Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' Ziemia'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 56 results

  1. Na oficjalnym Twitterze należącego do NASA Biura Koordynacji Obrony Planetarnej (Planetary Defense Coordination Office) pojawiła się informacja o odkryciu niewielkiej, 50-metrowej asteroidy, która z prawdopodobieństwem ok. 1:600 może uderzyć w Ziemię w roku 2046. To niewielkie ryzyko, ale wciąż znacznie większe niż przeciętne dla obserwowanych obecnie asteroid. Obiekt 2023 DW znajduje się na liście potencjalnie groźnych, a jego orbita jest monitorowana. Zwykle musi minąć kilka tygodni od odkrycia, zanim specjaliści dokładnie określą orbitę asteroidy i wyliczą ryzyko zderzenia z Ziemią. Nowa asteroida została zauważona 27 lutego, a 8 marca ryzyko zderzenia z Ziemią określono na 1:625. Wkrótce poznamy dokładniejsze dane, tymczasem asteroida została umieszczona w serwisie Eyes on Asteroids i można ją – oraz inne asteroidy – na bieżąco śledzić na trójwymiarowej interaktywnej wizualizacji. Obecnie znajduje się ona w odległości 0,154 j.a., czyli około 23,1 milionów kilometrów, od Ziemi. Asteroida tej wielkości nie jest zagrożeniem dla planety. Mogłaby jednak poczynić wielkie szkody, gdyby spadła na miasto lub nad gęsto zaludnione tereny. Dość przypomnieć, że w 2013 roku 30 kilometrów nad Czelabińskiej rozpadła się meteoryt o połowę mniejszy, a wywołana tym wydarzeniem fala uderzeniowa uszkodziła tysiące budynków, a rany odniosło około 1500 osób. Wiemy też, że dysponujemy odpowiednimi środkami technicznymi, by uniknąć zagrożenia ze strony asteroid. Dowiodła tego udana misja DART oraz opublikowane już pierwsze artykuły naukowe na jej temat. « powrót do artykułu
  2. Naukowcy z The University of Texas at Austin poinformowali na łamach Nature Geoscience o odkryciu nowej warstwy stopionych skał wewnątrz Ziemi. Jej istnienie może wyjaśnić wiele kwestii dotyczących tektoniki płyt. Już wcześniej na podobnej głębokości identyfikowano roztopione skały, jednak teraz po raz pierwszy udało się wykazać, że mamy do czynienia warstwą w skali całego globu. Warstwa ta, położona na głębokości około 150 kilometrów, stanowi część astenosfery. Według obecnego stanu wiedzy astenosfera, dzięki temu, że jest plastyczna, umożliwia ruch płyt tektonicznych i oddziela płyty od ruchu konwekcyjnego poniżej. Co interesujące, przeprowadzone właśnie badania wykazały, że fakt, iż mamy do czynienia ze stopionymi skałami nie ma to znaczącego wpływu na ruchy płaszcza Ziemi. Gdy myślimy o czymś stopionym intuicyjnie sądzimy, że musi to odgrywać rolę w lepkości materiału. Jednak odkryliśmy, że nawet tam, gdzie dość duża część materiału uległa stopieniu, ma to niewielki wpływ na płaszcz, mówi Junlin Hua z Jackson School of Geosciences. Wykazanie, że stopiona warstwa nie wpływa na tektonikę płyt oznacza, że komputerowe modele wnętrza Ziemi nie muszą uwzględniać tego niezwykle złożonego elementu. Nie możemy całkowicie wykluczyć, że w skali lokalnej topienie się skał nie ma żadnego wpływu. Ale myślę, że możemy stwierdzić, iż obserwowane przez nas topienie się skał niekoniecznie ma wpływ na cokolwiek, dodaje profesor Thorsten Becker. Hua, jeszcze jako doktorant, analizował dane ze stacji sejsmicznych z Turcji i zainteresowała go zarejestrowana lokalnie warstwa stopionych skał. Wraz z kolegami skompilował podobne dane z całego świata i okazało się, że to, co uważał za anomalię, jest nieznaną wcześniej warstwą rozciągającą się na całym globie. Kolejna niespodzianka czekała go, gdy porównał dane z tej warstwy z danymi dotyczącymi ruchu płyt tektonicznych i nie znalazł żadnej korelacji. To bardzo ważne badania, gdyż dobre zrozumienie astenosfery i przyczyny, dla której jest plastyczna to klucz do zrozumienia ruchów tektonicznych, wyjaśnia profesor Karen Fisher z Brown University, która była opiekunem naukowym doktoratu Hua. « powrót do artykułu
  3. Klimat Ziemi przechodził zmienne koleje losu, od bardzo gorącego po epoki lodowe. Mimo to życie na naszej planecie przetrwało 3,7 miliarda lat. Badacze z MIT potwierdzili właśnie, że Ziemia posiada działający na przestrzeni setek tysięcy lat mechanizm regulacji, dzięki któremu nie dochodzi do katastrofalnych zmian klimatu, które mogłyby zakończyć historię życia. Naukowcy od dawna podejrzewali, że cykl węglanowo-krzemianowy odgrywa ważną rolę w ziemskim obiegu węgla. Polega on na wiązaniu atmosferycznego CO2 przez skały. Teraz udało się zdobyć bezpośrednie dowody, że działa on w skali geologicznej jak stabilizator klimatu. Nowe dowody opierają się na badaniach danych paleoklimatycznych i zmianach średnich temperatur na Ziemi na przestrzeni ostatnich 66 milionów lat. Naukowcy z MIT przeprowadzili analizy matematyczne, by sprawdzić, czy pojawi się jakiś wzorzec, który wskazywałby na istnienie mechanizmu stabilizującego globalne temperatury w skali geologicznej. I taki wzorzec znaleźli. Pojawia się on na przestrzeni setek tysięcy lat, co jest zgodne ze skalą, w jakiej powinien działać mechanizm stabilizujący wywoływany przez wietrzenie krzemianów. Z jednej strony to dobra wiadomość, bo dzięki temu wiemy, że obecne globalne ocieplenie zostanie zniwelowane za pomocą tego mechanizmu. Jednak z drugiej strony, potrwa to setki tysięcy lat, a to zbyt wolno, by rozwiązać nasze obecne problemy, mówi Constantin Arnscheidt z MIT. Jest on, wraz z profesorem Danielem Rothmanem, współautorem badań. Naukowcy już wcześniej widzieli pewne oznaki działania mechanizmu stabilizującego. Analizy chemiczne starych skał wskazywały bowiem, że przepływ węgla ze skorupy ziemskiej i do niej jest dość zrównoważony, nawet gdy dochodzi do znacznych zmian temperatur na Ziemi. Modele obliczeniowe wskazywały, że proces wietrzenia krzemianów może w pewnym stopniu stabilizować klimat. Ponadto sam fakt, że życie na Ziemi przetrwało miliardy lat sugerował istnienie jakiegoś wbudowanego, geologicznego, mechanizmu zapobiegającego ekstremalnym zmianom temperatury. Mamy planetę, której klimat poddany był wielu dramatycznym zmianom. Dlaczego życie je przetrwało? Jedno z wyjaśnień brzmi, że musi istnieć jakiś mechanizm stabilizujący temperatury w zakresie zdanym dla życia. Jednak dotychczas nikt nie przedstawił dowodów, że taki mechanizm bez przerwy kontroluje klimat naszej planety, wyjaśnia Arnscheidt. Rothman i Arnscheidtprzjrzeli się danym dotyczącym zmian temperatury na Ziemi. Informacje na ten temat pochodziły zarówno z analiz składu chemicznego muszli sprzed milionów lat, jak i z badań rdzeni lodowych. Nasze badania były możliwe tylko dzięki temu, że nauka dokonała olbrzymiego postępu w dziedzinie zwiększenia rozdzielczości danych temperaturowych. Dysponujemy więc zapisem z ostatnich 66 milionów lat, w którym poszczególne punkty pomiaru temperatury są oddalone od siebie najwyżej o kilka tysięcy lat, wyjaśniają uczeni. Naukowcy wykorzystali stochastyczne równania różniczkowe, które są do poszukiwania wzorców w zestawach wysoce zmiennych danych. Okazało się, że w ten sposób można przewidzieć co się będzie działo z klimatem, jeśli istnieje mechanizm go stabilizujący. To trochę podobne do pędzącego samochodu. Gdy naciśniemy hamulec, upłynie trochę czasu, zanim samochód się zatrzyma. To właśnie nasza skala, w której klimat – w wyniku działania tego mechanizmu – powraca do stanu stabilnego – wyjaśniają uczeni. Gdyby taki mechanizm nie istniał, zmiany temperatury powinny zwiększać się z czasem. Jednak tak się nie dzieje. W pewnym momencie mechanizm stabilizujący jest silniejszy i nie dochodzi do ekstremalnych zmian, zagrażających istnieniu życia na Ziemi. Skala tych zmian – wynosząca setki tysięcy lat – jest zgodna z przewidywaniami dotyczącymi skali działania cyklu węglowo-krzemianowego. Co ciekawe, naukowcy nie znaleźli żadnego mechanizmu, który stabilizowałby klimat w skali dłuższej niż milion lat. Zdaniem autorów badań, mieliśmy szczęście, że zmiany w tej skali nie były dotychczas ekstremalnie duże. Są dwie szkoły. Jedni mówią, że to przypadek, zdaniem innych – istnieje mechanizm stabilizujący. Na podstawie danych wykazaliśmy, że prawda prawdopodobnie leży po środku. Innymi słowy, istnieje mechanizm stabilizujący, ale i zwykłe szczęście odegrało rolę pomogło życiu na Ziemi przetrwać miliardy lat, wyjaśnia Arnscheidt. « powrót do artykułu
  4. W ostatnią sobotę na Ziemię powrócił tajemniczy X-37B, znany też jako Orbital Test Vehicle (OTV). Napędzana energią słoneczną pojazd, który wyglądem przypomina prom kosmiczny, spędził w przestrzeni kosmicznej 908 dni. Była to już jego 6. misja. Poprzednia trwała 780 dni, a od czasu pierwszego wystrzelenia w 2010 roku X-37B przebywał poza Ziemią łącznie 3774 dni i przeleciał w tym czasie ponad 2 miliardy kilometrów. O najnowszej misji pojazdu wiadomo niewiele ponad to, że na jego pokładzie znajdował się moduł serwisowy, który prowadził eksperymenty na potrzeby Naval Research Laboratory, U.S. Air Force Academy i innych instytucji. Moduł oddzielił się od pojazdu przed rozpoczęciem manewru lądowania. Wiemy też, że X-37B wyniósł w przestrzeń kosmiczną satelitę FalconSat-8, który został zbudowany przez kadetów U.S. Air Force Academy we współpracy z Air Force Research Laboratory. Od października ubiegłego roku satelita ten znajduje się na orbicie. X-37B został wybudowany przez Boeinga na zamówienie United States Space Force. Pojazd ma 8,8 metra długości i jest autonomiczny. Przypomina promy kosmiczne, które były jednak znacznie większe. Miały bowiem 37 metrów długości i były pilotowane przez ludzi. U.S. Space Force prawdopodobnie posiada dwa takie pojazdy. Dotychczas odbyły one sześć misji, a każda była dłuższa od poprzedniej. Ta ostatnia, OTV-6, rozpoczęła się 17 maja 2020 roku i zakończyła 12 listopada 2022 roku. Space Force i Boeing informują, że X-37B to głównie platforma testowa, która pozwala na sprawdzenie, jak różnego typu ładunek znosi długotrwały pobyt w przestrzeni kosmicznej. To, co OTV zabiera na pokład jest w znacznej mierze tajne. Nie są też podawane informacje na temat orbity pojazdu, z góry też nie wiemy, jak długo potrwa każda z misji. Od czasu do czasu wojskowi zdradzają jednak niektóre szczegóły. Dzięki temu wiemy, że w ramach OTV-6 testowano Photovoltaic Radio-frequency Antenna Module zbudowany przez Naval Research Laboratory, laboratorium badawcze Marynarki Wojennej Stanów Zjednoczonych i Korpusu Marines. To urządzenie wielkości pudełka pizzy, którego zadaniem jest zamiana energii słonecznej na mikrofale i przesłanie ich na Ziemię. Eksperymenty tego typu przybliżają moment budowy efektywnych elektrowni fotowoltaicznych na orbicie i przesyłania z nich prądu na Ziemię. Na pokładzie OTV-6 prowadzono też, na zlecenie NASA, badania nad długotrwałym przebywaniem nasion w przestrzeni kosmicznej oraz wpływem środowiska pozaziemskiego na różne materiały. « powrót do artykułu
