Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' asteroida'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 11 results

  1. Japońska sonda Hayabusa2 przeprowadziła drugie udane lądowanie na asteroidzie Ryugu i – prawdopodobnie – jako pierwszy w historii pojazd wysłany przez człowieka, pobrała próbki z wnętrza asteroidy. Wcześniej wnętrze to zostało odsłonięte przez pocisk wystrzelony z sondy. Dotychczas jedynym pozaziemskim obiektem, z którego udało się pobrać próbki spod powierzchni, był Księżyc. Menedżer projektu, Yuich Tsuda, ogłosił, że wszystko przebiegło idealnie. Oświadczył, że gdyby przebieg misji ocenić w skali do 100 punktów, to Hayabusa2 uzyskałaby ich 1000. Sonda została wystrzelona w grudniu 2014 roku i dotarła do asteroidy w czerwcu 2018. Od tamtej pory prowadziła obserwacje i wysłała kilka lądowników. W lutym sama wylądowała i pobrała próbki z powierzchni. W kwietniu w kierunku Ryugu wysłany został niewielki pojazd, który eksplodował, oraz nieeksplodujący miedziany pocisk o masie 2 kilogramów, który wybił w asteroidzie dziurę. Przeprowadzone obserwacje wykazały, że wyrzucony materiał osiadł na asteroidzie około 20 metrów od otworu. Miejsce jego opadnięcia na powierzchnię wyznaczono jako miejsce drugiego lądowania Hayabusy2. Gdy sonda dotknęła powierzchni w wyznaczonym miejscu, wystrzeliła niewielki pocisk z tantalu, który wzbił chmurę pyłu i fragmentów skał, które prawdopodobnie trafiły do odpowiedniego zbiornika. Sonda następnie opuściła asteroidę. O tym, czy Hayabusa 2 rzeczywiście pobrała próbki z wnętrza asteroidy dowiemy się dopiero w grudniu 2020 roku, kiedy powróci ona na Ziemię. Wszystko jednak wskazuje na to, że misja się powiodła i naukowcy będą mogli porównać próbki z powierzchni i spod niej. Przez kilka najbliższych lat japońska JAXA będzie jedyną agencją kosmiczną, która pobrała tego typu próbki. Prowadzona przez NASA misja OSIRIS-REx ma pobrać próbki z asteroidy Bennu i powrócić z nimi na Ziemię w 2023 roku. « powrót do artykułu
  2. Pod największym kraterem uderzeniowym w Układzie Słonecznym, księżycowym basenem Biegun Południowy-Aitken, odkryto tajemniczą masę. Zdaniem naukowców z Baylor University może tam się znajdować metal z asteroidy, która uderzyła w Księżyc i utworzyła wspomniany basen. Wyobraźmy sobie złoże metalu pięciokrotnie większe niż Hawai'i [największa wyspa Hawajów – red.]. To mniej więcej masa, jaką odkryliśmy, mówi profesor Peter B. James. Sam krater ma kształt owalu, w najszerszym miejscu liczy sobie 2000 kilometrów i jest głęboki na kilkanaście kilometrów. Nie widać go z Ziemi, gdy znajduje się po drugiej stronie Srebrnego Globu. Gdy połączyliśmy dane dotyczące księżycowej topografii z danymi z satelity Lunar Reconnaissance Orbiter, odkryliśmy, że setki kilometrów pod basenem Biegun Południowy-Aitken znaujduje się niespodziewanie wielka masa. Jedno z możliwych wyjaśnień brzmi, że jest to metal z aasteroidy, która uderzyła w Księżyc, wyjaśnia James. Niezależnie od tego, co to za materiał i skąd pochodzi, jest to tak dużo, że powoduje obniżenie powierzchni Księżyca o niemal kilometr. Symulacje komputerowe wykazały, że możliwe jest uwięzienie w ten sposób materiału z asteroidy. Inna rozważana możliwość to koncentracja gęstych tlenków związana z ostatnią fazą krystalizacji księżycowego oceanu magmy. Basen Biegun Południowy-Aitken liczy sobie około 4 miliardów lat. Niewykluczone, że w przeszłości w Układzie Słonecznym istniały jeszcze większe kratery uderzeniowe, jednak obecnie  nie ma po nich żadnych śladów. « powrót do artykułu
