szyfrowanie kompleksowe VPN szyfruje wszelkie dane, jakie przechodzą przez nasze połączenie internetowe •    usługi VPN oferują dostęp do połączenia z setek różnych krajów i tysięcy adresów IP •    to narzędzie bardzo proste w użyciu, wystarczy się zarejestrować, pobrać i zainstalować daną aplikację, po czym połączyć z serwerem, niepotrzebna jest specjalistyczna wiedza •    omija geoblokady oraz cenzury, dzięki czemu mamy dostęp do stron używających geoblokad Zobacz: https://topvpn.pl/program-do-vpn/ #3: Poczta ProtonMail / Tutanota Jeśli chcemy zapewnić sobie, jak najwyższe bezpieczeństwo, dobrze jeśli zrezygnujemy z popularnych usług pocztowych, a wybierzemy te posiadające zaawansowane systemy szyfrowania. Dobrym rozwiązaniem będzie: ProtonMail lub Tutanota. Te skrzynki pocztowe zostały wyposażone w silne zabezpieczenia i doskonale szyfrują nasze dane. Dzięki nim będziemy wysyłać zaszyfrowane wiadomości, do użytkowników, którzy korzystają z różnych poczt (O2, Gmail, Onet). Podczas rejestracji w ProtonMail, musimy podać 2 hasła dostępowe, pierwsze z nich jest potrzebne przy etapie uwierzytelniania, a drugie do stworzenia kluczy, dzięki którym poczta się szyfruje. Co ważne, nie musimy obawiać się, że pracownicy skrzynek pocztowych zobaczą nasze dane, gdyż nie mają oni dostępu do haseł, odszyfrowujących wiadomości. Ciekawym rozwiązaniem, jest możliwość włączenia opcji "Expiration" po ustalonej ilości godzin, nasze wiadomości zostaną usunięte (z folderu wysłanych oraz odebranych wiadomości) działa ono jednak jedynie dla kont ProtonMail. Zalety bezpiecznych skrzynek pocztowych: •    narzędzia całkowicie darmowe •    bardzo proste w obsłudze •    posiadają estetyczny i miły dla wzroku interfejs •    nie ma w nich męczących często reklam Zobacz: https://protonmail.com/pl/ #4: Wyszukiwarka DuckDuckGo Kolejnym przydatnym narzędziem, które zapewni nam prywatność w sieci, jest wyszukiwarka DuckDuckGo. Popularność jej bije ostatnio rekordy, pomimo tego, iż na pierwszy rzut oka nie różni się niczym od pozostałych. Panel wyszukiwania wyglądem przypomina ten w Google, a po wpisaniu hasła zobaczymy setki wyszukanych przez nią linków. DuckDuckGo w przeciwieństwie do Google czy Binga nie zbiera żadnych danych o nas i o tym czego szukamy, ani nie personalizuje wyników wyszukiwania czy reklam. Co ważne, DDG nie przechowuje adresów naszych IP, możliwe jest także wyłączenie JavaScript. Zalety korzystania z DDG: •    anonimowość wyszukiwania •    sprawny silnik wyszukiwania •    brak personalizacji reklam Zobacz: https://duckduckgo.com Te cztery narzędzia sprawią, iż korzystając z internetu, zadbamy o swoją anonimowość i prywatność. Nasze dane osobowe, wysyłane wiadomości czy inne informacje o nas samych będą chronione i nie przedostaną się w niepowołane ręce. « powrót do artykułu
  2. Rząd Japonii dał zielone światło budowie Hyper-Kamiokande, największego na świecie wykrywacza neutrin, którego konstrukcja pochłonie 600 milionów dolarów. Gigantyczna instalacja powstanie w specjalnie przygotowanej dlań grocie niedaleko kopalni w miejscowości Kamioka. Pomieści ona 250 000 ton ultraczystej wody. To 5-krotnie więcej niż obecnie używany Super-Kamiokande. Ten z kolei jest następcą 300-tonowego Kamiokande, który działał w latach 1983–1995. Dzięki olbrzymim rozmiarom Hyper-K możliwe będzie zarejestrowanie większej liczby neutrin niż dotychczas. Będą one pochodziły z różnych źródeł – z promieniowania kosmicznego, Słońca, supernowych oraz z akceleratora cząstek. Instalacja posłuży też do ewentualnej obserwacji rozpadu protonów. Istnienie takiego zjawiska przewidują niektóre rozszerzenia Modelu Standardowego, jednak dotychczas nie udało się go zarejestrować. Budowa wykrywacza ma kosztować 600 milionów dolarów, z czego Japonia pokryje 85%, a resztę sfinansują inne kraje, w tym Wielka Brytania