  5. Dzięki teleskopowi Gemini North na Hawajach udało się wykryć najbliższą Ziemi czarną dziurę. Obiekt Gaia BH1 ma masę 10-krotnie większą od Słońca i znajduje się w odległości 480 parseków (ok. 1560 lat świetlnych) od Ziemi w Gwiazdozbiorze Wężownika. Dziurę odkryto dzięki temu, że krąży wokół niej żółty karzeł typu widmowego G o masie 0,93 mas Słońca i metaliczności podobnej do słonecznej. Jest to więc gwiazda tego samego typu, co Słońce. Weź Układ Słoneczny, wsadź czarną dziurę tam, gdzie jest Słońce, a Słońce tam, gdzie jest Ziemia i masz obraz tego układu, wyjaśnia główny autor badań Kareem El-Badry, astrofizyk z Center for Astrophysics | Harvard & Smithsonian i Instytutu Astronomii im. Maksa Plancka. Okres orbitalny gwiazdy wokół Gai BH1 wynosi aż 185,6 ziemskich dni, jest więc dłuższy niż jakikolwiek znany nam okres orbitalny w podobnym układzie. Wielokrotnie ogłaszano odkrycie podobnych systemów, jednak niemal wszystkie te stwierdzenia zostały z czasem obalone. Tutaj mamy pierwsze jednoznaczne odkrycie w naszej galaktyce gwiazdy typu słonecznego na szerokiej orbicie wokół czarnej dziury o masie gwiazdowej, dodaje El-Badry. Obecne modele astronomiczne nie wą w stanie wyjaśnić, w jaki sposób mógł powstać taki system. Przede wszystkim dlatego, że skoro mamy czarną dziurę o masie 10-krotnie większej od masy Słońca, to musiała ona powstać z gwiazdy o masie co najmniej 20-krotnie większej od masy Słońca. To oznacza, że mogła ona istnieć zaledwie przez kilka milionów lat. Jeśli zaś obie gwiazdy – czyli ta, która zamieniła się w czarną dziurę i ta, która wokół niej krąży – powstały w tym samym czasie, to bardziej masywna z gwiazd na tyle szybko powinna zmienić się w czerwonego olbrzyma, pochłaniając towarzyszącą gwiazdę, że towarzyszka nie zdążyłaby wyewoluować do etapu gwiazdy ciągu głównego podobnej do Słońca. Nie wiadomo, jak towarzyszka czarnej dziury przetrwała etap czerwonego olbrzyma drugiej z gwiazd. Modele teoretyczne, które zakładają taką możliwość, mówią, że gwiazda o masie Słońca powinna znajdować się na znacznie ciaśniejszej orbicie wokół czarnej dziury. To oznacza, że w naszym rozumieniu tworzenia się i ewolucji czarnych dziur w układach podwójnych znajdują się spore luki, co sugeruje, że istnienie niezbadana dotychczas populacja czarnych dziur w takich układach. Trzeba tutaj przypomnieć, że rok temu poinformowano, iż wokół czerwonego olbrzyma V723 Mon, w odległości 460 parseków (ok.1500 lat świetlnych) od Ziemi, krąży najbliższa nam czarna dziura. Po jakimś czasie okazało się, że w układzie tym nie ma czarnej dziury. « powrót do artykułu
  6. Większość współczesnych teorii dotyczących powstania Księżyca mówi, że miliardy lat temu w Ziemię uderzył obiekt wielkości Marsa, zwany Theią. W wyniku kolizji pojawiła się olbrzymia liczba szczątków, które krążąc wokół Ziemi przez miesiące i lata, uformowały Księżyc. Jednak autorzy autorzy najnowszych badań, w ramach których przeprowadzono symulację w wysokiej rozdzielczości, uważają, że Księżyc powstał... w ciągu kilku godzin. To otwiera całą gamę nowych możliwości badawczych dotyczących początku ewolucji Księżyca, mówi główny autor badań, Jacob Kegerris. Rozpoczęliśmy ten projekt, nie wiedząc, jakie będą wyniki symulacji w wysokiej rozdzielczości. Byliśmy niezwykle zaskoczeni faktem, że symulacje o standardowej rozdzielczości mogą dawać tak bardzo mylne odpowiedzi. Uczeni z należącego do NASA Ames Research Center przeprowadzili najbardziej szczegółową symulację dotyczącą powstania Księżyca czy też wyników innych wielkich kolizji. Wykazała ona, że symulacje o niższej rozdzielczości, biorące pod uwagę mniej danych, mogą omijać bardzo ważne aspekty i skutki takich kolizji. Jeśli chcemy zrozumieć proces powstawania księżyca musimy wziąć pod uwagę to, co o nim wiemy – jego masę, orbitę oraz szczegółowe wyniki analizy skał księżycowych – i stworzyć scenariusz, w wyniku którego zobaczymy taki Księżyc, jakim widzimy go obecnie. Wcześniejsze teorie dobrze wyjaśniały niektóre właściwości Srebrnego Globu, ale pozostawiały poważne luki. Jedną z takich tajemnic był skład księżycowych skał. Ich sygnatury izotopowe są bardzo podobne do sygnatur izotopowych skał z Ziemi, a odmienne od materiału z Marsa czy innych ciał niebieskich. To najprawdopodobniej oznacza, że materiał, z którego zbudowany jest Księżyc, pochodzi z Ziemi. Jedne z branych wcześniej pod uwagę scenariuszy zakładały, że po zderzeniu materiał z Thei trafił na orbitę Ziemi i wymieszał się z niewielką ilością materiału z Ziemi. Jednak w takim wypadku izotopowy skład Księżyca nie byłby aż tak bardzo podobny do składu Ziemi. Chyba, że Theia była pod tym względem do Ziemi podobna, co jest jednak mało prawdopodobne. Dlatego też znacznie bardziej prawdopodobnym scenariuszem jest ten, według którego Księżyc powstał głównie z materiału z górnych warstw skorupy ziemskiej. Istnieje też hipoteza mówiąca, że Księżyc powstał wewnątrz obracającej się kuli materiału odparowanego w wyniku kolizji. Jednak nie wyjaśnia ona obecnej orbity Księżyca. Najnowsza symulacja, pokazująca, że Księżyc uformował się bardzo szybko z materiału z Ziemi, wyjaśnia zarówno jego skład, jak i obecną orbitę. Wynika z niej, że Srebrny Glob utworzył się w ciągu kilku godzin, a jego jądro nie było całkowicie stopione. To wyjaśnia zarówno cienką skorupę oraz orbitę wokół naszej planety. Jest to najbardziej pełne wyjaśnienie obserwowanych obecnie właściwości Księżyca. Uczeni zaznaczają, że dokładne określenie, która z obecnie proponowanych hipotez jest tą prawdziwą będzie możliwe w przyszłości, gdy kolejne misje przywiozą pobrane z większych głębokości próbki z innych części Księżyca. Wówczas można będzie porównać wyniki badań próbek z proponowanymi scenariuszami. Prowadzone badania mają znaczenie nie tylko dla określenia ewolucji Księżyca, ale dla lepszego poznania kosmosu. Przestrzeń kosmiczna jest pełna kolizji i pozostałości po nich. Mają one olbrzymi wpływ na tworzenie się i formowanie układów planetarnych. « powrót do artykułu
  7. W najbliższy poniedziałek NASA spróbuje zrobić coś, czego ludzkość nigdy wcześniej nie dokonała – zmienić tor lotu asteroidy. Jeśli wszystko pójdzie zgodnie z planem, 26 września o godzinie 21:14 czasu polskiego w asteroidę Dimorphos uderzy pojazd DART. Będzie to pierwszy w historii test obrony Ziemi przed asteroidami. Dimorphos ma około 170 metrów średnicy, krąży wokół 800-metrowego Didymosa i wcale nam nie zagraża. W momencie zderzenia będzie znajdował się około 11 milionów kilometrów od Ziemi. Misja DART ma na celu sprawdzenie przede wszystkim, czy jesteśmy w stanie trafić wysłanym z Ziemi pojazdem w asteroidę oraz czy po uderzeniu asteroida zmieni kurs. NASA chce, by pędzący z prędkością 23 000 km/h pojazd wielkości samochodu przesunął Dimorphosa skracając o 10 minut czas jego obiegu wokół Didymosa. Obecnie Dimorphos okrąża większą asteroidę w ciągu 11 godzin i 55 minut. Skrócenie tego czasu o 10 minut zostanie zarejestrowane przez naziemne teleskopy. Przed kilkoma tygodniami od misji DART oddzielił się satelita LICIACube, który podąża jego śladem. Po uderzeniu LICIACube będzie towarzyszył układowi Dimorphos-Didymos i przysyłał nam jego zdjęcia, na podstawie których specjaliści będą oceniali skutki zderzenia. Ponadto w październiku 2024 roku ma wystartować misja Hera Europejskiej Agencji Kosmicznej. Dwa lata później Hera spotka się z Dimorphosem i dokona szczegółowych pomiarów. W jej ramach na Dimorphosie ma wylądować miniaturowy lądownik. Czy coś nam grozi? W Układzie Słonecznym znajdują się miliardy komet i asteroid. Niewielka część z nich to NEO (near-Earth object), czyli obiekty bliskie ziemi. Za NEO uznawany jest obiekt, którego peryhelium – punkt orbity najbliższy Słońcu – wynosi mniej niż 1,3 jednostki astronomicznej. Jednostka astronomiczna (j.a.) to odległość pomiędzy Ziemią a Słońcem, wynosi ona 150 milionów kilometrów. To 1,3 j.a. od Słońca oznacza bowiem, że taki obiekt może znaleźć się w odległości 0,3 j.a. (45 milionów km) od Ziemi. Obecnie znamy (stan na 21 września bieżącego roku) 29 801 NEO. Uznaje się, że asteroidy o średnicy większej niż 20 metrów mogą, w przypadku wpadnięcia w atmosferę Ziemię, dokonać poważnych lokalnych zniszczeń. Oczywiście im asteroida większa, tym bardziej dla nas niebezpieczna. Za bardzo groźne uznawane są asteroidy o średnicy ponad 140 metrów, a te o średnicy ponad 1 kilometra mogą spowodować katastrofę na skalę globalną. Wśród wszystkich znanych nam NEO jest 10 199 obiektów o średnicy ponad 140 metrów i 855 o średnicy przekraczającej kilometr. Specjaliści uważają, że znamy niemal wszystkie NEO o średnicy przekraczającej kilometr. Wiemy też, że przez najbliższych 100 lat żaden taki obiekt nie zagrozi Ziemi. Jednak już teraz przygotowywane są scenariusze obrony. Gdybyśmy bowiem wykryli tak wielki obiekt, a badania jego orbity wykazałyby, że prawdopodobnie uderzy w Ziemię, będziemy potrzebowali całych dziesięcioleci, by się obronić. Jeśli bowiem chcielibyśmy zmieniać trasę takiego obiektu, to biorąc pod uwagę jego olbrzymią masę, już teraz wiemy, że wysłany z Ziemi pojazd, uderzając w asteroidę, tylko minimalnie zmieniłby jej trajektorię. Do zderzenia musiałoby zatem dojść na całe dziesięciolecia przed przewidywanym uderzeniem w Ziemię, by ta minimalna zmiana kumulowała się w czasie i by asteroida ominęła naszą planetę. Co lata obok W bieżącym roku w pobliżu Ziemi pojawi się kilka naprawdę dużych NEO. Pierwszą z nich będzie asteroida 2022 RM4 o średnicy 330–740 metrów, która 1 listopada przeleci w odległości 2,3 miliona kilometrów od nas. Trzy tygodnie później w trzykrotnie większej odległości od Ziemi znajdzie się 2019 QR1 o średnicy 180–410 metrów, a 2 i 3 grudnia w odległości około 5 milionów kilometrów przelecą obiekty o średnicy – odpowiednio – 320-710 m i 150-330 m. Jeśli zaś chodzi o asteroidy o średnicy ponad 1 kilometra, to w ciągu najbliższych 12 miesięcy będziemy mieli dwa takie spotkania. Już 16 lutego 2023 w odległości około 4,5 miliona kilometrów od Ziemi znajdzie się asteroida 199145 (2005 YY128) o średnicy 570–1300 metrów, a 13 kwietnia w podobnej odległości minie nas 436774 (2012 KY3) o średnicy 540–1200 metrów. Na odwiedziny prawdziwego olbrzyma musimy zaś poczekać do 2 września 2057 roku. Wtedy w odległości 7,5 miliona kilometrów minie nas pędząca z prędkością 48 492 km/h asteroida 3122 Florence o średnicy 4,9 km. « powrót do artykułu
