Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags ' misja'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 32 results

  1. Ostatnie postępy w technologii fotowoltaicznej, pojawienie się wydajnych i lekkich ogniw słonecznych i duża elastyczność tej technologii powoduje, że fotowoltaika może dostarczyć całość energii potrzebnej do przeprowadzenia długotrwałej misji na Marsie, a nawet do zasilenia stałej osady – twierdzą naukowcy z University of California, Berkeley. Dotychczas większość specjalistów mówiących o logistyce misji na Czerwonej Planecie zakładała wykorzystanie technologii jądrowej. Jest ona stabilna, dobrze opanowana i zapewnia energię przez 24 godziny na dobę. To rozwiązanie na tyle obiecujące, że NASA od kilku lat prowadzi projekt Kilopower, którego celem jest stworzenie na potrzeby misji kosmicznych reaktora jądrowego o mocy do 10 kilowatów. Problem z energią słoneczną polega zaś na tym, że w nocy Słońce nie świeci. Ponadto na Marsie wszechobecny pył zmniejsza efektywność paneli słonecznych. Przekonaliśmy się o tym w 2019 roku, gdy po 15 latach spędzonych na Marsie zasilany panelami słonecznymi łazik Opportunity przestał działać po wielkiej burzy pyłowej. W najnowszym numerze Frontiers in Astronomy and Space Sciences ukazał się artykuł opisujący wyniki analizy, w ramach których porównano możliwości wykorzystania na Marsie energii ze Słońca z energią jądrową. Naukowcy z Berkeley analizowali scenariusz, w którym marsjańska misja załogowa trwa 480 dni. To bowiem bardzo prawdopodobny scenariusz misji na Marsa uwzględniający położenie planet względem siebie. Analiza wykazała, że na ponad połowie powierzchni Marsa panują takie warunki, iż – uwzględniając rozmiary i wagę paneli słonecznych – technologia fotowoltaiczna sprawdzi się równie dobrze lub lepiej niż reaktor atomowy. Warunkiem jest przeznaczenie części energii generowanej za dnia do produkcji wodoru, który zasilałby w nocy ogniwa paliwowe marsjańskiej bazy. Na ponad 50% powierzchni Marsa technologia fotowoltaiczna połączona z produkcją wodoru sprawdzi się lepiej niż generowanie energii z rozpadu jądrowego. Przewaga ta jest widoczna przede wszystkim w szerokim pasie wokół równika. Wyniki naszej analizy stoją w ostrym kontraście do ciągle proponowanej w literaturze fachowej energii jądrowej, mówi jeden z dwóch głównych autorów badań, doktorant Aaron Berliner. Autorzy analizy wzięli pod uwagę dostępne technologie oraz sposoby ich wykorzystania. Pokazują, najlepsze scenariusze ich użycia, rozważają ich wady i zalety. W przeszłości NASA zakładała krótkotrwałe pobyty na Marsie. Takie misje nie wymagałyby np. upraw żywności czy tworzenia na Marsie materiałów konstrukcyjnych lub pozyskiwania środków chemicznych. Jednak obecnie coraz częściej rozważne są długotrwałe misje, a w ich ramach prowadzenie działań wymagających dużych ilości energii byłoby już koniecznością. Trzeba by więc zabrać z Ziemi na Marsa komponenty do budowy źródeł zasilania. Tymczasem każdy dodatkowym kilogram obciążający rakietę nośną to olbrzymi wydatek. Dlatego też konieczne jest stworzenie lekkich urządzeń zdolnych do wytwarzania na Marsie energii. Jednym z kluczowych elementów marsjańskiej stacji, którą takie źródła miałyby zasilać, będą laboratoria, w których genetycznie zmodyfikowane mikroorganizmy wytwarzałyby żywność, paliwo, tworzywa sztuczne i związki chemiczne, w tym leki. Berliner i inni autorzy analizy są członkami Center for the Utilization of Biological Engineering in Space (CUBES), które pracuje nad tego typu rozwiązaniami. Naukowcy zauważyli jednak, że cały ich wysiłek może pójść na marne, jeśli na Marsie nie będzie odpowiednich źródeł zasilania dla laboratoriów. Dlatego też przeprowadzili analizę porównawczą systemu Kilopower z instalacjami fotowoltaicznymi wyposażonymi w trzy różne technologie przechowywania energii w akumulatorach i dwie technologie produkcji wodoru – metodą elektrolizy i bezpośrednio przez ogniwa fotoelektryczne. Okazało się, że jedynie połączenie fotowoltaiki z elektrolizą jest konkurencyjne wobec energetyki jądrowej. Na połowie powierzchni Marsa było to rozwiązanie bardziej efektywne pod względem kosztów niż wykorzystanie rozpadu atomowego. Głównym przyjętym kryterium była waga urządzeń. Naukowcy założyli, że rakieta, która zabierze ludzi na Marsa, będzie zdolna do przewiezienia ładunku o masie 100 ton, wyłączając z tego masę paliwa. Obliczyli, jaką masę należy zabrać z Ziemi, by zapewnić energię na 420-dniową misję. Ku swojemu zdumieniu stwierdzili, że masa systemu produkcji energii nie przekroczyłaby 10% całości masy ładunku. Z obliczeń wynika, że dla misji, która miałby lądować w pobliżu równika, łączna masa instalacji fotowoltaicznej oraz systemu przechowywania energii w postaci wodoru wyniosłaby około 8,3 tony. Masa reaktora Kilopower to z kolei 9,5 tony. Ich model uwzględnia nasłonecznienie, obecność pyłu i lodu w atmosferze, które wpływają na rozpraszanie światła słonecznego. Pokazuje też, jak w różnych warunkach optymalizować użycie paneli fotowoltaicznych. Uczeni zauważają, że mimo iż najbardziej wydajne panele słoneczne są wciąż drogie, to jednak główną rolę odgrywają koszty dostarczenia systemu zasilania na Marsa. Niewielka masa fotowoltaiki i elastyczność jej użycia to olbrzymie zalety tej technologii. Krzemowe panele na szklanym podłożu zamknięte w stalowych ramach, jakie są powszechnie montowana na dachach domów, nie mogą konkurować z najnowszymi udoskonalonymi reaktorami. Ale nowe, lekkie elastyczne panele całkowicie zmieniają reguły gry, stwierdzają autorzy analizy. Zwracają przy tym uwagę, że dzięki niższej masie można zabrać więcej paneli, więc będzie możliwość wymiany tych, które się zepsują. System Kilopower dostarcza więcej energii, zatem mniej takich reaktorów trzeba by dostarczyć, ale awaria jednego z urządzeń natychmiast pozbawiłaby kolonię znacznej części energii. « powrót do artykułu