i Kanada. Dodatkowo Japonia wyda 66 milionów dolarów na rozbudowę akceleratora J-PARC. To znajdujące się 300 kilometrów dalej urządzenie będzie źródłem neutrin dla Hyper-K. Głównym elementem nowego wykrywacza będzie zbiornik o głębokości 71 i średnicy 68 metrów. Grota, do której trafi, powstanie 8 kilometrów od istniejącej infrastruktury Kamioka, by uniknąć wibracji mogących zakłócić prace przygotowywanego właśnie do uruchomienia wykrywacza fal grawitacyjnych KAGRA. Wnętrze zbiornika Hyper-K zostanie wyłożone fotopowielaczami, które będą przechwytywały fotony powstałe w wyniku zderzeń neutrino z atomami w wodzie. Hyper-Kamiokande będzie jednym z trzech dużych instalacji służących do wykrywania neutrin, jakie mają ruszyć w nadchodzącej dekadzie. Dwa pozostałe to Deep Underground Neutrino Experiment (DUNE), który ma zacząć pracę w USA w 2025 roku oraz Jiangmen Underground Neutrino Observatory (JUNO), jaki Chiny planują uruchomić w roku 2021. Takaaki Kajita, fizyk z Uniwersytetu Tokijskiego, mówi, że naukowcy są podekscytowani możliwościami Hyper-K, który ma pozwalać na badanie różnic w zachowaniu neutrin i antuneutrin. Już w Super-K zauważono istnienie takich różnic, jednak to Hyper-K i DUNE pozwolą na ich bardziej szczegółowe zbadanie. Zaś dzięki temu, że oba detektory będą korzystały z różnej techniki – w DUNE znajdzie się płynny argon a nie woda – będzie można nawzajem sprawdzać uzyskane wyniki. Jednak,jak podkreśla Masayuki Nakahata, fizyk z Uniwersytetu Tokijskiego i rzecznik prasowy Super-K, największą nadzieją, jaką pokłada się w Hyper-K jest odkrycie rozpadu protonu. Na razie rząd Japonii nie wydał oficjalnego oświadczenia w sprawie budowy Hyper-Kamiokande. Jednak japońscy naukowcy mówią, że właśnie zaproponowano poprawkę budżetową, w ramach której przewidziano pierwszą transzę w wysokości 32 milionów dolarów na rozpoczęcie budowy wykrywacza. Poprawka musi jeszcze zostać zatwierdzona przez parlament, co prawdopodobnie nastąpi w przyszłym miesiącu. « powrót do artykułu
  3. Zderzenia jąder ołowiu zachodzą w ekstremalnych warunkach fizycznych. Ich przebieg można opisać za pomocą modelu zakładającego, że przekształcająca się, ekstremalnie gorąca materia – plazma kwarkowo-gluonowa – płynie w postaci setek smug. Dotychczas „ogniste smugi” wydawały się konstrukcjami czysto teoretycznymi. Jednak najnowsza analiza zderzeń pojedynczych protonów wzmacnia tezę, że odpowiada im rzeczywiste zjawisko. W 2017 roku fizycy z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie przedstawili przemawiający do wyobraźni model zjawisk zachodzących w trakcie zderzeń jąder ołowiu przy wysokich energiach. W modelu założono, że powstająca w zderzeniach egzotyczna materia, plazma kwarkowo-gluonowa, oddala się od miejsca kolizji w formie licznych smug, rozciągniętych wzdłuż pierwotnego kierunku ruchu jąder. Smugi te powinny poruszać się tym szybciej, im bardziej są odległe od osi zderzenia. Obecnie badacze zastosowali model „smug ognistych” do znacznie prostszych zderzeń proton-proton. Gdy porównali swoje przewidywania z danymi zebranymi w eksperymentach w europejskim ośrodku badań jądrowych CERN, czekała ich nie lada niespodzianka. Jądra ołowiu zawierają ponad dwieście protonów i neutronów. Gdy dwa tak duże obiekty się zderzają, przy odpowiednio wielkich energiach powstaje płynna mieszanina kwarków i gluonów (cząstek w normalnych warunkach zlepiających kwarki w protony i neutrony). Plazma kwarkowogluonowa błyskawicznie ekspanduje i równocześnie się wychładza. W rezultacie istnieje tak krótko i w tak małym obszarze przestrzeni (o rozmiarach zaledwie setek milionowych części jednej miliardowej metra), że nie potrafimy jej bezpośrednio obserwować. Na dodatek interakcje między cząstkami plazmy są zdominowane przez oddziaływania silne i są tak skomplikowane, że z ich opisem współczesna