  8. Na łamach PNAS (Proceedings of the National Academies of Sciences) opublikowano właśnie artykuł The abundance, biomass, and distribution of ants on Earth, w którym naukowcy z Niemiec, Australii, Chin i Francji odpowiadają na pytanie o liczbę mrówek żyjących na Ziemi. Pytanie wydaje się mało poważne, jak na tak poważne wydawnictwo, jednak – jak podkreślają autorzy badań – znajomość rozkładu i liczebności organizmów jest podstawą do zrozumienia ich roli w ekosystemie. Mrówki żyją niemal na całej Ziemi, ich rolę trudno przecenić, a mimo to dotychczas nie znaliśmy ich liczebności. Na szczęście właśnie ją poznaliśmy. Autorzy artykułu przeanalizowali dane z 489 badań nad mrówkami. Obejmowały one wszystkie kontynenty, główne biomy i habitaty. Na tej podstawie uczeni oszacowali, że liczba mrówek wynosi 20 x 1015 czyli 20 000 000 000 000 000, to 20 biliardów osobników. I są to ostrożne szacunki. Taka liczba mrówek odpowiada biomasie około 12 milionów ton suchego węgla. To więcej niż biomasa wszystkich dzikich ptaków i ssaków oraz około 20% biomasy wszystkich ludzi. Naukowcy określili też dystrybucję różnych mrówek w różnych ekosystemach. To niezwykle ważna wiedza. Każdego roku mrówki przemieszczają do 13 ton ziemi na każdy hektar. Mają więc olbrzymi wpływ na obieg składników odżywczych i odgrywają decydującą rolę w dystrybucji nasion, mówi Patrick Schultheiss. « powrót do artykułu
  9. Już za tydzień, 26 września, przez całą noc będziemy mogli cieszyć się wyjątkowym widokiem Jowisza. Planeta znajdzie się w wielkiej opozycji, a to oznacza, że będzie doskonale widoczna. Wystarczy dobra lornetka by zaobserwować charakterystyczne barwne pasy planety i trzy z czterech księżyców galileuszowych. To największe księżyce Jowisza, które Galileusz odkrył w 1610 roku. Opozycja ma miejsce, gdy dwa ciała oglądane z Ziemi znajdują się naprzeciwko siebie. Najczęściej mówimy tutaj o opozycji obserwowanego ciała do Słońca. Opozycja Jowisza, a zatem sytuacja gdy Słońce i Jowisz znajdują się po przeciwnych sobie stronach Ziemi, zachodzi co 13 miesięcy. Jowisz wydaje się wówczas jaśniejszy i większy. Tym razem jednak opozycja będzie wyjątkowa, gdyż jednocześnie Jowisz będzie w peryhelium, czyli najbliższym Słońcu punkcie swojej orbity. Będziemy więc mieli do czynienia z wielką opozycją, zwaną też wielkim zbliżeniem, które ma miejsce co kilkanaście lat. Tym razem jednak Jowisz podczas opozycji znajdzie się najbliżej Ziemi od 70 lat. Opozycja Jowisza rzadko zbiega się z jego peryhelium. Dlatego warto poświęcić część nocy na obserwacje. Jowisz będzie jednym z najjaśniejszych – a może nawet najjaśniejszym – obiektem na nocnym niebie. Zaraz po Księżycu, rzecz jasna. Na kolejne wielkie zbliżenie Jowisza trzeba będzie poczekać do 2 października 2034 roku. Jednak wówczas planeta będzie o 700 000 kilometrów dalej od Ziemi niż przy obecnym wielkim zbliżeniu. Jowisz bardzo interesuje naukowców. Obecnie planeta jest badana przez misję Juno. Została ona wystrzelona w 2011 roku i dotarła do planety w roku 2016. Początkowo planowano, że cała misja potrwa 7 lat. Juno pracuje już 11 lat a niedawno NASA przedłużyła jej misję do roku 2025. Na rok 2024 zaplanowano wystrzelenie misji Europa, która ma badać jeden z księżyców galileuszowych – Europę. « powrót do artykułu
  10. Naukowcy z Politechniki Federalnej w Zurychu (ETH Zurich) znaleźli pierwszy jednoznaczny dowód, że na Księżycu znajdują się gazy szlachetne pochodzące z płaszcza Ziemi. To niezwykle ważne odkrycie, które lepiej pozwala zrozumieć, jak powstał Księżyc oraz – być może – inne ciała niebieskie. Jest ono też silnym potwierdzeniem dominującej obecnie teorii wielkie zderzenia mówiącej, że naturalny satelita naszej planety pojawił się w wyniku kolizji Ziemi z planetą wielkości Marsa. W ramach pracy nad doktoratem Patrizia Will z ETH Zurich analizowała przekazane jej przez NASA sześć próbek meteorytów znalezionych na Antarktydzie. Meteoryty składały się ze skał bazaltowych powstałych w wyniku szybkiego schłodzenia magmy wypływającej z wnętrza Księżyca. Co ważne, takich warstw bazaltu było wiele, dzięki czemu te wewnętrzne były dobrze chronione przed promieniowaniem kosmicznym i wiatrem słonecznym. W wyniku chłodzenia powstało m.in. szkło. Will i jej współpracownicy zauważyli, że w cząstkach szkła są ślady helu i neonu pochodzących z wnętrza Księżyca. Noble Gas Laboratory na ETH Zurich posiada najczulszy na świecie spektrometr zdolny do wykrycia minimalnych ilości helu i neonu. Dzięki niemu uczeni mogli wykluczyć, by badane przez nich gazy powstały na Księżycu w wyniku oddziaływania promieniowania kosmicznego czy wiatru słonecznego. Jak wynika z ich badań, jedynym źródłem tych gazów może być płaszcz Ziemi. Badania Szwajcarów to zapewne dopiero początek. Teraz, gdy pokazali oni jak i gdzie szukać gazów szlachetnych meteorytach, rozpocznie się wyścig badaczy w celu ich identyfikacji, mówi jeden z najwybitniejszych ekspertów w tej dziedzinie, profesor Henner Busemann. Uczony sądzi, że wkrótce naukowcy postarają się znaleźć znacznie trudniejsze do zidentyfikowania ksenon i krypton. Będą też szukali wodoru i halogenków. Bardzo dobrze byłoby się dowiedzieć, jak niektóre z tych gazów szlachetnych przetrwały gwałtowny proces formowania się Księżyca. Taka wiedza pozwoli geochemikom i geofizykom na stworzenie nowych nowych modeli pokazujących, w jaki sposób mogły formować się planety w Układzie Słonecznym i poza nim, mówi Busemann. « powrót do artykułu
  11. Nowe badania dostarczyły najsilniejszych jak dotychczas dowodów, że ziemskie kontynenty uformowały się w wyniku gigantycznych uderzeń meteorytów, do których dochodziło przede wszystkim w ciągu pierwszego miliarda lat istnienia Ziemi. Ziemia jest jedyną znaną nam planetą posiadającą kontynenty. Nie wiemy jednak, jak doszło do ich powstania. Od kilkudziesięciu lat znana jest hipoteza mówiąca, że kontynenty powstały w wyniku gigantycznych uderzeń meteorytów. Dotychczas jednak brakowało mocnych dowodów na jej poparcie. Doktor Tim Johnson i jego zespół z australijskiego Curtin University opublikowali na łamach Nature artykuł Giant impacts and the origin and evolution of continents, w którym opisują zdobyte przez siebie dowody na rolę meteorytów w formowaniu się kontynentów. Naukowcy przeprowadzili badania izotopów tlenu w kryształach cyrkonu znajdujących się w skałach magmowych kratonu [to stara niepodlegająca już fragmentacji część skorupy ziemskiej – red.] Pilbara w zachodniej Australii. Kraton ten uformował się 3,6 miliarda lat temu i obok kratonu Kaapvaal na południu Afryki jest najstarszym zachowanym fragmentem skorupy Ziemi. Badanie izotopów tlenu w kryształach cyrkonu pokazało, że doszło do odwróconego procesu topienia się skał, który rozpoczął się wyżej i postępował w dół. Takie zjawisko jest zgodne z wynikiem uderzenia wielkiego meteorytu, mówi uczony. Naukowcy wyróżnili co najmniej trzy etapy tworzenia się kratonu Pilbara. Izotopy tlenu w cyrkonie sprzed ok. 3,6 miliarda lat wskazują na rozpoczęcie procesu masowego topnienia skał. Doszło do niego w wyniku wielkich uderzeń meteorytów, które doprowadziły do popękania skorupy ziemskiej i rozpoczęcia długotrwałej aktywności geotermalnej w wyniku interakcji z globalnym oceanem. Drugi etap związany jest z cyrkonem sprzed 3,4 miliarda lat, który jest współczesny najstarszym znanym sferulom, czyli drobnym kulkom szkliwa powstałym w wyniku uderzenia meteorytu w skały. Cyrkony etapu trzeciego są zaś wynikiem recyklingu skał suprakrustalnych. Przeprowadzone przez nas badania dostarczają pierwszych mocnych dowodów, że proces, który doprowadził do utworzenia się kontynentów, rozpoczął się od gigantycznych uderzeń meteorytów. Uderzenia te były podobne do tego, które zabiło dinozaury, ale miały miejsce miliardy lat wcześniej, mówi Johnson. Naukowiec dodaje, że zrozumienie tworzenia się i ewolucji kontynentów jest niezwykle ważne, gdyż to na lądach istnieje większość ziemskiej biomasy i ważnych minerałów. Istnienie tych minerałów to wynik procesu dyferencjacji skorupy ziemskiej, który rozpoczął się wraz z tworzeniem się pierwszych mas lądowych, a kraton Pilbara jest tylko jednym z nich, dodaje. Teraz Johnson i jego zespół chcą zbadać, czy w innych starych skałach na Ziemi zauważą podobny schemat. « powrót do artykułu