  3. Niektóre asteroidy są bardzo gęste, składają się z żelaza i niklu. Naukowcy sądzą, że są one pozostałościami po jądrach dużych ciał niebieskich, które rozpadły się w wyniku kolizji. Są niezwykle stare, przez miliardy lat mogły być ukryte tysiące kilometrów pod powierzchnią planet. Ich zbadanie może przynieść olbrzymią ilość nowych informacji na temat wszechświata i Układu Słonecznego. Dlatego też NASA planuje misję na tego typu asteroidę. Jej celem będzie Psyche, największa metaliczna asteroida krążąca wokół Słońca. Misja ma wystartować nie wcześniej niż w 2022 roku, a jej celem będzie dotarcie na orbitę i dokładne zbadanie 226-kilometrowego obiektu. Na miejscu sonda może trafić na niezwykle egzotyczne zjawisko, krajobraz ukształtowany przez ferrowulkanizm, czyli erupcje płynnego żelaza, do których dochodziło, gdy stygł odłupany od planety fragment jądra. Ekspertom jeszcze nigdy nie udało się zaobserwować ferrowulkanizmu. Zdobycie dowodów na to, że rzeczywiście miał on miejsce na Psyche może na nowo napisać historię jąder planetarnych i odpowiedzieć na wiele pytań z dziedziny geofizyki. Lindy Elkins-Tanton, główna badaczka misji Psyche, mówi, że wraz z zespołem zamierza poszukać tam dowodów na ferrowulkanizm i ma nadzieję, że dokonają niezwykłego odkrycia. Psyche była prawdopodobnie w przeszłości otoczona krzemowym skalistym płaszczem, osłaniającym metaliczne jądro. Jednak nigdy nie stała się częścią planety. "Wczesny Układ Słoneczny był jak tor ze zderzającymi się samochodami", mówi Matthew Genge, eksperd od meteorytów z Imperial College London. Przez miliony lat w proto-Psyche mogła uderzać olbrzymia liczba mniejszych obiektów, w które w końcu pozbawiły ją skalistej otoczki, odsłaniając żelazno-niklową Psyche. Jacob Adams z Uniwersytetu Kalifornijskiego w Santa Cruz, i jego promotor Francis Nimmo, stworzyli serię matematycznych modeli, które brały pod uwagę uproszczony model metalicznego asteroidy i sprawdzały, co się dzieje, gdy taki asteroid stygnie od zewnątrz. Po utracie otaczających go warstw taki asteroida będzie stopniowo zamarzał i kurczył się, przez co na powierzchni pojawią się pęknięcia. Znajdujące się głębiej płynne żelazo będzie przez te pęknięcia uciekało. Symulowane asteroidy były mniej więcej wielkości Psyche, zatem być może uda się taki scenariusz zweryfikować podczas badań tej asteroidy. To, w jaki sposób planety stygną, może całkowicie zmienić ich historię. Ziemia, w 4,5 miliarda lat po swoim powstaniu, ma wciąż gorące, stopniowo stygnące jądro. Dotychczas ono nie wystygło, gdyż jest chronione przez grube kolejne warstwy naszej planety. Inaczej miała się sprawa z Merkurym. Jego niewielkie rozmiary i jądro stosunkowo większe względem planety niż ziemskie, spowodowały, że jądro planety wystygło i się skurczyło. W ramach tego procesu doszło do skurczenia zewnętrznych warstw planety i całej jej powierzchni, co zamknęło szczeliny, przez które w przeszłości wypływała magma. Psyche sama w sobie jest niezwykle interesująca. Dotychczasowe badania wskazują, że w połowie składa się ona z żelaza. ALbo więc jest niezwykle porowata, albo coś innego znacząco zmieniło jej strukturę. Ostatnio zaprezentowane wyliczenia sugerują, że mogą tam istnieć kominy wulkaniczne, a niewielką gęstość asteroidy można wyjaśnić, jeśli wciąż posiada ona skalisty