  2. Za kilkanaście miesięcy, 24 września 2023 roku sonda OSIRIS-REx dostarczy na Ziemię próbki asteroidy Bennu. Jednak na tym nie koniec. NASA przydzieliła jej bowiem nowe zadanie. Po dostarczeniu próbek rozpocznie się OSIRIS-APEX, misja w ramach której sonda poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej. Misja OSIRIR-REx wystartowała w 2016 roku, a cztery lata później sonda dotknęła asteroidy Bennu i pobrała z niego próbki. Padła przy tym ofiarą własnego sukcesu, gdyż materiału było zbyt dużo i nie można było zamknąć pojemnika oraz zważyć próbek. Niemal równo rok temu sonda rozpoczęła powrót w kierunku Ziemi. W przyszłym roku, 24 września, gdy OSIRIS-REx podleci wystarczająco blisko Ziemi, od pojazdu odłączy się pojemnik z próbkami, który na spadochronie wyląduje na Ziemi. Pojemnik zostanie otwarty w specjalnym laboratorium w Johnson Space Center. Część zebranych próbek zostanie udostępniona innym krajom, część zaś zostanie zapieczętowana na wiele dekad, by w przyszłości mogli je zbadać naukowcy dysponujący lepszym sprzętem. NASA właśnie przydzieliła pojazdowi nowe zadanie. Trzydzieści dni po tym, jak próbki trafią na Ziemię, pojazd wykona pierwszy z manewrów, który skieruje go w stronę asteroidy Apophis. Będzie wówczas pracował w ramach misji OSIRIS-APEX, od OSIRIS-Apophis Explorer. Za stronę naukową misji OSIRIS-REx odpowiada profesor Dante Lauretta. Natomiast głównym naukowcem OSIRIS-APEX będzie obecny zastępca Lauretty, profesor Dani DellaGiustina. Na misję OSIRIS-APEX przeznaczono 200 milionów dolarów. Gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. Po intensywnym poszukiwaniu potencjalnego celu badawczego zdecydowano, że sonda poleci na spotkanie z Apophisem. Apophis to jedna z asteroid o najgorszej opinii. Gdy została odkryta w 2004 roku istniały obawy, że w 2029 roku może uderzyć w Ziemię. Jednak po intensywnych obserwacjach wykluczono takie ryzyko. Mimo to Apophis będzie najbliższą Ziemi tak dużą asteroidą od czasu około 50 lat, zatem od czasu, gdy szczegółowo śledzimy asteroidy. I przez kolejnych 100 lat żadna ze znanych nam dużych asteroid nie podleci tak blisko naszej planety. W 2029 roku Apophis znajdzie się 10-krotnie bliżej Ziemi niż Księżyc. Ludzie w Europie i Afryce powinni widzieć asteroidę gołym okiem, mówi DellaGiustina. Misia OSIRIS-APEX będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład « powrót do artykułu
  3. Marsjański śmigłowiec Ingenuity odnalazł spadochron, za pomocą którego łazik Perseverance wylądował na Marsie, oraz fragmenty osłony termicznej i inne elementy, które chroniły łazik podczas podróży w kierunku Czerwonej Planety, jak i w czasie wejścia w jej atmosferę. NASA wydłużyła czas misji Ingenuity po to, by przeprowadzić pionierskie loty, takie jak ten. Za każdym razem, gdy wznosi się w powietrze, Ingenuity sprawdza nowe fragmenty planety, oferując nam możliwości, jakich nie miała żadna z dotychczasowych misji planetarnych. Jest on idealnym przykładem możliwości i użyteczności platform lotniczych na Marsie, cieszy się Teddy Tzanetos z Jet Propulsion Laboratory, który stoi na czele zespołu odpowiedzialnego na Ingenuity. Pojazd z łazikiem na pokładzie wszedł w atmosferę Marsa z prędkością niemal 20 000 km/h. Całość musiała wytrzymać wysokie temperatury, silne drgania i inne ekstremalne zjawiska. Dotychczas pozostałości systemu lądowania mogliśmy oglądać tylko na zdjęciach zrobionych z oddali przez Perseverance. Teraz na Ziemię trafiły świetne ujęcia zrobione z góry, z niewielkiej wysokości. Inżynierowie z NASA zrobią użytek z przysłanych przez śmigłowiec fotografii. Uzyskane dzięki nim informacje posłużą do udoskonalenia urządzeń lądujących. Misja Perseverance ma najlepiej w historii udokumentowane lądowanie na Marsie. Kamery pokazały nam wszystko, do rozwinięcia spadochronów po pierwszy kontakt z powierzchnią planety. Jednak zdjęcia Ingenuity dostarczają zupełnie nowych informacji. Niezależnie od tego, czy ich analiza wykaże, że wszystkie elementy działały tak, jak przewidywaliśmy czy też stwierdzimy, że coś trzeba poprawić, będzie to nieocenioną pomocą dla planowania misji Mars Sample Return, dodaje Ian Clark, były inżynier systemów Perseverance, który jest obecnie odpowiedzialny za opracowanie fazy startu z powierzchni Marsa misji Mars Sample Return. To misja, w ramach której próbki Marsa zebrane przez Perseverance mają przylecieć na Ziemię. Na zrobionych przez Ingenuity zdjęciach widzimy osłonę oraz jej fragmenty, na które rozpadła się uderzając w Marsa z prędkością około 126 km/h. Wydaje się, że jej pokrycie nie zostało uszkodzone podczas wchodzenia w atmosferę planety. Widocznych jest też wiele z 80 lin łączących osłonę ze spadochronami. Widać też około 1/3 samego spadochronu. Reszta jest zapewne przykryta pyłem marsjańskim. Na pierwszy rzut oka można stwierdzić, że spadochron nie uległ uszkodzeniu w czasie rozwijania przy prędkościach ponaddźwiękowych. Inżynierów z NASA czeka teraz kilkanaście tygodni analiz zdjęć. « powrót do artykułu
  4. Układ Słoneczny jest pełen fascynujących obiektów, które mogą być celem misji naukowych. Jednak budżet NASA – mimo że imponujący – nie jest z gumy, więc Agencja musi starannie określać priorytety swoich działań. Pomaga jej w tym tzw. przegląd dekady (decadal survey), nadzorowany przez Narodowe Akademie Nauk, Inżynierii i Medycyny. W jego ramach, raz na 10 lat, NASA prosi społeczność naukową o ocenę aktualnego stanu wiedzy i określenie obszarów, których zbadanie powinno być priorytetem. Właśnie ukazał się raport z najnowszego przeglądu dekady. Określa on przyszłe kierunki rozwoju astrobiologii, planetologii i obrony planetarnej. To rekomendowane portfolio misji, priorytetowych badań naukowych oraz technologii, które należy rozwijać. Realizacja tych zaleceń powiększy naszą wiedzę o powstaniu i ewolucji Układu Słonecznego oraz możliwości występowania życia i warunków do jego podtrzymania na innych obiektach niż Ziemia, mówi Robin Canup z Southwest Research Institute, który jest współprzewodniczącym komitetu organizującego przegląd. Jednym z zadań przeglądu jest określenie największych misji NASA, misji