  12. Dzisiaj, 28 lipca, jest tegoroczny Dzień Długu Ekologicznego, czyli dzień, w którym ludzkość zużyła wszystkie zasoby, jakie ziemskie ekosystemy są w stanie odnowić w ciągu roku. Ziemia ma dużo zasobów, więc przez jakiś czas możemy ich ją pozbawiać, ale takie nadmierne zużycie nie może trwać wiecznie. To podobnie, jak z pieniędzmi. Przez jakiś czas możemy wydawać więcej, niż zarabiamy. Ale w końcu zbankrutujemy, mówi Mathis Wackernagel, prezydent Global Footprint Network. Indeks Dzień Długu Ekologicznego został stworzony przez naukowców na początku lat 90. Dzięki temu indeksowi wiemy, że ludzie zużywają obecnie tyle zasobów, że do ich odtworzenia potrzebowalibyśmy 1,75 planet takich jak Ziemia. Obliczenia przeprowadzono też dla okresu sprzed powstania wskaźnika. Pokazały one, że w bieżącym roku Dzień Długu Ekologicznego nadszedł najwcześniej w historii. Jeszcze w 1970 roku dzień ten następował 30 grudnia, zatem tempo zużywania zasobów pozwalało planecie na ich odnawianie. W roku 2018 był to już 1 sierpnia. Pandemia wyraźnie zahamowała nasze apetyty i w roku 2020 Dzień Długu Ekologicznego przypadł na 22 sierpnia. Obecnie zaś wypada najwcześniej od 1970 roku. Krajem, którego mieszkańcy – w przeliczeniu na głowę – zużywają najwięcej zasobów, jest Katar. Gdyby wszyscy ludzie zużywali tyle zasobów, co Katarczycy, Dzień Długu Ekologicznego miałby miejsce 10 lutego. Następny na liście jest Luksemburg (14 lutego), a później Kanada, USA i Zjednoczone Emiraty Arabskie (13 marca). Gdyby zaś każdy człowiek zużywał tyle zasobów, co przeciętny Polak, to Dzień Długu Ekologicznego przypadłby na 2 maja. Nie mamy się tutaj czym poszczycić, gdyż mieszkańcy wielu bogatszych krajów zużywają mniej zasobów. Na przykład dla Japonii dzień ten przypada 6 maja, dla Szwajcarii 13 maja, a dla Wielkiej Brytanii 19 maja. Według wskaźnika, większość zużywanych przez nas zasobów Ziemi (55%) wykorzystujemy na produkcję żywności, z tego zaś olbrzymia część przeznaczana jest na wyżywienie zwierząt, które później zjadamy. Na przykład w UE aż 63% ziemi ornej jest bezpośrednio powiązana z produkcją zwierzęcą. Rolnictwo przyczynia się do wylesiania, zmiany klimatu, utraty bioróżnorodności, degeneracji ekosystemów i zużywa przy tym znaczną część wody pitnej, mówią przedstawiciele Global Footprint Network. Dlatego też najprostszym i najszybszym sposobem na ograniczenie zużycia zasobów naturalnych byłoby zmniejszenie spożycia mięsa, szczególnie w bogatych krajach. Gdybyśmy jedli go o połowę mniej, to Dzień Długu Ekologicznego przypadłby o 17 dni później. Z kolei zaprzestanie marnowania żywności, a ludzkość marnuje około 33% tego, co produkuje, opóźniłoby nadejście Dnia Długu Ekologicznego o 13 dni. Ze szczegółami można zapoznać się na witrynie Global Foodprint Network. Umieszczono tam też kalkulator, za pomocą którego możemy sprawdzić, ilu planet byśmy potrzebowali, gdyby wszyscy ludzie zużywali tyle zasobów, co my. « powrót do artykułu
  13. Chiny planują przeprowadzenie testu obrony planetarnej. W 2026 roku chcą wystrzelić misję, w ramach której spróbują zmienić kurs asteroidy 2020 PN1. Z przedstawiony slajdów wynika, że rakieta Long March 3B wyniesie w przestrzeń kosmiczną impaktor i orbiter. Pierwsze z urządzeń uderzy w asteroidę, drugie zaś będzie obserwowało całe wydarzenie. Plan Chin jest podobny do misji DART wystrzelonej przez NASA w listopadzie ubiegłego roku. Już za 2 miesiące DART ma uderzyć w asteroidę Dimorphos (ok. 160 m średnicy) krążącą wokół większej asteroidy Didymos (ok. 780 m średnicy), a całe wydarzenie zarejestruje niewielki włoski satelita LICIACube, który stanowi część misji. Obecnie Ziemi nie zagraża żadna duża asteroida, której uderzenie mogłoby spowodować katastrofalne skutki. Specjaliści zajmujący się śledzeniem asteroid bliskich Ziemi są pewni, że tego typu niebezpieczeństwo nie będzie groziło nam przez najbliższych 100 lat. Jednak, jak widzimy, różne agencje kosmiczne już przygotowują się na taką ewentualność i pracują nad technologiami obrony naszej planety. Jednym z pomysłów na taką obronę jest rozbicie o powierzchnię asteroidy pojazdu, w wyniku czego asteroida – której trasa znajduje się na kursie kolizyjnym z Ziemią – lekko zmieni kurs i ominie planetę. Takie działanie musi być przeprowadzone na wiele lat przed upadkiem takiej asteroidy na Ziemię, gdyż zmiana kursu w wyniku uderzenia impaktora będzie minimalna, potrzeba zatem dużo czasu, by odchylenie od kursu na tyle się powiększyło, byśmy uniknęli niebezpieczeństwa. Na szczęście naprawdę duże asteroidy potrafimy wykryć na wiele lat zanim znajdą się w pobliżu Ziemi. Technologia kinetycznego impaktora to jedno z proponowanych rozwiązań obrony Ziemi przed planetami. Więcej o programie ochrony Ziemi pisaliśmy w artykułach Znamy już ponad 10 000 NEO oraz Szef NASA zaleca modlitwę. Ostatnio zaś przeprowadzono wyliczenia, z których dowiadujemy się, że broń atomowa może uchronić Ziemię przed asteroidami. Jednak z innych badań wynika, że obronienie Ziemi będzie trudniejsze, niż dotychczas sądziliśmy. « powrót do artykułu
  14. Już jutro będziemy mogli oglądać superksiężyc, Księżyc pełni, który dodatkowo znajdzie się w perygeum swojej orbity wokół Ziemi. Nasz naturalny satelita będzie więc nie tylko w pełni, ale i najbliżej Ziemi. Będzie o 14% większy i 30% jaśniejszy niż wówczas, gdyby w czasie pełni znajdował się w apogeum – najdalszym punkcie orbity. Pełnia to dobry moment, by obserwować ukształtowanie powierzchni Srebrnego Globu. Tym bardziej, gdy znajdzie się on w odległości około 357,5 tysiąca kilometrów od Ziemi. To o 30 tys. kilometrów bliżej, niż jego średnia odległość od naszej planety i 50 tys. km bliżej, niż w apogeum. Latem na półkuli północnej Księżyc w pełni znajduje się niżej nad horyzontem niż w innych porach roku. Łatwiej więc o spektakularne zdjęcia gór czy budynków z wielkim superksiężycem w tle. Księżyc jest większy i bardziej fotogeniczny. Jako, że jest bliżej horyzontu, jego światło musi przejść przez grubszą warstwę atmosfery, dzięki czemu zyskuje dodatkowe zabarwienie. Pełnia Księżyca rozpocznie się jutro o godzinie 13:52 czasu polskiego. Oświetlone będzie wówczas 100% jego tarczy. W perygeum księżyc znajdzie się 15 czerwca o godzinie 01:24. Odległość pomiędzy Księżycem a Ziemią wyniesie wówczas 357 432 km. I to właśnie najlepszy moment na jego obserwowanie. Srebrny Glob będzie oświetlony w 100% i będzie najbliżej. Już o godzinie 02:25 oświetlone będzie 99% powierzchni, a on sam oddali się od nas o 2 kilometry. « powrót do artykułu
  15. Już za 2 dni, w piątek 27 maja w pobliżu Ziemi znajdzie się jedna z największych asteroid asteroid bliskich Ziemi (NEO). Obiekt 1989 JA ma średnicę 1,8 kilometra i przez najbliższe dwa lata będzie największą asteroidą, jaka przeleci w pobliżu naszej planety. Nie ma jednak najmniejszych powodów do obaw. 1989 JA zbliży się do Ziemi na 0,027 jednostki astronomicznej, zatem znajdzie się w odległości 4 milionów kilometrów od Ziemi. To mniej więcej 10-krotnie większa odległość niż między Ziemią a Księżycem. Jeszcze nigdy 1898 JA nie była tak blisko naszej planety i przez kolejne 172 lata już tak blisko nie podleci. Obecnie asteroida pędzi z prędkością ponad 48 000 km/h. To kilkunastokrotnie szybciej niż pocisk wystrzelony z karabinu. Ostatni raz do bliskiego spotkania z równie wielką asteroidą doszło 29 kwietnia 2020, kiedy to w odległości 0,042 j.a. (6,3 mln km) przeleciała asteroida 1998 OR. Na następne spotkanie z równie wielkim obiektem co 1898 JA będziemy musieli poczekać do 27 czerwca 2024 roku. Wówczas to odwiedzi nas 2011 UL21. To asteroida o średnicy od 1,8 do 3,9 kilometra, która znajdzie się w odległości 0,44 j.a., czyli 6,6 miliona kilometrów od Ziemi. W ciągu najbliższych 100 lat w Ziemię nie uderzy żadna asteroida na tyle duża, by mogła spowodować katastrofę na olbrzymią skalę. Jednak agencje kosmiczne różnych krajów już teraz myślą o ewentualnej obronie naszej planety. Asteroidy bliskie Ziemi są katalogowane i monitorowane, opracowywane są różne technologie obrony przed nimi. Niedawno NASA wystrzeliła misję DART (Double Asteroid Redirection Test), której celem jest sprawdzenie możliwości zmiany trasy asteroidy. « powrót do artykułu
  16. W ramach zwycięskiego projektu konkursu SONATA BIS 11, finansowanego przez Narodowe Centrum Nauki, prof. Krzysztof Sośnica wraz z zespołem wykorzysta precyzyjne obserwacje laserowe i pomiary odległości do satelitów geodezyjnych, by dokładniej zbadać ewolucję ziemskiego pola grawitacyjnego. Dzięki obserwacjom zmieniającego się pola grawitacyjnego Ziemi, można opisać przemieszczanie się mas w systemie ziemskim, w tym zmiany w wodach lądowych, pokrywie lodowej, oceanach i atmosferze. Obserwacje te dostarczają niezbędnych informacji na temat globalnego obiegu wody, zmian w prądach powierzchniowych oceanów, utraty masy lodowców, podnoszenia się poziomu morza, przemieszczeń obciążenia powierzchniowego, a także wielu innych procesów środowiskowych. Zmiany, jakie zachodzą w polu grawitacyjnym Ziemi bezpośrednio wpływają na jej rotację, a w szczególności na współrzędne biegunowe i zmiany długości dnia od skali rocznej do wiekowej. Misje satelitarne GRACE i GRACE Follow-On zrewolucjonizowały obserwacje przemieszczania się mas w systemie ziemskim, ale dostarczają dane stosunkowo od niedawna. Naukowcy posiadają niewielką wiedzę na temat zmian pola grawitacyjnego Ziemi przed 2002 rokiem, czyli przed uruchomieniem misji GRACE. Ponadto, misja GRACE była początkowo projektowana na pięć lat, ale działała dłużej. Po 2010 roku pojawiły się poważne problemy z jej zasilaniem, skutkujące brakami w przesyle danych. Satelita GRACE Follow-On wszedł w fazę naukową w styczniu 2019 roku, czyli 16 miesięcy po wycofaniu jego poprzednika. Te wydarzenia sprawiły, że obserwacje pola grawitacyjnego Ziemi są nieciągłe, z wieloma lukami między 2010 a 2019 rokiem. Jak podkreśla prof. Krzysztof Sośnica z Instytutu Geodezji i Geoinformatyki na Uniwersytecie Przyrodniczym we Wrocławiu, misje GRACE i GRACE Follow-On nie są jedynymi misjami, które można wykorzystać do wyznaczania zmienności pola grawitacyjnego Ziemi. W badaniu procesów redystrybucji masy w dużej skali możemy zastosować precyzyjne laserowe