płaszcz, a wewnątrz wciąż zachodzą procesy ferrowulkaniczne. Niewykluczone, że w jądrze znajduje się radioaktywne aluminium-26, które podtrzymuje aktywność wulkaniczną. Celem misji Psyche będzie zbadanie wieku asteroidy oraz względnego wieku jej poszczególnych regionów, sprawdzenie, czy składa się ona z tych samych pierwiastków, których spodziewamy się w jądrze Ziemi, zbadanie, czy Psyche formowała się w obecności większej czy mniejszej ilości tlenu niż ziemskie jądro oraz wykonanie mapy asteroidy. Misja Psyche zostanie wyposażona w cztery instrumenty – aparat fotograficzny wykonujący zdjęcia w różnych zakresach fali, spektrometr neutronowy i rentgenowski, magnetometr oraz urządzenie do pomiarów grawitacji. Ponadto sonda zostanie wyposażona w nowoczesny laserowy system kompunikacji (Deep Space Optical Communication – DSOC), a specjaliści z Jet Propulsion Laboratory przeprowadzą testy tego systemu. Jeśli się on sprawdzi, możemy zyskać znacznie bardziej wydajny sposób przesyłania danych pomiędzy Ziemią a obiektami pracującymi w przestrzeni kosmicznej. Obecny plan misji zakłada, że Psyche zostanie wystrzelona w 2022 roku, w roku 2023 skorzysta z asysty grawitacyjnej Marsa, na orbitę asteroidy dotrze w roku 2026 i pozostanie na niej przez 21 miesięcy. Przygotowania do misji idą najwyraźniej lepiej niż się spodziewano. Jeszcze dwa lata temu informowaliśmy, że Psyche ma wystartować w 2023 roku. « powrót do artykułu
  4. Japońska sonda Hayabusa 2 przybyła na orbitę asteroidy Ryugu w czerwcu 2018 roku. Dotychczas wysłała na nią trzy lądowniki i pobrała próbkę materiału z powierzchni. Wykonała też liczne pomiary i zdjęcia asteroidy. Wczoraj, podczas Lunar and Planetary Science Conference w Teksasie, zaprezentowane pierwsze wyniki badań. Kształt asteroidy sugeruje, że w przeszłości obracała się ona dwukrotnie szybciej niż obecnie, kończąc pełen obrót w czasie krótszym niż 4 godziny. Prawdopodobnie z czasem spowalniało ją światło słoneczne. Powierzchnia Rygu jest dość jednolita, niezwykle ciemna, odbija mniej niż 2% padającego nań światła. Porównanie z kolorem meteorytów znalezionych na Ziemi, które zostały podgrzane w czasie przejścia przez atmosferę, wskazują, że kolory się zgadzają, co sugeruje, iż w przeszłości Ryugu została podgrzana. Prawdopodobnie podczas oddzielenia się od większego obiektu, z którego pochodzi. To wszystko może wyjaśniać, dlaczego Rygu zawiera niezwykle mało wody, mniej niż asteroida Bennu, badana przez sondę OSIRIS-REx. Biorąc pod uwagę miejsce, w którym Ryugu powstała, jest nieprawdopodobne, by była tak sucha od samego początku. Obiekt, z którego pochodzi Ryugu zawierał wodę i tracił ją stopniowo wskutek ogrzewania przez rozpad pierwiastków radioaktywnych, uważają naukowcy. Gdyby utrata wody zaszła np. w wyniku uderzenia w inny obiekt, to nie byłaby ona tak równomierna, jak widać to na Ryugu. Niektórzy mogą być zawiedzeni tym, że Ryugu jest tak homogeniczna, mówi Seiji Sugita z Uniwersytetu Tokijskiego. Jednak, jak zauważa, to również zaleta, gdyż próbka pobrana w dowolnym miejscu asteroidy będzie reprezentatywna dla całości. Naukowcy od dawna sądzą, że asteroidy takie jak Ryugu przyniosły wodę na Ziemię. Jeśli okaże się, że wiele z nich jest równie pozbawionych wody jak Ryugu, trzeba będzie zweryfikować dotychczasowe teorie. « powrót do artykułu