flagowych. Obecnie agencja prowadzi dwie takie misje, które zostały zaproponowane w poprzednim decadal survey. To warta 2,7 miliarda USD misja łazika Perseverance, który w ubiegłym roku wylądował na Marsie oraz misja Europa Clipper, która ma wystartować w roku 2024, a której budżet wynosi 4,25 miliarda dolarów. To misja orbitera, który będzie krążył wokół Jowisza i zbada też jego księżyc – Europę. W ramach najnowszego przeglądu dokonano analizy sześciu potencjalnych misji flagowych. Wśród propozycji znalazło się zarówno lądowanie na Merkurym, jak i przygotowanie misji badawczej do Neptuna i jego największego księżyca, Trytona. Komitet dokonujący oceny propozycji uznał, ze priorytetową powinna być misja do Urana, które koszt oszacowano na 4 miliardy dolarów. Specjaliści uznali, że misja, w ramach której do Urana miałby polecieć zarówno orbiter jak i próbnik, ma największy potencjał naukowy oraz największe szanse na powodzenie. Misja taka miałaby wystartować w roku 2031 lub 2032, a do Urana dotarłaby 13 lat później. Następnie przez kilkanaście lat pojazd pozostałby na orbicie Urana, badając jego atmosferę, pierścienie, wnętrze i księżyce. Uran to jeden z najbardziej interesujących obiektów Układu Słonecznego, napisali członkowie komitetu. Zaznaczyli, że zrealizowanie misji do któregoś z lodowych olbrzymów – Urana lub Neptuna – jest absolutnym priorytetem, ale przygotowanie w ciągu najbliższej dekady misji do Neptuna byłoby zbyt dużym wyzwaniem. Jeśli zaś NASA otrzyma odpowiednie finansowanie, mogłaby zorganizować kolejną misję flagową. Komitet zarekomendował misję Enceladus Orbilander. Zakłada ona zbudowanie pojazdu, który udałby się do księżyca Saturna, Enceladusa. Przez 1,5 roku badałby go z orbity, a następnie by wylądował i przez kolejne 2 lat prowadził badania na jego powierzchni. Koszt takiej misji oszacowano na 5 miliardów dolarów. Poza misjami flagowymi, pojawiły się też inne propozycje. Jako, że od czasu ostatniego przeglądu dekady liczba odkrytych egzoplanet zwiększyła się kilkukrotnie, specjaliści zaproponowali trzy szerokie pola badawcze w dziedzinie planetologii. Eksperci chcą, by NASA zajęła się 1. pochodzeniem układów planetarnych podobnych do naszego oraz zbadaniem, na ile są one rozpowszechnione we wszechświecie, 2. ewolucją planet oraz 3. warunkami koniecznymi do powstania planet zdolnych do podtrzymania życia i jego pojawienia się na Ziemi oraz jego poszukiwania poza Ziemią. Próby odpowiedzi na te pytania mogą zaś być związane ze zorganizowaniem mniejszych misji niż te flagowe. Może być to np. zbudowanie sieci czujników geofizycznych na Księżycu, pobranie i przywiezienie na Ziemię próbek z komety lub planety karłowatej Ceres czy wysłanie pojazdów badawczych w kierunku Saturna czy jego księżyców. Twórcy przeglądu dużą uwagę przywiązali też do coraz bardziej rozszerzającego się pola badawczego związanego z obroną Ziemi przed zagrożeniami z przestrzeni kosmicznej. Już w tej chwili NASA kataloguje i śledzi olbrzymią liczbę obiektów bliskich Ziemi (NEO – Near-Earth Objects), a w ubiegłym roku wystartowała pierwsza misja, której celem jest przetestowanie technologii obrony Ziemi przed asteroidami (DART). Uruchomiono też nowoczesne narzędzie do oceny ryzyka uderzeń asteroid w Ziemię i trwają prace nad pojazdem NEO Surveyor, który będzie identyfikował obiekty mogące zagrozić naszej planecie. W decadal survey wezwano NASA, by w 2029 roku, kiedy w pobliże Ziemi przyleci duża asteroida Apophis, Agencja przeprowadziła badania pod kątem obrony planetarnej. Autorzy przeglądu uważają również, że po misjach DART i NEO priorytetem NASA powinno być opracowanie pojazdu, który mógłby w trybie pilnym udać się do zagrażającej Ziemi asteroidy, by lepiej ocenić stwarzane przez nią ryzyko. « powrót do artykułu
  5. Dzisiaj ok. godziny 11:30 czasu polskiego z przylądka Canaveral wystartowała misja Lucy – pierwsza w historii misja do asteroid trojańskich. Znajdują się one poza orbitą Jowisza, w odległości ok. 850 milionów kilometrów od Słońca. Są pozostałościami po formowaniu się planet, więc ich badania powinny dostarczyć nowych informacji na temat początków Układu Słonecznego. Lucy doleci do nich za 12 lat. Asteroidy trojańskie, zwane trojanami Jowisza lub po prostu Trojanami, tworzą dwie grupy. Jedna z nich znajduje się w punkcie libracyjnym L4 orbity Jowisza, a druga w punkcie L5. Przyjęło się, że asteroidy z punktu L4 nazywa się imionami greckich bohaterów, dlatego też cała grupa zyskała nieoficjalną nazwę „Greków”. Z kolei asteroidy z punktu L5 zwane są „Trojańczykami”. Obie grupy poruszają się po orbicie Jowisza, a kierunek ruchu powoduje, że Trojańczycy gonią Greków. Co interesujące, zanim taki podział na grupy został ustalony dwie wcześniej odkryte asteroidy – Patroklus i Hektor – zostały już nazwane. W efekcie, w grupie Trojańczyków znajduje się grecki szpieg, a w grupie Greków jest szpieg trojański. Lucy najpierw przeleci dwukrotnie w pobliżu Ziemi. Następnie poleci do L4, czyli Greków. Tam w latach 2027–2028 spotka się z Eurybatesem i jego satelitą Polimele, a następnie z Leukusem i Orusem. Później podąży w kierunku L5 (Trojańczyków). Po drodze odwiedzi Donaldjohansona, asteroidę z głównego pasa, nazwaną tak na cześć odkrywcy szczątków hominina Lucy, od którego misja wzięła nazwę. Ponownie przeleci też w pobliżu Ziemi. Po dotarciu do Trojańczyków w roku 2033 Lucy przeleci obok podwójnego układu Patroclus-Menoetius. Po wykonaniu zadania Lucy będzie krążyła pomiędzy obiema grupami asteroid trojańskich, odwiedzając każdą z nich co sześć lat. Co ciekawe, pojazd zasilany będzie przez energię słoneczną, a że będzie to najdalsza od Słońca misja zasilana w ten sposób, wyposażono ją w gigantyczne rozkładane panele słoneczne. Są tak wielkie, że mogłyby przykryć kilkupiętrowy budynek. Gdy są złożone ich grubość wynosi zaledwie 10 cm. Po rozłożeniu każdy z paneli ma średnicę 7,3 metra, waży 77 kilogramów i... nie jest w stanie utrzymać własnej wagi w polu grawitacyjnym Ziemi.   « powrót do artykułu