pomiary odległości do satelitów geodezyjnych, takich jak LAGEOS-1/2, LARES, BLITS, a także Ajisai, Starlette i Stella – mówi prof. Sośnica, dodając, że satelity Starlette, Ajisai i LAGEOS od lat 80. są regularnie obserwowane przez globalną sieć stacji laserowych zapewniających pomiary odległości z dokładnością kilku milimetrów. A od początku lat 90. wiele aktywnych satelitów niskich (LEO) zostało wyposażonych w precyzyjne odbiorniki Globalnego Systemu Nawigacji Satelitarnej (GNSS), umożliwiające precyzyjne wyznaczenie orbity, a tym samym wyliczenie parametrów pola grawitacyjnego. Można ich więc użyć, by dokładniej zbadać zmiany w polu grawitacyjnym Ziemi. W projekcie wyznaczone zostaną takie wielkości jak stała grawitacji – czyli fundamentalny parametr niezbędny nie tylko w badaniach geodezyjnych, ale również w fizyce i astronomii. Sprawdzony zostanie ruch środka Ziemi wraz z ocenami i atmosferą. Środek Ziemi wykonuje niewielkie, kilkumilimetrowe ruchy za sprawą zjawisk zachodzących we wnętrzu, a przede wszystkim na powierzchni Ziemi. Figura Ziemi jest spłaszczona ze względu na ruch wirowy planety. Jednak spłaszczenie Ziemi nie jest stałe w czasie. Projekt ma za zadanie odpowiedzieć na pytanie jak zmieniało się spłaszczenie Ziemi za sprawą topniejących lodowców na Grenlandii i Antarktydzie w ciągu ostatnich 40 lat. Współrzędne geocentrum, czyli środka masy Ziemi oraz wartości spłaszczenia Ziemi będą wyznaczone z wielu źródeł, które opierają się na różnych danych oraz technikach satelitarnych i naziemnych. Różne źródła danych – satelitarne, geofizyczne oraz geodezyjne – zostaną zintegrowane z wykorzystaniem algorytmów uczenia maszynowego oraz sztucznej inteligencji. Zostanie zbadany wpływ ziemskiej grawitacji na zmienność długości doby oraz przemieszczanie się bieguna Ziemi oraz jak zmiany pola grawitacyjnego wpływają na ruch sztucznych satelitów oraz pozycje stacji GPS na powierzchni Ziemi. Projekt, który w ramach konkursu SONATA BIS 11 zdobył finansowanie z Narodowego Centrum Nauki w wysokości 2 196 000 zł zakłada wyznaczenie modeli z wykorzystaniem zintegrowanych obserwacji. Będzie łączył laserowe pomiary do satelitów geodezyjnych, współrzędnych stacji GNSS, satelitów nisko-orbitujących wyposażonych w odbiorniki GNSS, dane z satelitów GRACE oraz modele geofizyczne. W ramach tego projektu będziemy wyprowadzać i analizować czasowe, zintegrowane i wielosatelitarne modele pola grawitacyjnego Ziemi, na podstawie danych sięgających od lat 80, co da nam pełniejszy ogląd ewolucji pola grawitacyjnego – mówi prof. Sośnica. Badania te dadzą fundamentalny wgląd w procesy zachodzące w systemie ziemskim i będą miały zasadnicze znaczenie dla misji satelitarnych do obserwacji i pomiarów Ziemi wymagających wyznaczenia orbit satelitów z największą dokładnością. « powrót do artykułu
  17. Od kilku lat Księżyc cieszy się dużym zainteresowaniem agencji kosmicznych i firm prywatnych. Planowane są misje załogowe i bezzałogowe na Srebrny Glob. Jednym z najbardziej ambitnych projektów jest zbudowanie na orbicie Księżyca stacji Lunar Gateway, w której przechowywane będą zapasy, urządzenia i roboty, będzie służyła jako baza dla astronautów i zapewniała łączność z Ziemią. Do roku 2030 różne firmy i organizacje planują ponad 90 misji związanych z Księżycem. I nawet jeśli jakaś część z nich nie dojdzie do skutku, to inne – być może większość – się odbędą. A to dopiero początek. Zainteresowanie Księżycem będzie rosło. Być może w przyszłości powstanie na nim stała baza. Wszystkie te misje oraz potencjalna baza będą potrzebowały łączności z Ziemią. A jej zapewnienie to niełatwe zadanie. Już w czasie misji Apollo były problemy z komunikacją pomiędzy Srebrnym Globem a planetą. A gdy misji będzie więcej i będą się one odbywały w różnych miejscach Księżyca, problemy będą jeszcze większe. Niemożliwe jest bowiem zapewnienie bezpośredniej łączności zarówno ze stroną Księżyca niewidoczną z Ziemi, jak i z dużych obszarów podbiegunowych. Nawet na widocznej z Ziemi stronie łączność mogą zakłócać nierówności terenu. Trzeba też pamiętać, że oba ciała niebieskie dzieli kilkaset tysięcy kilometrów, zatem do zapewnienia łączności trzeba silnych nadajników i dużych anten oraz wzmacniaczy. Pracujące na Księżycu niewielkie roboty z pewnością nie będą miały ani odpowiednich urządzeń, ani wystarczająco dużo energii, by komunikować się z Ziemią. Dlatego też włoska firma Argotec oraz należące do NASA Jest Propulsion Laboratory (JPL) pracują nad Andromedą. Ma to być konstelacja 24 satelitów krążący po 6 orbitach wokół Srebrnego Globu. Satelity służyłyby do przekazywania sygnałów radiowych pomiędzy Ziemią a Księżycem, zapewniając nieprzerwaną łączność na biegunach i niemal nieprzerwaną wszędzie indziej. Włoska firma opracowuje koncepcję satelity, a JPL ma dostarczyć podsystemy, takie jak nadajniki czy anteny. Zadanie tylko z pozoru jest proste. Satelity powinny bowiem znaleźć się na stabilnych orbitach, czyli takich, które nie będą wymagało od nich manewrowania. Po drugie, orbity należy dobrać tak, by zapewnić jak najlepszą łączność obszarom, na którym prawdopodobnie będzie prowadzona najbardziej intensywna działalność. Po trzecie zaś, zapewniając łączność tym obszarom, nie należy zapomnieć o pozostałej części powierzchni Księżyca. Zaproponowana obecnie przez Argotec koncepcja zakłada, że satelity będą znajdowały się na stabilnych orbitach, na których będą mogły pracować przez co najmniej 5 lat. Każdy z nich będzie krążył po eliptycznej orbicie o czasie obiegu 12 godzin. Orbity będą przebiegały w odległości 720 km od powierzchni Księżyca w punkcie najbliższym (perycentrum) i 8090 km w punkcie najdalszym (apocentrum). Jako, że satelita podróżuje najwolniej gdy jest w apocentrum, orbity zostaną ustawione tak, by ich apocentrum przebiegało nad najbardziej interesującym punktami Księżyca, co zapewni najdłuższy okres nieprzerwanej łączności. Dzięki dobrze dobranym orbitom nad każdym z biegunów Księżyca zawsze będzie znajdował się jakiś satelita, a przez 94% czasu będą to trzy satelity. Z kolei nad równikiem co najmniej jeden satelita będzie przez 89% czasu, a trzy satelity przez 79%. Jako, że nawet w apocetrum satelita będzie znajdował się w odległości mniejszej niż 10 000 km od powierzchni, zapewni łączność również niewielkim urządzeniom, nie posiadającym dużych anten i nadajników. Co więcej, dzięki satelitom możliwa będzie komunikacja w czasie rzeczywistym pomiędzy ludźmi pracującymi w dwóch oddalonych lokalizacjach. Jakby jeszcze tego było mało, satelity będą działały jak księżycowy GPS, zapewniając dane lokalizacyjne ludziom i urządzeniom na Srebrnym Globie. Andromeda musi być bardzo wydajna. Efektywna komunikacja głosowa czy przesyłanie materiałów wideo w wysokiej rozdzielczości będą wymagały prędkości transmisji rzędu megabitów na sekundę. Tym bardziej biorąc pod uwagę liczbę planowanych misji. Jednak to nie wszystko. NASA chce umieścić na niewidocznej z Ziemi stronie Księżyca radioteleskop. Agencja pracuje obecnie nad dwiema koncepcjami. Pierwsza z nich – LCRT – zakłada zbudowanie w księżycowym kraterze największego w Układzie Słonecznym radioteleskopu o średnicy 1 km. Zbudowany przez roboty teleskop mógłby prowadzić obserwacje niedostępne z Ziemi, gdyż byłby wolny zarówno od zakłóceń powodowanych przez człowieka, zakłóceń jonosfery czy satelitów. Druga zaś rozważana koncepcja – FARSIDE – zakłada wybudowanie 128 anten. Byłyby one ustawione w okręgu o średnicy 10 km i połączone kablami ze stacją centralną. Informacje z takich teleskopów również byłyby przekazywane przed Andromedę. A na Ziemi wszystkie te dane trzeba by było odebrać. Przykładem systemu odbiorczego może być należący do NASA DSN (Deep Space Network). To zespół anten znajdujących się w USA, Australii i Hiszpanii, które służą komunikacji z misjami w dalszych partiach przestrzeni kosmicznej. DNS już teraz obsługuje wiele misji, a kolejne są planowane. Dlatego też Andromeda raczej nie będzie mogła skorzystać z DSN. Potrzebny będzie osobny system odbiorczy na Ziemi. « powrót do artykułu
  18. NASA uruchomiła system monitoringu asteroid nowej generacji. Dzięki niemu Agencja lepiej będzie mogła ocenić zagrożenie, jakie dla naszej planety stwarzają poszczególne asteroidy.  Obecnie znamy 27 744 asteroid bliskich Ziemi. Jest wśród nich 889 obiektów o średnicy przekraczającej 1 km i 9945 asteroid o średnicy ponad 140 metrów. Jednak w najbliższym czasie ich liczba znacznie się zwiększy. Stąd potrzeba doskonalszego algorytmu oceny zagrożenia. W ciągu najbliższych lat prace rozpoczną nowocześniejsze, bardziej zaawansowane teleskopy. Można się więc spodziewać szybkiego wzrostu liczy nowo odkrytych asteroid, których orbity trzeba będzie obliczyć i nadzorować. W kulturze popularnej asteroidy są często przedstawiane jako obiekty chaotyczne, gwałtownie zmieniające kurs i zagrażające Ziemi. W rzeczywistości jednak są niezwykle przewidywalne i krążą wokół Słońca po znanych orbitach. Czasem jednak z obliczeń wynika, że orbita asteroidy znajdzie się blisko Ziemi. Wówczas, ze względu na niewielkie niepewności co do dokładnej pozycji asteroidy, nie można całkowicie wykluczyć uderzenia. Astronomowie używają się złożonych systemów monitorowani i obliczania orbit, które automatycznie obliczają ryzyko zderzenia asteroidy z Ziemią. Należące do NASA Center for Near Earth Object Studies (CNEOS) oblicza orbity dla każdej znanej asteroidy i przekazuje dane do Planetary Defense Coordinatio Office (PDCO). Od 2002 roku CNEOS wykorzystuje w tym celu oprogramowanie Sentry. Pierwsza wersja Sentry to bardzo dobre oprogramowanie, które działa od niemal 20 lat. Wykorzystuje bardzo sprytne algorytmy. W czasie krótszym niż godzina potrafi z dużym prawdopodobieństwem ocenić ryzyko zderzenia z konkretną asteroidą w ciągu najbliższych 100 lat, mówi Javier Roa Vicens, który stał na czele grupy pracującej nad Sentry-II, a niedawno przeniósł się do SpaceX. Sentry-II