  5. Japońska Agencja Eksploracji Kosmosu (JAXA) poinformowała, że sonda Hayabusa2 pomyślnie wylądowała na asteroidzie Ryugu, skąd ma pobrać próbki. Analiza danych z Hayabusa2 potwierdza, że sekwencja operacji, w tym wystrzelenie pocisku w asteroidę, przebiegła pomyślnie. Pojazd Hayabusa2 znajduje się w stanie, jaki był oczekiwany, czytamy na stronach JAXA. Najpierw Hayabusa2 zbliżyła się do asteroidy i wystrzeliła w jej kierunku pocisk, następnie na sekundę dotknęła powierzchni asteroidy, pobrała próbki i oddaliła się na bezpieczną odległość. Sonda ma na pokładzie kilka pocisków, więc będzie mogła pobierać próbki wielokrotnie. W marcu lub kwietniu sonda wyśle na asteroidę ładunek wybuchowy Small Carry-on Impactor, który ma wybić krater. Pozowli on na zbadanie głębszych warstw asteroidy. Ryugu to asteroida klasy C, zawierający węgiel. To najbardziej rozpowszechniony typ asteroid. Ich skład jest podobny do chondrytów węglistych, meteorytów znajdowanych na Ziemi. Jednak, jako że meteoryty takie mogły po upadku zostać zanieczyszczone ziemskim materiałem, naukowcy postanowili zbadać asteroidę. Jeśli potwierdzi się, że jej skład jest taki sam jak meteorytów, będzie to dowodem, iż związki organiczne i woda mogły trafić na naszą planetę za pośrednictwem komet i meteorytów. Hayabusa2 ma wrócić na Ziemię w przyszłym roku i przywieźć około 100 miligramów próbek. Wcześniej jednak spróbuje umieścić na powierzchni Ryugu trzy łaziki i europejski lądownik MASCOT. « powrót do artykułu
  6. Misja OSIRIS-REx, która niedawno dotarła do asteroidy Bennu, odkryła uwięzioną wewnątrz wodę. To potwierdzenie, że Bennu jest bardzo cennym obiektem do badań naukowych. OSIRIS-REX znajduje się w odległości kilkunastu kilometrów od asteroidy. Badania rozpoczęły się przed tygodniem. Naukowcy dysponują już pierwszymi danymi. Pochodzą one z dwóch spektrometrów OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) oraz OSIRIS-REx Thermal Emission Spectrometer (OTES). Wskazują one na istnienie grup hydroksylowych, molekuł składających się z atomów tlenu i wodoru. Uczeni przypuszczają, że istnieją one w całej asteroidzie i są zamknięte w tworzących ją glinach. To zaś oznacza, że w którymś momencie swojej historii materiał tworzący Bennu zetknął się z wodą. Sama asteroida jest zbyt mała, by występowała na niej woda w stanie ciekłym, jednak odkrycie grup hydroksylowych wskazuje, że ciekła woda była obecna na znacznie większej asteroidzie macierzystej, z której Bennu powstała. Obecność minerałów zawierających grupy hydroksylowe potwierdza, że Bennu, pozostałość po formowaniu się Układu Słonecznego, jest wspaniałym obiektem badań. Gdy w 2023 roku na Ziemię zostaną przywiezione próbki asteroidy, naukowcy zyskają skarbiec nowych informacji o historii i ewolucji Układu Słonecznego, mówi Amy Simon z Goddard Space Flight Center. Dane przekazane przez OSIRIS-REx Camera Suite (OCAMS) potwierdzają prawdziwość modelu asteroidy, który powstał w 2013 roku na potrzeby misji. Model ten bardzo blisko przypomina rzeczywisty kształt, średnicę i prędkość obrotową asteroidy. Powierzchnia Bennu to mieszanina fragmentów wypełnionych skałami i fragmentów dość płaskich. Ilość skalistych nierówności jest jednak większa niż się spodziewano. Zespół naukowy chce bliżej przyjrzeć się asteroidzie, by dobrze wybrać miejsce, z którego zostaną pobrane próbki. Wstępne dane wskazują, że wybraliśmy dobry obiekt dla misji OSIRIS-REx. Dotychczas nie napotkaliśmy na żadne problemy, z którymi nie moglibyśmy sobie poradzić. Sonda jest w dobrej