  6. Dzięki teleskopowi ALMA (Atacama Large Milimeter/Submilimeter Array) udało się lepiej określić skład asteroidy Psyche. W sierpniu przyszłego roku ma wystartować misja, która dotrze do Psyche w 2026 roku. Przed kilkoma miesiącami NASA rozpoczęła końcowy montaż pojazdu, który poleci na spotkanie z asteroidą. Odkryta w 1852 roku Psyche to asteroida typu M, co oznacza, że jej spektrum najbardziej przypomina spektrum meteorytów żelaznych. Jako, że ma ona ponad 200 kilometrów średnicy, oznacza to, że jest największą znaną nam asteroidą żelazną. Psyche krąży wokół Słońca w głównym pasie asteroid, a jej odległość od Ziemi waha się między 180 a 329 milionów kilometrów. Ze względu na jej niewielkie rozmiary i dużą odległość, dość trudno jest badać ją z Ziemi. Dotychczas udawało się uzyskiwać jej obraz w postaci pojedynczego piksela. Jednak profesor Katherinie de Kleer i jej kolegom z Caltechu to nie wystarczało. Naukowcy połączyli dane z 66 anten wchodzących w skład ALMA. Dzięki wielokrotnym obserwacjom powierzchni Psyche byli w stanie uzyskać obraz złożony z 50 pikseli i zbadać inercję cieplną Psyche. Inaczej mówiąc, określili jak bardzo powierzchnia Psyche rozgrzewa się, gdy jest oświetlana przez Słońce i jak bardzo się chłodzi, gdy oświetlany dotychczas fragment odwraca się od Słońca. Okazało się, że Psyche kryje kilka tajemnic. Po pierwsze, niektóre obszary asteroidy mają inną temperaturę, niż pozostałe, co wskazuje, że powierzchnia nie jest jednorodna. Okazało się też, że Psyche charakteryzuje się relatywnie większą inercją cieplną niż inne asteroidy, ale jednocześnie wypromieniowuje około 60% mniej ciepła, niż można byłoby się spodziewać po obiekcie z tak dużą inercją. Naukowcy wysunęli hipotezę, że dzieje się tak, gdyż powierzchnia Psyche w co najmniej 30% jest metaliczna. Problem jednak w tym, że odbite od niej światło nie jest spolaryzowane, a tak by się działo, gdyby odbijało się od gładkiej lub stałej powierzchni metalicznej. Dlatego też naukowcy sądzą, że powierzchnia pokryta jest metalicznymi ziarnami, które rozpraszają światło. Jeśli rzeczywiście Psyche składa się głównie z metali, może to oznaczać, że jest jądrem protoplanety, która utraciła znaczną część swojej masy w wyniku kolizji i innym obiektem. Ewentualnie asteroida mogła powstać w innym – bliższym Słońcu – miejscu Układu Słonecznego niż to, gdzie obecnie się znajduje. Na ostateczne odpowiedzi co do natury Psyche będziemy musieli jeszcze kilka lat poczekać. Misja Psyche wystartuje w sierpniu 2022 roku. W maju 2023 pojazd zbliży się do Marsa, by skorzystać z jego asysty grawitacyjnej, a na początku 2026 wejdzie na orbitę Psyche i pozostanie tam przez 21 miesięcy. « powrót do artykułu
  7. Teraz, gdy łazik Perseverance pracuje na Marsie, przed NASA i ESA stoi nowe niezwykle trudne wyzwanie. Obie agencje przygotowują Mars Sample Return, misję, w ramach której próbki zebrane przez Perseverance mają trafić na Ziemię. Jeśli misja się uda, otworzy ona nowy rozdział w robotycznej eksploracji kosmosu. Zgodnie z założeniami Mars Sample Return najpierw na Czerwoną Planetę zostanie wysłana misja Sample Retrieval Lander. Wyląduje ona w pobliżu miejsca lądowania misji Mars 2020 – czyli łazika Perseverance – i umieści tam specjalną platformę, z której wyjedzie zbudowany przez ESA niewielki łazik, Sample Fetch Rover. Łazik pozbiera próbki przygotowane przez Perseverance i wróci z nimi do platformy. Tam załaduje je do kontenera wielkości piłki do koszykówki znajdującego się na pokładzie Mars Ascent Vehicle (MAV). MAV będzie pierwszym w historii pojazdem, który wystartuje z powierzchni Marsa. Jego zadaniem będzie dostarczenie kontenera na orbitę Marsa. W tym czasie na orbicie Czerwonej Planety krążył będzie Earth Return Orbiter autorstwa ESA. Ma on przechwycić orbitujący kontener, zdekontaminować go i umieścić w kapsule lądującej. Earth Return Orbiter wróci następnie w okolice Ziemi i uwolni kapsułę, która trafi na naszą planetę. Skoordynowanie i przeprowadzenie tak złożonej misji to poważne wyzwanie inżynieryjne. Dość wspomnieć, że wszystko musi odbyć się automatycznie i musi udać się za pierwszym razem. Odległość pomiędzy Marsem a Ziemią jest tak duża, że sygnał w obie strony biegnie kilkanaście minut. Jeśli więc w krytycznych momentach misji pojawią się nieprzewidziane problemy, ludzie nie będą mogli im zaradzić. Największe wyzwanie będzie stanowiło przeprowadzenie startu MAV z powierzchni Marsa. Za opracowanie odpowiednich technologi odpowiedzialna jest firma Northrop Grumman. Tworzymy napęd na paliwo stałe, który wyniesie MAV na orbitę. To kluczowy element powrotu próbek na Ziemię, mówi Mike Lara, dyrektor firmy ds. strategii i rozwoju biznesowego. Anita Sengupta, inżynier na Wydziale Inżynierii Kosmicznej University of Southern California mówi, że głównym problemem jest tutaj uwzględnienie różnic w grawitacji i oddziaływaniu atmosfery Marsa i Ziemi. Grawitacja na Ziemi jest trzykrotnie większa. A ciśnienie na powierzchni Marsa jest około 100-krotnie niższe niż na Ziemi. Patrząc tylko na te czynniki, wyniesienie z Marsa tej samej masy co z Ziemi wymaga znacznie mniejszej rakiety. Jednak prawdziwym wyzwaniem jest fakt, że na miejscu nie będzie ludzi. Wszystko trzeba zrobić automatycznie. To musi zadziałać za pierwszym razem, stwierdza uczona. Nawet na Ziemi, gdy mamy pełną kontrolę, start rakiety jest poważnym wyzwaniem, a niewielkie problemy techniczne czy zła pogoda niejednokrotnie powodują, że start przerywany jest dosłownie w ostatnich sekundach, przypomina Lara. Inżynierowie pracujący nad napędem dla MAV muszą też pamiętać, że na Marsie panują bardzo niskie temperatury. Sample Fetch Rover będzie zbierał pozostawione przez Perseverance próbki przez około 18 miesięcy. W tym czasie MAV będzie czekał na powierzchni Czerwonej Planety. Inżynierowie muszą więc zaprojektować taki system utrzymywania odpowiedniej temperatury układu napędowego, by MAV mógł bez przeszkód wystartować po kilkunastu miesiącach postoju w temperaturach minus kilkudziesięciu stopni Celsjusza. Na szczęście dysponujemy odpowiednimi modelami i mocami obliczeniowymi, dzięki którym inżynierowie będą mogli sprawdzić np. jak zachowuje się paliwo w takich warunkach. Ponadto wiele systemów zostanie zdublowanych, więc gdy jeden zawiedzie, można będzie uruchomić drugi. Bardzo pomocne będzie też to, czego dowiedzieliśmy się podczas misji Apollo, kiedy to startowano z powierzchni Księżyca, oraz z innych misji. Każda misja uczy nas czegoś, co wykorzystujemy w kolejnych misjach. Tak naprawdę jest to kwestia dobrego rozumienia fizyki, mówi Sengupta.   « powrót do artykułu