fizyka po prostu sobie nie radzi. Ślady plazmy kwarkowo-gluonowej widać tylko pośrednio, w cząstkach wybiegających z miejsca zderzenia. Teoria przewiduje bowiem, że jeśli plazma kwarkowo-gluonowa rzeczywiście się wytworzyła, detektory powinny rejestrować wyraźnie większą liczbę cząstek dziwnych (a więc takich, które zawierają kwarki dziwne s). Zderzenia proton-proton w akceleratorach w CERN produkują mało cząstek dziwnych. Powszechnie przyjmuje się więc, że w ich trakcie plazma kwarkowo-gluonowa nie powstaje. Uwzględniliśmy ten fakt w naszym modelu smug ognistych, po czym skonfrontowaliśmy jego przewidywania z danymi z eksperymentu NA49 na akceleratorze SPS. Zgodność była zdumiewająco dobra. Można więc powiedzieć, że teraz 'zobaczyliśmy' smugę ognistą w jakościowo innych warunkach fizycznych, tam, gdzie w ogóle się jej nie spodziewaliśmy!, tłumaczy dr hab. Andrzej Rybicki (IFJ PAN), jeden z autorów publikacji w czasopiśmie Physical Review C. Kolizję dwóch jąder ołowiu musieliśmy modelować jako złożenie kilkuset smug. W takich warunkach trudno powiedzieć cokolwiek o własnościach pojedynczej smugi. Jednak gdy z modelu wyekstrahowaliśmy rozkład pospieszności, czyli relatywistycznej prędkości cząstek produkowanych przez pojedynczą smugę, okazało się, że jej kształt bardzo dobrze opisuje prawdziwe dane z pomiarów produkcji cząstek w zderzeniach proton-proton!, precyzuje mgr Mirek Kiełbowicz, doktorant IFJ PAN. Aby wykresy, otrzymane za pomocą modelu smug ognistych zbudowanego dla zderzeń jąder ołowiu, zgadzały się z danymi eksperymentalnymi dla zderzeń proton-proton, należało je przeskalować o czynnik 0,748. Krakowscy badacze wykazali, że parametr ten nie jest swobodny. Pojawia się on po uwzględnieniu w bilansie energetycznym zmian związanych z różną produkcją cząstek dziwnych i można go odtworzyć z danych eksperymentalnych. Był to kolejny silny argument wzmacniający fizyczną poprawność modelu. Pracuję nad modelem smug ognistych w ramach mojej pracy magisterskiej, więc nie zdziwiło mnie, że opisuje on dane ze zderzeń jądro-jądro w sporym zakresie energii. Kiedy jednak zobaczyłem, że wyekstrahowana przez nas funkcja fragmentacji tak dobrze zgadza się z danymi ze zderzeń proton-proton, trudno było ukryć zaskoczenie, wspomina Łukasz Rozpłochowski, student Uniwersytetu Jagiellońskiego współpracujący z grupą z IFJ PAN. Materia powstająca w zderzeniach proton-proton, chłodniejsza i jakościowo inna niż plazma kwarkowo-gluonowa, wydaje się więc zachowywać jak pojedyncza ognista smuga. Jej pewne własności – takie jak prędkości emitowanych cząstek czy sposoby ich rozpadów – z jakiegoś powodu są zdumiewająco podobne do własności ognistych smug plazmy kwarkowo-gluonowej. A ponieważ plazma kwarkowo-gluonowa tworzy się przy większych energiach i w zderzeniach obiektów kwantowych o dużej złożoności, uprawnione staje się stwierdzenie, że to ona dziedziczy niektóre cechy materii formującej ogniste smugi w zderzeniach proton-proton. Gdy opisywaliśmy zderzenia jądro-jądro, ogniste smugi były dla nas jedynie pewnymi abstrakcyjnymi konstrukcjami, czymś czysto teoretycznym. Nie wnikaliśmy w ich fizyczną naturę, w to, czym mogą być w rzeczywistości. Przeżyliśmy prawdziwy wstrząs, gdy zestawiając dane eksperymentalne z naszym modelem odkryliśmy, że to, co powstaje w zderzeniach proton-proton, zachowuje się dokładnie tak jak nasza pojedyncza ognista smuga, podsumowuje dr Rybicki. Wyniki najnowszej analizy, przeprowadzonej przez krakowskich fizyków w ramach grantu SONATA BIS nr 2014/14/E/ST2/00018 Narodowego Centrum Nauki, wzmacniają zatem przypuszczenie, że ognistym smugom, wedle teorii formującym się w zderzeniach proton-proton i jądro-jądro, odpowiadają rzeczywiste procesy fizyczne zachodzące w przepływach ekstremalnie gorącej materii kwantowej. « powrót do artykułu
×
×
  • Create New...