korzysta z nowych bardziej dokładnych i wiarygodnych algorytmów, które potrafią obliczyć ryzyko uderzenia z dokładnością wynoszącą ok. 5 na 10 000 000. Ponadto bierze pod uwagę pewne elementy, których nie uwzględniało Sentry. Gdy asteroida wędruje w Układzie Słonecznym, o jej orbicie decyduje przede wszystkim oddziaływanie grawitacyjne Słońca. Wpływ na jej orbitę ma też grawitacja planet. Sentry z dużą dokładnością potrafi obliczyć wpływ sił grawitacyjnych, pokazując, w którym miejscu przestrzeni kosmicznej asteroida znajdzie się za kilkadziesąt lat. Jednak Sentry nie uwzględnia sił innych niż grawitacja. A najważniejszymi z nich są siły oddziałujące na asteroidę w wyniku ogrzewania jej przez Słońce. Asteroidy obracają się wokół własnej osi. Zatem są ogrzewane przez Słońce z jednej strony, następnie ogrzana strona odwraca się od Słońca i stygnie. Uwalniana jest wówczas energia w postaci promieniowania podczerwonego, która działa jak niewielki, ale stały napęd. To tzw. efekt Jarkowskiego. Ma on niewielki wpływ na ruch asteroidy w krótki terminie, jednak na przestrzeni dekad i wieków może znacząco zmienić orbitę asteroidy. Fakt, że Sentry nie potrafił automatycznie uwzględniać efektu Jarkowskiego był poważnym ograniczeniem. Za każdym razem, gdy mieliśmy do czynienia z jakimś szczególnym przypadkiem – jak asteroidy Apophis, Bennu czy 1950 DA – musieliśmy ręcznie dokonywać skomplikowanych długotrwałych obliczeń. Dzięki Sentry-II nie będziemy musieli tego robić, mówi Davide Farnocchia, który pracował przy Sentry-II. Ponadto oryginalny algorytm Sentry miał czasem problemy z określeniem prawdopodobieństwa kolizji, gdy orbita asteroidy miała znaleźć się niezwykle blisko Ziemi. Na takie asteroidy w znaczący sposób wpływa grawitacja planety i w takich przypadkach gwałtownie rosła niepewność co do przyszłej orbity asteroidy po bliskim spotkaniu z Ziemią. Sentry mógł mieć wówczas problemy i konieczne było przeprowadzanie ręcznych obliczeń i wprowadzanie poprawek. W Sentry-II nie będzie tego problemu. Co prawda takie szczególne przypadki stanowią obecnie niewielki odsetek wszystkich obliczeń, ale spodziewamy się, że po wystrzeleniu przez NASA misji NEO Surveyor i uruchomieniu Vera C. Rubin Observatory, ich liczba wzrośnie, musimy więc być przygotowani, mówi Roa Vicens. NASA zdradza również, że istnieje zasadnicza różnica w sposobie pracy Sentry i Sentry-II. Dotychacz gdy teleskopy zauważyły nieznany dotychczas obiekt bliski Ziemi astronomowie określali jego pozycję na niebie i wysyłali dane to Minor Planet Center. Dane te były wykorzystywane przez CNEOS do określenia najbardziej prawdopodobnej orbity asteroidy wokół Słońca. Jednak, jako że istnieje pewien margines niepewności odnośnie obserwowanej pozycji asteroidy wiadomo, że orbita najbardziej prawdopodobna nie musi być tą prawdziwą. Rzeczywista orbita asteroidy mieści się w znanych granicach niepewności pomiarowej. Sentry, by obliczyć prawdopodobieństwo zderzenia z Ziemią, wybierał zestaw równomiernie rozłożonych punktów w obszarze niepewności pomiarowej, uwzględniając przy tym jednak tę część obszaru, w której z największym prawdopodobieństwem znajdowały się orbity zagrażające Ziemi. Każdy z punktów reprezentował nieco inną możliwą rzeczywistą pozycję asteroidy. Następnie dla każdego z nich algorytm określał orbitę asteroidy w przyszłości i sprawdzał, czy któraś z nich przebiega blisko Ziemi. Jeśli tak, to skupiał się na tej orbicie, wyliczając dla niej prawdopodobieństwo uderzenia. Sentry-II działa inaczej. Wybiera tysiące punktów rozłożonych na całym obszarze niepewności pomiarowej. Następnie sprawdza, które z możliwych punktów w całym regionie są powiązane z orbitami zagrażającymi Ziemi. Innymi słowy, Sentry-II nie jest ograniczony założeniami dotyczącymi tego, gdzie na obszarze marginesu błędu pomiarowego mogą znajdować się orbity najbardziej zagrażające Ziemi. Bierze pod uwagę cały obszar, dzięki czemu może wyłapać też bardzo mało prawdopodobne scenariusze zderzeń, które mogły umykać uwadze Sentry. Farnocchia porównuje to do szukania igły w stogu siana. Igły to możliwe zderzenia, a stóg siana to cały obszar błędu pomiarowego. Im większa niepewność odnośnie pozycji asteroidy, tym większy stóg siana, w którym trzeba szukać. Sentry sprawdzał stóg siana wielokrotnie, szukając igieł wzdłuż pojedynczej linii przebiegającej przez cały stóg. Sentry-II nie korzysta z żadnej linii. Szuka w całym stogu. Sentry-II to olbrzymi postęp w dziedzinie zidentyfikowania nawet najmniej prawdopodobnych scenariuszy zderzenia wśród olbrzymiej liczby wszystkich scenariuszy. Gdy konsekwencje przyszłego uderzenia asteroidy mogą być naprawdę katastrofalne, opłaca się poszukać nawet tych mało prawdopodobnych scenariuszy, mówi Steve Chesley, który stał na czele grupy opracowującej Sentry i pomagał przy pracy nad Sentry-II. Szczegółowy opis Sentry-II znajdziemy na łamach The Astronomical Journal. Poniższy film pokazuje zaś w jaki sposób określono orbitę asteroidy Bennu z uwzględnieniem sił grawitacyjnych i niegrawitacyjnych.   « powrót do artykułu
  19. Zespół naukowców z Wielkiej Brytanii, Australii i USA opisuje na łamach Nature Astronomy wyniki swoich badań nad asteroidami, z których wynika, że ważnym źródłem wody dla formującej się Ziemi był kosmiczny pył. A w procesie powstawania w nim wody główną rolę odegrało Słońce. Naukowcy od dawna szukają źródeł wody na Ziemi. Jedna z teorii mówi, że pod koniec procesu formowania się naszej planety woda została przyniesiona przez planetoidy klasy C. Już wcześniej naukowcy analizowali izotopowy „odcisk palca” planetoid typu C, które spadły na Ziemię w postaci bogatych w wodę chondrytów węglistych. Jeśli stosunek wodoru do deuteru byłby w nich taki sam, co w wodzie na Ziemi, byłby to silny dowód, iż to właśnie one były źródłem wody. Jednak uzyskane dotychczas wyniki nie są jednoznaczne. Woda zawarta w chondrytach w wielu przypadkach odpowiadała wodzie na Ziemi, jednak w wielu też nie odpowiadała. Częściej jednak ziemska woda ma nieco inny skład izotopowy niż woda w chondrytach. To zaś oznacza, że oprócz nich musi istnieć w Układzie Słonecznym co najmniej jeszcze jedno źródło ziemskiej wody. Naukowcy pracujący pod kierunkiem specjalistów z University of Glasgow przyjrzeli się teraz planetoidom klasy S, które znajdują się bliżej Słońca niż planetoidy C. Przeanalizowali próbki pobrane z asteroidy Itokawa i przywiezione na Ziemię w 2010 roku przez japońską sondę Hayabusa. Dzięki najnowocześniejszym narzędziom byli w stanie przyjrzeć się strukturze atomowej poszczególnych ziaren próbki i zbadać pojedyncze molekuły wody. Wykazali, że pod powierzchnią Itokawy, w wyniku procesu wietrzenia, powstały znaczne ilości wody. Odkrycie to wskazuje, że w rodzącym się Układzie Słonecznym pod powierzchnią ziaren pyłu tworzyła się woda. Wraz z pyłem opadała ona na Ziemię, tworząc z czasem oceany. Wiatr słoneczny to głównie strumień jonów wodoru i helu, które bez przerwy przepływają przez przestrzeń kosmiczną. Kiedy jony wodoru trafiały na powierzchnię pozbawioną powietrza, jak asteroida czy ziarna pyłu, penetrowały ją na głębokość kilkudziesięciu nanometrów i tam mogły wpływać na skład chemiczny skład i pyłu. Z czasem w wyniku tych procesów jony wodoru mogły łączyć się z atomami tlenu obecnymi w pyle i skałach i utworzyć wodę. Co bardzo ważne, taka woda pochodząca z wiatru słonecznego, składa się z lekkich izotopów. To zaś mocno wskazuje, że poddany oddziaływaniu wiatru słonecznego pył, który opadł na tworzącą się Ziemię, jest brakującym nieznanym dotychczas źródłem wody, stwierdzają autorzy badań. Profesor Phil Bland z Curtin University powiedział, że dzięki obrazowaniu ATP (Atom Probe Tomography) możliwe było uzyskanie niezwykle szczegółowego obrazu na głębokość pierwszych 50 nanometrów pod powierzchnią ziaren pyłu Itokawy, który okrąża Słońce w 18-miesięcznych cyklach. Dzięki temu zobaczyliśmy, że ten fragment zwietrzałego materiału zawiera tyle wody, że po przeskalowaniu było by to około 20 litrów na każdy metr sześcienny skały. Z kolei profesor John Bradley z University of Hawai‘i at Mānoa przypomniał, że jeszcze dekadę temu samo wspomnienie, że źródłem wody w Układzie Słonecznym może być wietrzenie skał spowodowane wiatrem słonecznym, spotkałoby się z niedowierzaniem. Teraz wykazaliśmy, że woda może powstawać na bieżąco na powierzchni asteroidy, co jest kolejnym dowodem na to, że interakcja wiatru słonecznego z pyłem zawierającym tlen prowadzi do powstania wody. Pył tworzący mgławicę planetarną Słońca był poddawany ciągłemu oddziaływaniu wiatru słonecznego. A z pyłu tego powstawały planety. Woda tworzona w ten sposób jest zatem bezpośrednio związana z wodą obecną w układzie planetarnym, dodają autorzy badań. Co więcej, odkrycie to wskazuje na obfite źródło wody dla przyszłych misji załogowych. Oznacza to bowiem, ze woda może znajdować się w na pozornie suchych planetach. Jednym z głównych problemów przyszłej załogowej eksploracji kosmosu jest problem znalezienia wystarczających ilości wody. Sądzimy, że ten sam proces wietrzenia, w wyniku którego woda powstała na asteroidzie Itokawa miał miejsce w wielu miejscach, takich jak Księżyc czy asteroida Westa. To zaś oznacza, że w przyszłości astronauci będą mogli pozyskać wodę wprost z powierzchni planet, dodaje profesor Hope Ishii.   « powrót do artykułu