  8. Zjednoczone Emiraty Arabskie właśnie umieściły satelitę Hope na orbicie Marsa. To historyczna misja. Po raz pierwszy bowiem kraj arabski z sukcesem przeprowadził misję międzyplanetarną. ZEA dołączają tym samym do elitarnego klubu krajów, które mają na swoim koncie tego typu wyczyn. Pierwszym państwem, które umieściło pojazd na orbicie Marsa były Stany Zjednoczone, których Mariner 9 wszedł na orbitę Czerwonej Planety 14 listopada listopada 1971 roku. Niedługo później, 27 listopada 1971 roku na orbicie Marsa znalazł się radziecki Mars 2. USA i ZSRR przez dziesięciolecia były jedynymi krajami, których pojazdy pracowały na orbicie. Dopiero w czerwcu 2003 roku dołączył Mars Express wysłany przez Unię Europejską. Po kolejnych 11 latach, w listopadzie 2013 roku na orbicie znalazł się indyjski Mangalayaan. Teraz do elitarnego klubu dołączyły Zjednoczone Emiraty Arabskie. USA wciąż pozostają jedynym krajem, który przeprowadził całą zaplanowaną misję włącznie z lądowaniem na Marsie. Najbardziej boję się wejścia na orbitę, mówiła w czasie startu Hope zastępczyni dyrektora misji i główny jej naukowiec, Sarah Al Amiri. Hope ma badać marsjańską atmosferę z punktu widzenia niezwykłej eliptycznej orbity, która pozwoli obserwować niemal całą powierzchnię planety. Sonda będzie obiegała Marsa w ciągu 55 godzin i dostarczy pierwszej globalnej mapy pogodowej planety. Zespół Al Amiri ma nadzieje, że dzięki temu poznamy proces powodujący, że Mars traci tlen i wodór. Zjednoczone Emiraty Arabskie błyskawicznie stanęły do kosmicznego wyścigu. Ledwie 7 lat temu powołano tam krajową agencję kosmiczną i od razu rozpoczęto planowanie misji marsjańskiej. Jednocześnie ZEA zaczęły projektować i budować satelity okołoziemskie. Hope ma pomóc w rozwoju lokalnego przemysłu kosmicznego oraz nauki. Emiraty, wiedząc, że ropa naftowa kiedyś się wyczerpie, stawiają na naukę i technologię jako motory napędowe swojego przyszłego rozwoju. Pojazd Hope został niemal w całości zbudowany w USA, jednak w misję zaangażowanych jest 75 miejscowych inżynierów i naukowców, którzy zdobędą przy okazji bezcenną wiedzę i doświadczenie. Jutro możemy być świadkami kolejnej historycznej chwili. Na orbitę Marsa ma wejść chiński pojazd Tianwen-1. W maju od pojazdu odłączy się łazik, który ma wylądować na powierzchni Czerwonej Planety. Na orbitę Marsa trafi też w bieżącym miesiącu amerykańska misja Mars 2020, a ramach której odbędzie się lądowanie łazika Perseverance. Przywiezie on na Marsa pierwszy śmigłowiec, który ma latać w atmosferze Czerwonej Planety. « powrót do artykułu
  9. Wczoraj o godzinie 13:07 czasu polskiego chiński pojazd Tianwen-1 wszedł na orbitę Marsa. Jest to pierwszy chiński pojazd pracujący w pobliżu Czerwonej Planety. Tym samym Chiny stały się, po Zjednoczonych Emiratach Arabskich, drugim krajem, który w bieżącym tygodniu umieścił swój pierwszy orbiter w pobliżu Marsa. Chiny dołączyły więc do niewielkiego grona krajów i organizacji (USA, UE, Indie, ZEA), które dowiodły, że są w stanie przeprowadzić misję w pobliżu Marsa. W przeszłości podobne misje przeprowadzał też ZSRR, jednak Rosja nie jest w stanie powtórzyć jego sukcesów. Po upadku ZSRR Moskwa podjęła dwie próby misji marsjańskich – Mars 96 w 1996 roku oraz Fobos-Grunt w 2011 roku – i obie spaliły na panewce. Chiny mają jednak znacznie bardziej ambitne plany. W maju od orbitera ma odłączyć się lądownik z łazikiem na pokładzie. Chiny spróbują posadowić swoje urządzenie na powierzchni Marsa. Dotychczas niewielu zdecydowało się na próbę lądowania na Marsie. Próbowały tego ZSRR, UE i USA. Jedynie USA mają na swoim koncie udane misje z lądowaniem. Obecnie na powierzchni Marsa pracują amerykańskie łaziki Curiosity oraz lądownik InSight. Jeśli Chinom uda się lądowanie, a ich pojazd podejmie pracę, Państwo Środka stanie się drugim krajem, który udowodni, że potrafi przeprowadzić taką misję. Zanim jednak do tego dojdzie do Marsa ma dotrzeć amerykańska misja Mars 2020 i za tydzień – 18 lutego – na powierzchni ma wylądować łazik Perseverance z helikopterem Ingenuity na pokładzie. Obecnie misja znajduje się w odległości około 13 800 000 kilometrów od Marsa i zbliża się do niego z prędkością 77 701 km/h (to prędkość względem Słońca). « powrót do artykułu
  10. Testy żagla słonecznego oraz badania zewnętrznych warstw atmosfery Ziemi będą dwiema misjami, które zostaną zabrane „autostopem” przy okazji misji IMAP (Interstellar Mapping and Acceleration Probe). Urządzenia typu SmallSat trafią w przestrzeń kosmiczną dzięki temu, że IMAP nie wykorzysta całych możliwości rakiety nośnej. Ich wybór to jednocześnie początek realizacji przez NASA „naukowego autostopu” o nazwie RideShare. Wspomniane małe misje to GLIDE (Global Lyman-alpha Imagers of the Dynamic Exosphere), w ramach której badany będzie obszar, gdzie atmosfera styka się z przestrzenią kosmiczną, oraz Solar Cruiser, misja testowa żagla słonecznego. Zostaną one wystrzelone wraz z IMAP w 2025 roku. Sonda IMAP zostanie umieszczona w punkcie libracyjnym L1 i stamtąd będzie badała przyspieszenie cząstek pochodzących z heliosfery oraz interakcję wiatru słonecznego z lokalnym medium. Dane będą przesyłane na Ziemię w czasie rzeczywistym i posłużą do prognozowania pogody kosmicznej. W ramach projektu RideShare NASA ma zamiar wykorzystywać nadmiarową moc rakiet nośnych używanych przy dużych misjach do zabierania na ich pokład mniejszych urządzeń, na przykład typu SmallSat. To