kondycji, a instrumenty naukowe pracują lepiej, niż to wymagane. Czas rozpocząć naszą przygodę, stwierdził Dante Lauretta, główny naukowiec misji. Obecnie OSIRIS-REx wykonuje wstępne badania asteroidy, przelatując nad jej równikiem oraz oboma biegunami w odległości 7 kilometrów. Na ich podstawie zostanie obliczona masa obiektu. Jej znajomość jest niezbędnym elementem potrzebnym do umieszczenia sondy na orbicie Bennu. Po raz pierwszy OSIRIS-REx ma trafić na orbitę Bennu 31 grudnia. Pozostanie tam do połowy lutego. Później rozpocznie kolejną serię przelotów nad asteroidą. Już obecnie wiadomo, że orbita na którą trafi OSIRIS-REx będzie znajdowała się nad centralną częścią Bennu, na wysokości 1,4–2 kilometrów. « powrót do artykułu
  7. Misja OSIRIS-REx dotarła do asteroidy Bennu. Obecnie pojazd znajduje się w odległości 19 kilometrów od asteroidy, a 31 grudnia wejdzie na jej orbitę. Dotychczas żaden pojazd wysłany przez człowieka nie krążył na orbicie tak małego obiektu. Celem OSIRIS-REx jest pobranie próbek z asteroidy i przywiezienie ich na Ziemię. Obecnie szacuje się, że Bennu ma nieco ponad 500 metrów średnicy. Na początku przyszłego tygodnia w Waszyngtonie odbędzie się panel naukowy, podczas którego zostaną przekazane najnowsze informacje dotyczące Bennu. Dzisiejszą wiedzę na temat tej asteroidy będzie można skorygować o dane napływające z OSIRIS-REx. Asteroida znajduje się obecnie w odległości około 122 milionów kilometrów od Ziemi. Plan misji zakłada, że OSIRIS-REx będzie towarzyszył asteroidzie przez około rok, następnie pobierze z niej próbki i w 2023 roku powróci z nimi na Ziemię. Naukowcy z niecierpliwością czekają na możliwość badania bogatych w węgiel asteroid, takich jak Bennu. Obiekt liczy sobie tyle lat, co Układ Słoneczny, jest zatem dla specjalistów specyficzną kapsułą czasową. Tymczasem japońska sonda Hayabusa2 już od czerwca towarzyszy asteroidzie Ryugu o średnicy około 1 kilometra. To druga, po Hayabusa, japońska misja na asteroidę. Pierwsza wróciła w 2010 roku z próbkami pobranymi z asteroidy Itokawa. To asteroida typu S, składająca się głównie z krzemianów. Ryugu i Bennu to asteroidy typu C, ich głównym składnikiem jest węgiel. To najbardziej rozpowszechniony w Układzie Słonecznym typ asteroid. Misje na Ryugu i Bennu wydają się podobne, jednak różnią się sposobem przeprowadzenia. Hayabusa2 umieściła na powierzchni Ryugu dwa mikrołaziki oraz urządzenie MASCOT. Ponadto wystrzeliła w kierunku asteroidy specjalny pocisk, który pozwolił na pobranie próbek z wnętrza asteroidy. Hayabusa2 trzykrotnie pobierze próbki z Ryugu, za każdym razem uzyskując od 100 miligramów do 10 gramów materiału. Inaczej będzie działał OSIRIS-REx. Amerykański pojazd za pomocą specjalnego 3-metrowego ramienia wessie materiał z powierzchni Bennu. Ma go być od 60 gramów do nawet 2 kilogramów. Później od pojazdu oddzieli się pojemnik z próbkami, który w 2021 roku skieruje się w stronę Ziemi. Dwa lata później ma on wylądować na spadochronie w stanie Utah. Zarówno asteroida Bennu jak i Ryugu są uważane za obiekty stwarzające zagrożenie dla Ziemi. To oznacza, że w przyszłości mogą spaść na naszą planetę. Specjaliści obliczają, że Bennu może uderzyć w Ziemię już za 150 lat. Im więcej będziemy wiedzieć o asteroidach, tym lepiej przygotujemy się na ewentualne niebezpieczeństwa z nimi związane. « powrót do artykułu