  20. Dzisiaj o godzinie 7:21 czasu polskiego z Vandenberg Space Force Base w Kalifornii wystartowała DART (Double Asteroid Redirection Test), pierwsza w historii misja, której celem jest sprawdzenie technologii obrony Ziemi przed asteroidami. W jej ramach pojazd kosmiczny zderzy się z asteroidą. Celem testu jest lekka zmiana orbity asteroidy i zbadanie tej zmiany za pomocą naziemnych teleskopów. Inżynierowie z NASA chcą sprawdzić, czy ich pojazd jest w stanie samodzielnie podlecieć do wybranej asteroidy i uderzyć w nią tak, by zmienić jej trasę w pożądany sposób. Dzięki testowi specjaliści zdobędą dane, które przydadzą się do obrony Ziemi, gdybyśmy kiedyś wykryli rzeczywiste zagrożenie. Na pokładzie DART znalazł się też niewielki satelita LICIACube Włoskiej Agencji Kosmicznej. Zostanie on uwolniony zanim DART uderzy w asteroidę. LICIACube sfotogafuje zderzenie oraz chmurę materiału, która w jego wyniku powstanie. Celem DART jest niezagrażająca Ziemi niewielka asteroida Dimorphos o średnicy ok. 160 metrów, krążąca wokół większej asteroidy Didymos (ok. 780 m średnicy). W cztery lata po uderzeniu DART asteroidy odwiedzi misja Hera Europejskiej Agencji Kosmicznej, która zbada krater powstały w wyniku uderzenia oraz określi masę Dimorphosa. DART będzie pierwszym testem tzw. impaktora kinetycznego. To technika polegająca na celowym rozbiciu pojazdu o asteroidę, by zmienić jej trajektorię. Sądzimy, że obecnie jest to najbardziej zaawansowana technologicznie metoda obrony Ziemi. Dzięki niej poprawimy modele komputerowe dotyczące wpływu impaktora kinetycznego na asteroidę. Przyda się nam to w przyszłości, gdy Ziemi naprawdę będzie coś zagrażało, mówi Lindley Johnson, pierwszy w historii Planetary Defense Officer. Dimorphos i Didymos zbliżą się do Ziemi w przyszłym roku. Pomiędzy 26 września a 1 października DART ma przechwycić asteroidy i rozbić się o Didymosa pędząc w chwili zderzenia z prędkością 21 500 km/h. W chwili uderzenia układ Didymos-Dimorphos będzie znajdował się w odległości 11 milionów kilometrów od Ziemi. To dość blisko, dzięki czemu można będzie zaobserwować zmianę orbity Dimorphosa wokół Didymosa. Test nie niesie żadnego zagrożenia dla naszej planety. Siła uderzenia będzie zbyt mała, by rozbić Dimorphosa, a uderzenie tylko przybliży mniejszą asteroidę do większej. Ponadto zgodnie z najnowszymi obliczeniami, orbita Didymosa nie przetnie się z orbitą Ziemi w żadnym punkcie w najbliższej przyszłości. Dotychczas nie znaleźliśmy żadnej dużej asteroidy, która stanowiłaby zagrożenie dla Ziemi. Jednak nie przestajemy szukać. Naszym celem jest znalezienie takiego obiektu na całe lata albo i dekady, zanim uderzy w naszą planetę. Wówczas będziemy mogli zmienić jego kurs za pomocą technologii podobnej do DART, mówi Lindley Johnson, oficer ds. obrony planetarnej w NASA. DART to tylko jeden z elementów prac prowadzonych przez NASA w ramach programu obrony Ziemi. Przygotowujemy też Near-Earth Object Surveyor Mission. To teleskop kosmiczny pracujący w paśmie podczerwieni, który ma wystartować jeszcze w obecnej dekadzie. Znakomicie zwiększy on możliwości wyszukiwania i charakteryzowania potencjalnie niebezpiecznych obiektów znajdujących się w odległości do około 50 milionów kilometrów od orbity Ziemi. Technologia kinetycznego impaktora to jedno z proponowanych rozwiązań obrony Ziemi przed planetami. Więcej o programie ochrony Ziemi pisaliśmy w artykułach Znamy już ponad 10 000 NEO oraz Szef NASA zaleca modlitwę. Ostatnio zaś przeprowadzono wyliczenia, z których dowiadujemy się, że broń atomowa może uchronić Ziemię przed asteroidami. Jednak z innych badań wynika, że obronienie Ziemi będzie trudniejsze, niż dotychczas sądziliśmy. « powrót do artykułu
  21. Powierzchnia Księżyca pełna jest kraterów uformowanych przez uderzenia asteroid. Badania skał pokazały, że asteroidy masowo opadały na powierzchnię Księżyca przed około 3,9 miliardami lat. Stworzono więc teorię o Wielkim Bombardowaniu. Jednak dotychczas nie wiadomo było, skąd pochodziły skały, które zbombardowały Księżyc. Naukowcy rozważali dwie hipotezy dotyczące źródła asteroid. Jedna z nich mówiła, że były one pozostałością po głównym okresie formowania się Ziemi. Zgodnie zaś z drugą, przed około 3,9 miliardami lat w wyniku niestabilności orbit gazowych olbrzymów (Neptuna, Urana, Saturna i Jowisza) w wewnętrznych obszarach Układu Słonecznego doszło do gwałtownego zwiększenia liczby komet i asteroid pochodzących z obszarów zewnętrznych. Paleontolodzy z Uniwersytetu w Münster przeprowadzili bardzo precyzyjne pomiary izotopów z księżycowych skał powstałych w wyniku bombardowania. Badania wykazały, że nie doszło do żadnego gwałtownego wzrostu częstotliwości uderzeń, a za zbombardowanie Księżyca odpowiadały pozostałości po formowaniu się Ziemi. Uczeni skupili się przede wszystkim na badaniu rutenu i molibdenu, gdyż pierwiastki te wykazują zmiany w składzie izotopowym zależne od miejsca pochodzenia w Układzie Słonecznym. Nasze badania wykazały, że Księżyc został zbombardowany przez ten sam materiał, z którego powstała Ziemia i Księżyc, mówi główna autorka badań, doktor Emily Worsham. Kratery księżycowe są więc pozostałościami po ciągłym bombardowaniu asteroidami pochodzącymi z okresu formowania się naszej planety. Takie wyniki pozwoliły też wykluczyć hipotezę o nagłym wzroście intensywności bombardowania. Rodzi się więc tutaj pytanie, dlaczego większość materiału w próbkach księżycowych pochodzi sprzed 3,9 miliarda lat. Już wcześniej wskazywano, że badane dotychczas skały księżycowe to materiał pochodzący w większości z jednego basenu uderzeniowego, Mare Imbrium, wyjaśnia Worsham. Z obliczeń wiemy, że w pewnym momencie historii Układu Słonecznego doszło do zmian gazowych olbrzymów, co spowodowało, że do obszarów wewnętrznych Układu trafiło wiele materiału z zewnętrznych części. Wydarzenie to musiało mieć miejsce wcześniej niż dotychczas sądziliśmy. Nie znaleźliśmy bowiem żadnych dowodów na uderzenia komet czy asteroid pochodzących z zewnętrznych obszarów, dodaje profesor Thorsten Kleine. Zmiana orbit olbrzymów miała więc prawdopodobnie miejsce podczas głównego okresu formowania się Ziemi, czyli w ciągu pierwszych 100 milionów lat istnienia Układu Słonecznego. Takie datowanie zgadza się z najnowszymi modelami dynamicznymi. To jednocześnie pokazuje, że planety takie jak Ziemia zostają wzbogacone w wodę z zewnętrznych części układu dość wcześnie. Wcześnie więc powstają warunki do pojawienia się życia, stwierdza Kleine. « powrót do artykułu
  22. NASA kończy przygotowania do startu DART, pierwszej w historii misji, której celem jest przetestowanie technologii obrony Ziemi przed asteroidami. Zatankowany pojazd czeka na połączenie z rakietą nośną. Celem misji jest asteroida Dimorphos, a jej początek zaplanowano na 23 listopada. Dimorphos to niewielka asteroida o średnicy ok. 150 metrów, krążąca wokół większej nazwanej Didymos (ok. 800 m.). Zbliżą się one do Ziemi w roku 2022, a następnie w roku 2024. Pojazd DART (Double Asteroid Redirection Test) ma roku rozbić się o powierzchnię Dimorphosa, minimalnie zmieniając orbitę asteroidy. W chwili uderzenia DART będzie pędził z prędkością 21 500 km/h. Ani Dimorphos ani Didymos nie zagrażają Ziemi. DART ma udowodnić, że jest w stanie samodzielnie zbliżyć się do asteroidy i w nią uderzyć. Następnie naukowcy, używając naziemnych teleskopów, zbadają wpływ kolizji na obie asteroidy. Pozwoli to na poprawienie modeli opracowywanych na potrzeby przyszłych technologii obrony planety. DART będzie pierwszym testem tzw. impaktora kinetycznego. To technika polegająca na celowym rozbiciu pojazdu o asteroidę, by zmienić jej trajektorię. Sądzimy, że obecnie jest to najbardziej zaawansowana technologicznie metoda obrony Ziemi. Dzięki niej poprawimy modele komputerowe dotyczące wpływu impaktora kinetycznego na asteroidę. Przyda się nam to w przyszłości, gdy Ziemi naprawdę będzie coś zagrażało, mówi Lindley Johnson, pierwszy w historii Planetary Defense Officer. Pojazd DART wyposażono w wiele prototypowych technologii, w tym opracowywany na potrzeby przyszłych misji w głębokich częściach kosmosu silnik jonowy NEXT-C czy udoskonaloną antenę do komunikacji z Ziemią. Jedynym instrumentem naukowym, jaki znalazł się na pokładzie DART jest kamera nawigacyjna DRACO. Taka sama kamera jest od niedawna używana na Międzynarodowej Stacji Kosmicznej, a DART jest pierwszą misją, który użyje jej do nawigacji. Również i DRACO będzie wykorzystywana w przyszłych misjach. Na DART zainstalowano też rozwijalne panele słoneczne, a na jego pokładzie znalazł się miniaturowy 14-kilogramowy włoski satelita LICIACube. Mały satelita oddzieli się od DART na 10 dni przed jego uderzeniem w Dimorphosa. Zadaniem LICIACube jest obserwowanie za pomocą dwóch kamer skutków uderzenia w asteroidę. Trzy minuty po kolizji mały satelita przeleci za Dimorphosa, rejestrując zarówno materiał wyrzucony w wyniku zderzenie, jak i krater utworzony na powierzchni asteroidy oraz te części obu asteroid, które od strony DAT nie będą widoczne. Pojazd DART został już zatankowany 50 kilogramami hydrazyny oraz 60 kilogramami ksenonu dla silnika NEXT-C. Jutro rozpocznie się proces instalowania DART na rakiecie Falcon 9 firmy Space X. Na dzień przed startem rakieta z DART-em wyjedzie z hangaru i zostanie przetransportowana na stanowisko. Start odbędzie się z Vandenberg Space Force Base w Kalifornii. Technologia kinetycznego impaktora to jedno z proponowanych rozwiązań obrony Ziemi przed planetami. Więcej o programie ochrony Ziemi pisaliśmy w artykułach Znamy już ponad 10 000 NEO oraz Szef NASA zaleca modlitwę. Ostatnio zaś przeprowadzono wyliczenia, z których dowiadujemy się, że broń atomowa może uchronić Ziemię przed asteroidami. Jednak z innych badań wynika, że obronienie Ziemi będzie trudniejsze, niż dotychczas sądziliśmy.   « powrót do artykułu