zwiększy możliwości badawcze i ułatwi organizowanie niewielkich misji naukowych. GLIDE ma uzupełnić nasze luki w wiedzy na temat egzosfery. Dysponujemy co prawda wykonanymi w ultrafiolecie zdjęciami tego obszaru, ale wszystkie one zostały zrobione spoza egzosfery. GLIDE ma obserwować całą egzosferę, dostarczając globalnych i spójnych danych na jej temat. Badania, w jaki sposób Słońce wpływa na najbardziej zewnętrzne warstwy atmosfery, pozwolą na zrozumienie wpływu naszej gwiazdy na systemy telekomunikacyjne oraz opracowanie technik, pozwalających na uniknięcie zakłóceń ze strony Słońca. Główną badaczką misji jest Lara Waldrop z University of Illinois at Urbana-Champaign, a budżet GLIDE wynosi 75 milionów USD. Z kolei Solar Cruiser to typowa misja testowa nowej technologii. W jej skład wchodzi żagiel słoneczny o powierzchni 1700 m2, a celem misji będzie wykazanie przydatności tego typu urządzeń do napędzania pojazdów z wykorzystaniem promieniowania słonecznego. Odpowiedzialnym za ten projekt jest Les Johnson z Marshall Space Flight Center, a budżet misji to 65 milionów USD. « powrót do artykułu
  11. Po 8-miesięcznym milczeniu NASA ponownie skontaktowała się ze znajdującą się na krawędziach Układu Słonecznego sondą Voyager 2. Brak kontaktu spowodowały był remontem i rozbudową anteny, która służy do komunikacji z Voyagerem. Prace na 70-metrowej antenie trwały od połowy marca. W końcu 29 października wysłano serię komend, a Voyager 2 potwierdził ich otrzymanie i wykonał je bez najmniejszego problemu. Komendy były testem Deep Space Station 43, jedynej anteny, która służy do komunikacji z Voyagerem 2. Urządzenie znajduje się w Australii i jest częścią Deep Space Network. To należąca do NASA sieć anten do komunikacji radiowej z pojazdami znajdującymi się poza orbitą Księżyca. Po wyłączeniu Deep Space Station 43 operatorzy Voyager 2 mogli jedynie otrzymywać od niego dane naukowe oraz informacje dotyczące stanu pojazdu. Nie byli jednak w stanie wysłać żadnej komendy. W ramach rozbudowy DSS43 została wyposażona w dwa nowe nadajniki. Jeden z nich, ten używany do wysyłania komend, zastąpił stary nadajnik sprzed 47 lat. Wymieniono też podzespoły ogrzewające i chłodzące, elementy związane z dostarczaniem energii i wiele innych części anteny. Udany test komunikacji z 29 października daje nadzieję, że zgodnie z planem DSS43 powróci do normalnej pracy w lutym przyszłego roku. Deep Space Network składa się z anten znajdujących się w Australii (Canberra), USA (Goldstone w Kalifornii) i Hiszpanii (Madryt). Takie ich rozmieszczenie gwarantuje, że niemal każdy pojazd, który znajduje się w prostej linii od Ziemi, ma przez cały czas łączność przynajmniej z jedną anteną. Voyager 2 jest tutaj rzadkim wyjąkiem. Aby dokonać przelotu w pobliżu Trytona, księżyca Neptuna, sonda musiała przelecieć nad biegunem północnym planety. Taka trajektoria spowodowała, że przesunęła się na południe względem płaszczyzny orbity planet i cały czas zmierza w tym kierunku. To wciąż pogłębiające się odchylenie na południe powoduje, że Voyager 2 nie jest już widoczny dla anten z Półkuli Północnej. Kontakt z nim ma zatem wyłącznie antena z Australii. DSS43 to jedyna antena na Półkuli Południowej, która ma wystarczająco dużą moc, by wysyłać komendy do Voyagera 2. Jego bliźniak, Voyager 1, obrał inną drogę za Saturnem, jest więc widoczny dla obu anten z Półkuli Północnej. W czasie, gdy DSS43 nie mogła wysyłać komend do Voyagera 2, informacje nadchodzące z tej sondy były odbierane przez trzy 34-metrowe anteny w Canberze. DSS43 rozpoczęła pracę w 1972 roku, na 5 lat przed wystrzeleniem Voyagerów. Wówczas miała średnicę 64 metrów. W roku 1987 zwiększono ją do 70 metrów. Od tamtego czasu urządzenie było wielokrotnie rozbudowywane i naprawiane. Jednak obecna praca były najbardziej znaczącymi i wiązały się z najdłuższym wyłączeniem anteny od ponad 30 lat. DSS43 to wysoce wyspecjalizowany system. Na całym świecie są tylko dwie podobne anteny, więc wyłączenie jednej z nich to nie jest najlepsza sytuacja dla Voyagera i wielu innych misji NASA. Jednak musimy podejmować takie decyzje, by móc obsługiwać obecne i przyszłe misje. W przypadku urządzenia, które liczy sobie niemal 50 lat, trzeba być proaktywnym. Nie można czekać, aż coś się zepsuje, mówi Philip Baldwin z NASA. Z Deep Space Network korzystają liczne misje. Najnowsza rozbudowa przyda się m.in. podczas obecnych i planowanych misji na Marsa. « powrót do artykułu
  12. Wysięgniki stworzone na potrzeby misji JUICE, jednej z dwóch największych misji realizowanych przez Europejską Agencję Kosmiczną, trafią za kilka dni do Niemiec, gdzie przejdą ostatnie testy magnetyczne – poinformowała w czwartek Astronika, polska firma, która je zbudowała. JUpiter ICy moons Explorer (JUICE) to pierwsza duża misja Europejskiej Agencji Kosmicznej (ESA), realizowana w ramach programu Cosmic Vision (Kosmiczna Wizja) na lata 2015-2025; jej łączny koszt sięga niemal 900 mln euro. Sonda będzie badała atmosferę największej planety Układu Słonecznego - Jowisza oraz jego księżyców: Europy, Kallisto i Ganimedesa. Sonda misji JUICE będzie wyposażona w różne instrumenty badawcze. Polska firma Astronika przygotowuje m.in. wysięgniki, na których końcach zamontowane będą sondy do pomiarów plazmy (Langmuir Probe – Plasma Wave Instrument - LP-PWI). W czwartek, w komunikacie prasowym przesłanym PAP Astronika poinformowała, że wykonane przez nią instrumenty zostaną w najbliższych dniach przetransportowane do Niemiec, gdzie przejdą ostatnie testy magnetyczne. Wcześniej instrumenty stworzone przez Astronikę przeszły szereg innych testów. Po ostatnich próbach w Niemczech zostaną przetransportowane do siedziby głównego integratora satelity – Airbus Defence and Space w niemieckim Friedrichshafen, gdzie pod koniec 2020 zostaną na stałe przyłączone do satelity badawczego, który w 2022 roku wyleci w kierunku Jowisza. Głównym zadaniem wysięgników będzie rozłożenie się na odległość 3 metrów od satelity badawczego i ustawienie czujników dokładnie pod