  8. Na asteroidzie odległej od Ziemi o 300 milionów kilometrów, wylądował właśnie MASCOT, francusko-niemiecki Mobile Asteroid Surface Scout, przywieziony tam przez japoński pojazd Hayabusa2. Celem misji jest zbadanie początków Układu Słonecznego. MASCOT waży 10 kilogramów, ma kształt sześcianu i jest wypełniony licznymi czujnikami. Urządzenie może wykonywać zdjęcia w różnych długościach fali światła, badać minerały za pomocą mikroskopu, mierzyć pole magnetyczne oraz temperaturę powierzchni asteroidy. MASCOT trafił na asteroidę Ryugu 10 dni po tym, jak wylądowały tam dwa mikrołaziki Minerva-II. Są one pierwszymi mobilnymi urządzeniami umieszczonymi przez ludzkość na asteroidzie. Łaziki wykorzystują słabą grawitację Ryugu do wykonywania skoków po jej powierzchni. Jeden taki skok może mieć długość 15 metrów, a MINERVA-II będą znajdowały się nad powierzchnią Ryugu przez 15 minut. Taki sposób poruszania się służy badaniu powierzchni asteroidy za pomocą kamer i czujników. MASCOT, w przeciwieństwie do łazików, będzie nieruchomy. W czasie swojej misji wykona on pojedynczy skok. Później będzie mógł się tylko obracać. Urządzenie pozostanie na asteroidzie przez wiele miesięcy, jednak jego czas pracy na bateriach wynosi 16 godzin. MASCOT zbierze w tym czasie dostępne dane i prześle je na Hayabusę2, a następnie zamilknie. To jednak nie wszystko. Jeszcze przed końcem miesiąca Hayabusa2 wyśle w kierunku asteroidy specjalne urządzenie, które eksploduje nad jej powierzchnią, wysyłając w stronę Ryugu dwukilogramowy mosiężny pocisk. Ma on wybić krater w asteroidzie. Wówczas Hayabusa2 obniży się i za pomocą automatycznego ramienia pobierze próbki z krateru. W ten sposób zdobędziemy surowy materiał, który nie był wystawiony na działanie promieniowania. Częścią misji urządzenia MASCOT jest znalezienie odpowiedniego miejsca, w którym ma zostać wybity krater. Misja Hayabusa2 została wystrzelona w grudniu 2014 roku. W 2020 roku wróci ona na Ziemię z zebranymi próbkami. « powrót do artykułu
  9. Oumuamua, a dokładniej 1I/2017 Oumuamua, pierwszy znany nam obiekt z przestrzeni międzygwiezdnej, który odwiedził Układ Słoneczny, nie jest asteroidą. To najprawdopodobniej kometa. Astronomowie, którzy śledzą Oumuamua od chwili odkrycia, stwierdzili, że prędkość tego obiektu nie może zostać wyjaśniona wyłącznie działaniem grawitacji. Obiekt przyspiesza, a można to wyjaśnić przez uwalnianie się gazu z ogrzewanego przez Słońce końca Oumuamua. Specjaliści od miesięcy sprzeczają się, czym jest Oumuamua. Od dawna spodziewano się, że pierwszym obiektem spoza Układu Słonecznego, który doń trafi będzie kometa. Jednak komety są zwykle otoczone chmurą pyłu i gazu. W przypadku Oumuamua nic takiego nie zaobserwowano. To zaś sugeruje, że obiekt składa się głównie ze skał i metalu, jest więc asteroidą, a nie kometą złożoną ze skał i zamarzniętej wody. Już w grudniu zespół kierowany przez Alana Fitzsimmonsa z Queen's University w Belfaście sugerował, że Oumuamua bardzo przypomina kometę. Naukowcy argumentowali, że jej lodowe wnętrze jest otoczone grubą warstwą bogatych w węgiel zanieczyszczeń. Teraz grupa naukowców pracujących pod przewodem Marco Micheliego z Europejskiej Agencji Kosmicznej, stwierdziła, że Oumuamua przyspiesza, a zjawiska tego nie da się wyjaśnić wyłącznie wpływem Słońca, Księżyca i pobliskich planet. "Jest coś jeszcze, co napędza Oumuamua, więc porusza się ona szybciej niż powinna, gdyby działała na nią tylko grawitacja", cieszy się Fitzsimmons. Oumuamua zachowuje się więc jak