  23. Popularnym motywem filmów katastroficznych jest zagrożenie Ziemi ze strony asteroidy. Wizją taką zajmują się nie tylko filmowcy, ale też naukowcy i agencje kosmiczne, prowadzące programy ochrony planety przed zagrożeniami. O tym, na ile realny to problem, przekonaliśmy się dobitnie, gdy przed 8 laty nad Czelabińskiem rozpadł się meteoryt. Naukowcy wciąż zastanawiają się, co zrobić, gdyby asteroida leciała w kierunku Ziemi. Autorzy najnowszych badań twierdzą, że rozbicie go nie byłoby takim złym pomysłem, jak się dotychczas wydawało. Nieproszonych gości z kosmosu możemy z grubsza podzielić na dwie kategorie. Wielkie obiekty, których upadek mógłby zagrozić istnieniu cywilizacji czy nawet naszego gatunku, oraz obiekty mniejsze, zdolne np. do zniszczenia miasta. Te wielkie znamy niemal wszystkie, są one obserwowane, ich trajektorie zostały zbadane i eksperci zapewniają, że w ciągu najbliższych 100 lat żaden z nich nam nie zagraża. A nawet gdyby zagrażał, to współczesna technologia pozwoli na zauważenie takiego obiektu na kilkadziesiąt lat przed uderzeniem w Ziemię, pozostanie zatem sporo czasu na opracowanie i wdrożenie systemu obrony. Najczęściej rozważanym scenariuszem jest zmiana trajektorii takiego obiektu, czy to poprzez pomalowanie go farbą zmieniającą sposób, w jaki będzie rozgrzewał się od Słońca, czy dołączenie do niego urządzenia, stopniowo spychającego go z kursu czy to rozbicie o jego powierzchnię pojazdu lub materiału wybuchowego. Rozbijanie samej asteroidy jest natomiast bardzo ryzykowne, gdyż na Ziemię mógłby spaść cały deszcz odłamków, a więc powierzchnia zniszczeń będzie znacznie większa. Ponadto trajektorii takich fragmentów nie da się przewidzieć. Znacznie gorzej wygląda sytuacja w przypadku mniejszych obiektów. Większości z nich nie znamy, a jeśli będziemy mieli szczęście i zauważymy taki obiekt przed wejściem w atmosferę Ziemi, to będzie to na dni lub tygodnie przed upadkiem. Patrick K. King z Uniwersytetu Johnsa Hopkinsa i Lawrence Livermore National Laboratory (LLNL) oraz jego koledzy z LLNL – Megan Syal, David Dearborn, Robert Managan, J. Owen i Cody Raskin – poinformowali na łamach Acta Astronautica o wynikach symulacji zniszczenia niewielkiego obiektu kosmicznego za pomocą broni atomowej. King i jego zespół uważają, że użycie broni atomowej byłoby dobrą strategią obrony przed niewielkim późno wykrytym obiektem zagrażającym Ziemi. Na zmianę trajektorii takich późno wykrytych obiektów nie będzie bowiem czasu. W swoich obliczeniach naukowcy skupili się na zbadaniu, w jaki sposób asteroidy o różnych orbitach i różnych prędkościach zachowają się po rozbiciu. Przyjęto przy tym, że zagraża nam asteroida o kształcie podobnym do Bennu i średnicy 100 metrów, czyli ok. 1/5 średnicy Bennu. Analizy przeprowadzono dla pięciu różnych orbit asteroidy, która na dwa miesiące przed przewidywanym uderzeniem w Ziemię zostałaby trafiona 1-megatonową głowicą atomową. Z obliczeń wynika, że w takim przypadku udałoby się co najmniej 1000-krotnie zmniejszyć masę materiału, który spadnie na planetę. Innymi słowy, 99,9% masy minie planetę. Inaczej wyglądałaby sytuacja, w przypadku większej asteroidy. W jej wypadku eksplozja nie spowodowałaby tak dużego rozproszenia materiału, ale i tak aż 99% jej masy ominęłaby Ziemię. Jednak pod warunkiem, że asteroidę zniszczono by na 6 miesięcy przed uderzeniem w planetę. Jeśli chcemy ocenić skutki takiego postępowania, to musimy modelować orbity wszystkich fragmentów powstałych w wyniku rozbicia asteroidy. To daleko trudniejsze niż modelowanie orbity pojedynczego obiektu, stopniowo spychanego z kursu, mówi King. Musimy jednak poradzić sobie z tymi obliczeniami, jeśli chcemy oszacować szanse powodzenia strategii polegającej na rozbiciu asteroidy. Naukowcy podkreślają, że najważniejszym efektem ich pracy jest wykazanie, iż użycie broni atomowej do rozbicia asteroidy to bardzo efektywna metoda obrony na ostatnią chwilę. Skupiliśmy się na obronie ostatniej szansy, czyli na sytuacji, gdy rozbijamy asteroidę na krótko przed jej uderzeniem. W sytuacjach zaś, gdy mamy dużo czasu – dziesiątki lat – znacznie lepiej użyć takiego ładunku do zepchnięcia asteroidy z kursu, stwierdza King. Jeśli zauważymy niebezpieczny obiekt zmierzający w kierunku Ziemi i będzie zbyt późno, by zmienić jego kurs, najlepszym obecnie rozwiązaniem jest rozbić go tak, by większość fragmentów ominęła Ziemię. Tutaj jednak problem się komplikuje. Jeśli rozbijemy asteroidę na kawałki, powstanie chmura odłamków, z których każdy będzie miał własną orbitę wokół Słońca, a ponadto wchodzą tutaj w grę też oddziaływania grawitacyjne zarówno pomiędzy nimi jak i pomiędzy nimi a planetami. Taka chmura będzie miała tendencję do rozciągania się na zakrzywiony strumień rozciągający się wzdłuż oryginalnej trajektorii asteroidy. Od tego, jak szybko się ona rozproszy zależy, jak wiele fragmentów spadnie na Ziemię, dodaje J. Owen. Jak już informowaliśmy, na rok 2024 NASA planuje test kosmicznego impaktora. Skądinąd jednak wiadomo, że rozbijanie asteroid to niełatwe zadanie i obrona przed nimi może być trudniejsza niż się wydaje. « powrót do artykułu
  24. Łazik Perseverance przesłał na Ziemię dane z pierwszego podejścia do zebrania próbek marsjańskiego gruntu, które w przyszłości mają zostać przywiezione na Ziemię. Z uzyskanych informacji wynika, że do pojemnika nie trafił żaden fragment skały z Marsa. Perseverance wyposażono w 43 tytanowe tuby na próbki. Łazik ma umieścić w nich fragmenty skał oraz regolitu (luźnej zwietrzałej skały i pyłu). Pojemniki pozostaną na powierzchni Czerwonej Planety w oczekiwaniu na misję, która zabierze je na Ziemię. To nie jest to, czego się spodziewaliśmy, ale z pionierskimi działaniami zawsze związane jest ryzyko. Wierzę, że pracują nad tym odpowiedni ludzie i podczas przyszłych prób uzyskamy pożądane rezultaty, mówi Thomas Zurbuchen, kierujący Dyrektoriatem Misji Naukowych NASA. Wszystko wskazuje na to, że samo wiercenie i pobieranie próbek przebiegało prawidłowo. Cały proces pobierania próbek jest w pełni autonomiczny. Jednym z kroków, wykonywanych po umieszczeniu próbek w pojemniku, jest określenie objętości pobranego materiału. Nie zarejestrowaliśmy odpowiedniego oporu, który zostałby zmierzony, gdyby materiał trafił do pojemnika, informuje Jesica Samuels z Jet Propulsion Laboratory. Obecnie specjaliści próbują określić, co się stało. Przyjrzą się dokładnie wywierconemu otworowi. Na razie sądzimy, że przyczyną jest fakt, iż skała nie zareagowała na wiercenie tak, jak się tego spodziewaliśmy. Problem techniczny z Sampling and Caching System jest mniej prawdopodobny. W ciągu najbliższych kilku dni będziemy szczegółowo analizowali dane, przeprowadzimy dodatkowe prace diagnostyczne, by lepiej zrozumieć, co się stało, dodaje Jennifer Trosper. To nie pierwszy raz, gdy NASA napotyka na trudności z badaniem marsjańskich próbek. Podczas misji Phoenix w 2008 roku pobrany materiał był tak lepki, że dopiero po wielu próbach udało się go przenieść do pokładowych instrumentów badawczych. Z kolei gdy Curiosity wiercił w skałach okazało się, że są one twardsze i bardziej kruche niż się spodziewano. Przed kilkoma zaś miesiącami informowaliśmy, że operatorzy misji InSight zrezygnowali z użycia polsko-niemieckiego „kreta”, czyli próbnika termicznego, który miał zostać zagłębiony w gruncie, by mierzyć przepływ energii termicznej. „Kret” napotkał na zbyt duże tarcie i nie zanurzył się w grunt wystarczająco głęboko. « powrót do artykułu
  25. W ciągu ostatnich 60 lat ludzie przekształcili aż 43 miliony kilometrów kwadratowych Ziemi. To 4-krotnie więcej niż sądzono. To powierzchnia równa Afryce i Europie razem, którą H. sapiens przeobraził np. zamieniając lasy w pola uprawne czy sawanny w pastwiska. Wyniki badań, obejmujących lata 1960–2020 ukazały się właśnie w Nature Communications. Sposób wykorzystywania terenu odgrywa ważną rolę w zapobieganiu zmianiom klimatycznym, utrzymaniu bioróżnorodności czy produkcji żywności. Dlatego też pełne zrozumienie dynamiki zachodzących procesów jest niezbędne do opracowania strategii wykorzystania terenu, mówi główna autorka badań, Karina Winkler z holenderskiego Wageningen University & Research. Od 1960 roku pokrywa leśna na Ziemi skurczyła się o około 1 milion kilometrów kwadratowych. Zniknęły więc lasy o powierzchni trzykrotnie większej niż powierzchnia Polski. Jednocześnie mniej więcej o tyle samo wzrosła powierzchnia pól uprawnych i pastwisk. Bardzo wyraźnie widać tutaj różnice regionalne. Na północy, w Europie, Rosji, Ameryce Północnej i Azji Wschodniej, powierzchnia lasów zwiększyła się w ciągu ostatnich 60 lat. Na południu zaś doszło do znacznego zmniejszenia obszarów leśnych. Zmniejsza się też ilość pól uprawnych na północy, a rośnie na południu. Pola te produkują żywność właśnie dla mieszkańców północy. Lasy tropikalne Amazonii są wycinane po to, by hodować bydło, uprawiać trzcinę cukrową i soję. w Azji Południowo-Wschodniej lasy te są zamieniane w uprawy palmy olejowej, a w Nigerii i Kamerunie giną, by w ich miejsce uprawiać kakao, mówi Winkler. Produkty te trafiają potem głównie na rynki północy. Dodatkowym problemem są rosnące ceny ropy naftowej, które powodują, że opłaca się wycinać lasy pod uprawy roślin, z których produkuje się biopaliwa. Naukowcy zauważyli też dwa okresy szybkich przekształceń powierzchni Ziemi. Pierwszy był napędzany zieloną rewolucją z lat 60. i 70. ubiegłego wieku. Następnie doszło do szybkiej ekspansji zglobalizowanego rynku. Trwał to do roku 2005. Po tym okresie tempo przekształcania terenów spadło. W czasie recesji z 2008 roku zmniejszył się światowy popyt na różnego rodzaju dobra, piszą autorzy badań. Wyjaśnili też, dlaczego dotychczas uczeni znacząco się mylili w szacunkach dotyczących przekształceń powierzchni planety. Autorzy wcześniejszych badań dysponowali bowiem fragmentarycznymi danymi, musieli dokonywać wielu założeń, pomiary satelitarne były mało dokładne i nie pozwalały na wychwycenie wielu rodzajów przekształceń terenu. Autorzy najnowszych badań mieli zaś do dyspozycji długoterminowe dane zbierane przez FAO, byli w stanie odróżnić znacznie więcej form wykorzystywania terenu niż było to możliwe wcześniej, dysponowali też zdjęciami satelitarnymi o rozdzielczości 1 kilometra kwadratowego. Dzięki temu odkryli m.in. że około 17% powierzchni lądów co najmniej raz od 1960 roku zmieniło swoje przeznaczenie. Powierzchnia Ziemi liczy 510 milionów kilometrów kwadratowych, z czego 361 milionów km2 stanowią oceany. Pozostaje 149 milionów km2, w tym 15 milionów stale pokrytych lodem. « powrót do artykułu
×
×
  • Create New...