kątem 135 st., aby umożliwić im badanie plazmy znajdującej się w magnetosferze Jowisza – czytamy w informacji przesłanej PAP. Jak twierdzi Łukasz Wiśniewski, członek zarządu Astroniki i manager projektu, stworzenie instrumentów wymagało od zespołu projektowego nieszablonowego podejścia i opracowania innowacji mających sprostać kosmicznym wyzwaniom. Stworzone na potrzeby misji JUICE urządzenia są niezwykle lekkie, ważą poniżej 1,3 kilograma. Musiały zostać zaprojektowane w taki sposób, żeby wytrzymać duże obciążenia, którym zostaną poddane, a także, aby podczas otwierania nie zniszczyły same siebie – mówi Wiśniewski cytowany w komunikacie. Dodał, że wysięgniki są wytrzymałe na ekstremalne temperatury. W czasie swojej podróży urządzenia stworzone przez polską firmę będą musiały wytrzymać zarówno temperaturę około 200 st. C w okolicach Wenus, jak i nawet -200 st. C, kiedy sonda znajdzie się w cieniu Jowisza. Jak wynika z informacji przesłanej PAP, polscy inżynierowie stworzyli pięć egzemplarzy lotnych instrumentów LP-PWI. Cztery z nich zostaną finalnie przyłączone do satelity i wyruszą w podróż w kosmos, a jeden służy jako egzemplarz zapasowy. Urządzenia zostały od początku zaprojektowane i wyprodukowane przez Polaków z wykorzystaniem szeregu innowacyjnych technologii – podkreślono. Jak informuje Astronika, oprócz urządzeń LP-PWI firma opracowała na potrzeby misji JUICE także drugi rodzaj mechanizmu - system anten pod nazwą RWI – Radio Wave Instrument. Mechanizm ten obecnie znajduje się w fazie testów, jednak docelowo również stanie się częścią sondy badawczej JUICE. Obydwa urządzenia zostały stworzone jako część projektów realizowanych we współpracy z Instytutem Fizyki Plazmy w Uppsali, Centrum Badań Kosmicznych Polskiej Akademii Nauk oraz japońskim Tohoko University. Start misji JUICE zaplanowany jest na połowę 2022 roku. Termin jest sztywno ustalony ze względu na korzystne, wzajemne ułożenie w tym czasie Ziemi, Wenus i Marsa. Sonda będzie bowiem korzystała z asyst grawitacyjnych tych planet. Po przebyciu 600 milionów kilometrów, próbnik znajdzie się na orbicie Jowisza w 2029 r., gdzie będzie prowadzić obserwacje przez co najmniej trzy lata. « powrót do artykułu
  13. Na trzy sekundy przed startem odwołano wystrzelenie satelity szpiegowskiego NROL-44. Satelita miał zostać wystrzelony za pomocą rakiety Delta IV Heavy. Dosłownie w ostatniej chwili przed startem pojawiły się problemy. Na załączonym filmie widać duży płomień. Na szczęście nie doszło do katastrofy. Silniki wyłączono, a start został odwołany. Start United Launch Alliance Delta IV Heavy z misją NROL-44 realizowaną na zlecenie Narodowego Biura Rekonesansu, został odwołany w związku z niespodziewanym wydarzeniem, do którego doszło na trzy sekundy przed startem, oświadczyli przedstawiciele ULA. Zespół specjalistów analizuje dane i określi dalsze kroki. Minimalny czas oczekiwania przed kolejnym startem wynosi 7 dni. Prezes ULA Tory Bruno oświadczył, że zarówno rakieta jak i ładunek są w dobrym stanie. Doszło do automatycznego wyłączenia silników podczas sekwencji startowej. Wydaje się że problem pojawił się w systemie naziemnym. Wszystko zadziałało jak należy i udało się uchronić pojazd oraz ładunek. Delta IV Heavy to najpotężniejsza rakieta ULA, czyli konsorcjum założonego przez Boeinga i Lockheeda Martina. Może ona wynieść na niską orbitę okołoziemską ładunek o masie do 28 370 kg, a na orbitę stacjonarną – do 13 810 kg. To już drugie opóźnienie tajnej misji NROL-44. Pierwotnie start planowano na 27 sierpnia, jednak przełożono go w związku z problemami ze sprzętem na stanowisku startowym.   « powrót do artykułu
  14. Wystartowała pierwsza arabska misja marsjańska. Dzisiaj o godzinie 6:58 czasu lokalnego z Centrum Kosmicznego Tanegashima w Japonii wystartowała rakieta Mitsubishi H-IIA z orbiterem Mars Hope Zjedoczonych Emiratów Arabskich. To pierwsza międzyplanetarna misja kosmiczna przygotowana przez jakiekolwiek arabskie państwo. Dwie godziny po starcie inżynierowie w Centrum Kosmicznym im. Mohammeda bin Rashida (MBRSC) poinformowali o udanym oddzieleniu się drugiego członu rakiety, obraniu przez misję kursu na Czerwoną Planetę i nawiązaniu komunikacji z misją. Hope jest w świetnym stanie. Nasz zespół świętuje sukces, ale przed nami jeszcze dużo pracy, powiedział dyrektor misji, Omran Sharaf. W lutym 2021 roku, po przebyciu 493 milionów kilometrów, Hope ma trafić na orbitę Marsa. To jedna z trzech tegorocznych misji na Marsa. W ciągu najbliższych tygodni mają bowiem wystartować jeszcze amerykańska Mars 2020 i chińska Tianwen-1. Amerykanie wysyłają na Czerwoną Planetę łazik Perseverance oraz helikopter Ingenuity, Chińczycy mają zamiar posadowić niewielki lądownik. Najważniejszym testem będzie dla misji umieszczenie pojazdu na orbicie. Najbardziej boję się wejścia na orbitę, mówi zastępczyni dyrektora misji i główny jej naukowiec, Sarah Al Amiri. Uczona mówi, że dopiero to będzie testem, czy całość działa jak należy. Gdy już Hope wejdzie na orbitę Al Amiri i jej zespół zaczną prowadzić badania naukowe. Hope ma badać marsjańską atmosferę z punktu widzenia niezwykłej eliptycznej orbity, która pozwoli obserwować niemal całą powierzchnię planety. Sonda będzie obiegała Marsa w ciągu 55 godzin i dostarczy pierwszej globalnej mapy pogodowej planety. Zespół Al Amiri ma nadzieje, że dzięki temu poznamy proces powodujący, że Mars traci tlen i wodór. Zjednoczone Emiraty Arabskie błyskawicznie stanęły do kosmicznego wyścigu. Lediwe 6 lat temu powołano tam krajową agencję kosmiczną i od razu rozpoczęto planowanie misji marsjańskiej. Jednocześnie ZEA zaczęły projektować i budować satelity okołoziemskie. Hope ma pomóc w rozwoju lokalnego przemysłu kosmicznego oraz nauki. Emiraty, wiedząc, że ropa naftowa kiedyś się wyczerpie, stawiają na naukę i technologię jako motory napędowe swojego przyszłego rozwoju. To historyczny moment dla Zjednoczonych Emiratów arabskich i dla całego świata arabskiego. To dla mnie olbrzymi zaszczyt, że jestem częścią tej historii, powiedział Brett Landin z University of Colorado w Boulder, który stoi na czele zespołu inżynieryjnego misji. Pojazd Hope został niemal w całości zbudowany w USA, jednak w misję zaangażowanych jest 75 miejscowych inżynierów i naukowców, którzy zdobędą przy okazji bezcenną wiedzę i doświadczenie. ZEA w końcu ujawniły też koszty misji. Okazuje się, że całość pochłonie 200 milionów dolarów. To więcej niż głośna indyjska misja Mangalyaan, która kosztowała około 75 milionów USD, ale znacznie mniej niż warta 720 milionów dolarów misja Mars Reconnaissance Orbiter. « powrót do artykułu