kometa, którą napędza emitowany przez nią gaz. Dlaczego więc astronomowie nie zauważyli typowej dla komet otoczki pyłu i gazu? Obiekt mógł utracić pył w czasie podróży międzygwiezdnej lub też został on dotychczas przegapiony przez specjalistów. A obecność gazu trudno jest wykryć. Ponadto astronomowie mogli szukać niewłaściwych gazów. Poszukiwali sygnatur cyjanków, charakterystycznych dla komet z Układu Słonecznego. Oumuamua może mieć zupełnie inny skład. Jedynym pewnym sposobem na zbadanie składu gościa byłoby wysłanie sondy. To jednak nie wchodzi w rachubę. Oumuamua znajduje się zbyt daleko i porusza się zbyt szybko. Być może jednak w przyszłości uda się odkryć międzygwiezdnego gościa, który będzie leciał bliżej Ziemi i uda się wysłać nań sondę. « powrót do artykułu
  10. Jeśli wszystko pójdzie zgodnie z planem, to przed końcem sierpnia dwa wysłane przez człowieka pojazdy spotkają się z asteroidami. Japonia i USA wysłały misje, których celem jest pobranie próbek asteroid i przywiezienia ich na Ziemię. Pierwsza będzie japońska Hayabusa2, która 27 czerwca ma spotkać się z liczącą kilometr średnicy asteroidą Ryugu. W kolei 17 sierpnia wysłany przez NASA pojazd OSIRIS-REx ma zbliżyć się do 500-metrowej asteroidy Bennu. Oba pojazdy będą badały asteroidy przez około 2 lata, spróbują pobrać ich próbki i przywieźć je na Ziemię. Pierwszym pojazdem, który przywiózł na Ziemię próbki asteroidy był japoński Hayabusa. W 2010 roku sonda wróciła na Błękitną Planetę z próbkami asteroidy Itokawa. To asteroida typu S, składająca się głownie z krzemianów. Ryubu i Bennu to asteroidy typu C, zawierające węgiel. To najbardziej rozpowszechniony typ asteroid w Układzie Słonecznym. Próbki pobranę przez Hayabusę2 i OSIRIS-REx mogą potwierdzić, że ich skład jest podobny do chondrytów węglistych, meteorytów znajdowanych na Ziemi. Tego typu meteoryty zwierają związki organiczne i wodę. Istnieje jednak możliwość, że zostały one zanieczyszczone nimi już po upadku na Ziemię. Jeśli skład Bennu i Ryugu będzie taki, jak meteorytów, będzie to ostatecznym potwierdzeniem, że związki organiczne i woda mogły trafić na Ziemię za pośrednictwem komet czy meteorytów. Wysyłanie dwóch tak podobnych misji wydaje się marnotrawstwem środków, jednak Nancy Chabot z Uniwersytetu Johnsa Hopkinsa tak nie uważa. Jeśli próbki będą identyczne, to poznamy pewne fundamenty budowy Układu Słonecznego. Założę się jednak, że znajdziemy zaskakujące różnice. Obie misje mają też przebiegać w różny sposób. Hayabusa2 spróbuje umieścić na powierzchni Ryugu trzy łaziki oraz europejski lądownik MASCOT. Ponadto ma wystrzelić miedziany dwukilogramowy pocisk, który ma utworzyć krater służący do badania wewnętrznej struktury asteroidy. O ile w ramach misji Hayabusa na Ziemię przywieziono mniej niż miligram materiały z Itokawy, Hayabusa2 ma pobrać materiał z trzech różnych miejsc i ma przywieźć około 100 miligramów materiału. Z kolei OSIRIS-REx ma pobrać próbki z jednego miejsca Bennu, ale mają być to aż 2 kilogramy materiału. Naukowcy z obu misji planują wymienić się próbkami i już teraz ściśle współpracują. Hayabusa2 ma wrócić na Ziemię w roku 2020, a lądowanie OSIRIS-REx jest planowane na rok 2023. Jeśli obie misje się powiodą, nauka zyska materiał do badań na całe lata. Wiele laboratoriów wciąż bada próbki księżycowego gruntu dostarczone przez misje Apollo. A rozwijająca się technika wciąż pozwala na znalezienie nowych danych. « powrót do artykułu
  11. Przed około 65 milionami lat na Ziemię spadła asteroida, która przyniosła zagładę dinozaurom. Naukowcy od dziesięcioleci próbują zrozumieć, co stało się później. Jak wyglądała Ziemia przez następne setki i tysiące lat. Badania miejsca upadku asteroidy sugerują, że do atmosfery przedostały się olbrzymie ilości siarki, które na całe lata lub nawet dekady zablokowały dostęp promieniom słonecznym. Na Ziemi prawdopodobnie zapanował rodzaj nuklearnej zimy, a temperatury na lądach mogły obniżyć się nawet o 28 stopni Celsjusza. A gdy już wyrzucony przez asteroidę materiał opadł, planeta odczuła skutki oddziaływania dwutlenku węgla, który przedostał się do atmosfery. Dotychczas jednak wszelkie oceny ilości CO2 w atmosferze i jego wpływu na temperatury pochodziły głównie z modeli klimatycznych. W najnowszym numerze Science ukazał się artykuł autorstwa geologa Kena MacLeoda z University of Missouri, który od lat bada okres po upadku asteroidy. Zdaniem uczonego, średnia globalna temperatura wzrosła o 5 stopni Celsjusza i utrzymywała się na tym poziomie przez około 100 000 lat. MacLeod podróżuje po całym świecie, badając warstwę osadów, która oddziela ostatnie lata istnienia dinozaurów od następującej po nich epoki. Warstwa ta, zwana granicą kreda-paleogen(K-Pg), jest łatwa do zidentyfikowania, gdyż znajduje się w niej dużo irydu, pierwiastka powszechnie występującego w asteroidach, ale rzadkiego na Ziemi. Na potrzeby najnowszych badań zespół MacLeoda prowadził wykopaliska w pobliżu El Kef w Tunezji. Znajduje się tam jedna z najważniejszych sekcji granicy K-Pg. W chwili uderzenia asteroidy, region ten znajdował się pod wodą. W wydobytym i przesłanym na University of Missouri materiale zidentyfikowano mikroskopijne pozostałości po rybach: zęby, łuski, ości. Materiał pochodzi z ostatnich 50 000 lat kredy i kilkuset tysięcy lat po upadku asteroidy. We wszystkich pobranych próbkach występowało wystarczająco dużo pozostałości po rybach, by przeprowadzić wszelkie potrzebne badania, mówi MacLeod. Naukowcy podzielili próbki na trzy części. W jednej znajdował się materiał sprzed upadku asteroidy, w drugiej ten z okresu bezpośrednio po upadku, a w trzeciej, materiał nieco od tego z drugiej próbki. Sygnatury izotopów tlenu w skamieniałych szczątkach ryb pozwalają na określenie temperatury, w jakiej żyły zwierzęta. A zaobserwowane przez zespół MacLeoda zmiany wskazują, że średnia globalna temperatura zwiększyła się o 5 stopni Celsjusza i pozostała na tym poziomie przez kolejne 100 000 lat. Badania MacLeoda potwierdzają to, co sugerowali wcześniej inni naukowcy badający skamieniałe liście. Jeśli zatem rzeczywiście mieliśmy do czynienia z tak znacznym wzrostem temperatur, oznacza to, że poziom dwutlenku węgla w atmosferze wynosił wówczas 2300 części na milion (ppm). To znacznie więcej, niż wskazywało wiele wcześniejszych badań. Dla porównania warto dodać, że obecny poziom dwutlenku węgla w atmosferze to 410 ppm i jest on najwyższy od wielu milionów lat. Skoro zatem emisja powodowana przez człowieka zwiększyła ilość CO2 do obecnego poziomu, a upadek asteroidy spowodował, że dwutlenku węgla było w atmosferze niemal 6-krotnie więcej niż obecnie, może to oznaczać, że po upadku asteroidy pożary lasów były znacznie bardziej rozpowszechnione niż się uważa, albo też pojawił się dwutlenek węgla ze źródeł, które nie były dotychczas brane pod uwagę. « powrót do artykułu
×
×
  • Create New...