  15. Łazik marsjański Perseverance, który ma wystartować za trzy tygodnie, zabierze ze sobą nietypowy ładunek. Na jego pokładzie znajdzie się niewielki autonomiczny helikopter Ingenuity. Jeśli wszystko pójdzie dobrze, będzie on pierwszym pojazdem wysłanym przez człowieka, który wykona wspomagany silnikiem lot w atmosferze innej planety. Lot na Marsie może nie wydawać się niczym imponującym, ale jest to niezwykle trudne zadanie. Dość wspomnieć, że gęstość atmosfery Marsa to zaledwie 1% gęstości atmosfery ziemskiej, a temperatura na Czerwonej Planecie może w nocy spaść do -100 stopni Celsjusza. Wyobraźmy sobie lekki wietrzyk na Ziemi. A teraz wyobraźmy sobie 100-krotnie mniej gęste powietrze, które trzeba wykorzystać do uzyskanie siły nośnej i kontroli pojazdu, mówi Theodore Tzanetos z Jet Propulsion Laboratory. Żaden ziemski śmigłowiec nigdy nie latał w tak rozrzedzonej atmosferze. Preserverance i Ingenuity mają wystartować 20 lipca bieżącego roku (okno startowe będzie otwarte do 11 sierpnia), a lądowanie na Marsie planowane jest na 18 lutego przyszłego roku. Około 60 marsjańskich dni później łazik opuści drona na powierzchnię planety i odsunie się od niego na odległość 100 metrów. Ingenuity waży 1,8 kilograma. Wyposażono go w dwa umieszczone jeden na drugim rotory z włókna węglowego. Obracają się one w przeciwnych kierunkach z prędkością około 2400 obrotów na minutę. To pięciokrotnie szybciej niż wirniki śmigłowców na Ziemi. Gdy obracały się wolniej, dron nie mógłby oderwać się od powierzchni Marsa. Gdyby jednak obracały się znacznie szybciej, zewnętrzne krawędzie wirników zbliżyłyby się do prędkości dźwięku, wywołały falę uderzeniową, która zdestabilizowałaby pojazd. Głównym zadaniem Ingenuity jest sprawdzenie wykorzystanych technologii. Twórcy drona mają nadzieję, że w ciągu 30 dni uda im się wykonać 5 lotów. Żaden z nich nie ma trwać dłużej niż 90 sekund. Dron ma nie przekraczać wysokości 10 metrów, a długość każdego z lotów ma być nie większa niż 300 metrów. Josh Ravich, który stał na czele zespołu inżynierów projektujących Ingenuity, mówi, że dron będzie nieco mniej manewrowy niż drony wykorzystywane na Ziemi. Musimy jednak pamiętać, że marsjański śmigłowiec musi przetrwać start rakiety, lot z Ziemi na Marsa, wejście w atmosferę i lądowanie oraz zimne marsjańskie noce. Dlatego też inżynierowie przez wiele lat pracowali nad znalezieniem równowagi pomiędzy zużyciem energii, wytrzymałością, wagą i manewrowością. Większość energii, którą Ingenuity pozyskuje z niewielkiego panelu słonecznego umieszczonego nad wirnikami, zostanie zużyta nie na loty, a na ogrzewanie systemów drona podczas zimnych marsjańskich nocy. Inżynierowie zastanawiali się nad izolacją cieplną z aerożelu, jednak zrezygnowali z niej, gdyż uznali, że będzie zbyt wiele ważyła. Modelowanie wykazało, że marsjańska atmosfera, która w większości składa się z dwutlenku węgla, będzie w pewnym stopniu zapobiegała utracie ciepła przez drona. Naukowcy uznali też, że najlepszą porą na pierwszy lot będzie późny marsjański poranek. Słońce świeci wówczas na tyle mocno, że powinno zapewnić Ingenuity wystarczającą ilość energii do lotu. Jednak nie można lotu odkładać na późniejszą porę dnia, gdyż wówczas powierzchnia Marsa mocniej się nagrzewa przez co atmosfera unosi się, rozrzedza i lot byłby wówczas jeszcze trudniejszy. Jeśli misja Ingenuity się powiedzie, NASA będzie wyposażała w śmigłowce kolejne misje marsjańskie. Drony będą służyły łazikom, i w przyszłości ludziom, jako zwiadowcy, pokazujący, co znajduje się w trudnych do osiągnięcia miejscach, jak klify czy wulkany. Obecnie możemy obserwować Marsa albo z powierzchni, albo z orbity. A 90-sekukndowy lot drona pozwoli nam na obejrzenie setek metrów terenu znajdującego się przed nami, mówi Ravich. « powrót do artykułu
  16. Za miesiąc, 20 lipca, wystartuje kolejna misja na Marsa. Tym razem NASA chce umieścić na powierzchni Czerwonej Planety łazik Perseverance. Zadaniem pojazdu będzie poszukiwanie śladów życia w Kraterze Jezero oraz przetestowanie kluczowych technologii, które zostaną wykorzystane podczas przyszłych robotycznych oraz załogowych misji marsjańskich. Jednocześnie Perseverance pobierze próbki gruntu i skał, które zostaną przywiezione na Ziemię w ramach kolejnych misji. Pięćdziesiąt jeden lat temu NASA kończyła przygotowania do pierwszej załogowej misji na Księżyc. Obecnie stoimy w przededniu kolejnego ważnego momentu eksploracji kosmosu: zebrania próbek na Marsie, stwierdził szef NASA, Jim Bridenstine. Misja Mars 2020 została zaplanowana w grudniu 2012 roku. Od początku zakładano, że wystartuje ona latem 2020 roku. Na razie wszystko wskazuje na to, że misja odbędzie się zgodnie z planem. Biorąc pod uwagę pozycje Ziemi i Marsa, okienko startowe do misji na Czerwoną Planetę otwiera się co 26 miesięcy. Jeśli Perseverance nie wystartuje w planowanym terminie, trzeba będzie czekać do września 2022 roku. Takie opóźnienie poważnie zaburzyłoby realizację długoterminowych planów realizowanych przez NASA w ramach Mars Exploration Program. Każda z marsjańskich misji obarczona jest sporym ryzykiem. W przypadku Mars 2020 największym problemem jest posadowienie łazika Perseverance na powierzchni. Jest to bowiem najcięższy ładunek, jaki kiedykolwiek próbowano umieścić na Marsie. Inżynierowie NASA musieli opracować nowe procedury testowe, by sprawdzić, czy zaprojektowane przez nich spadochrony spełnią stawiane przed nimi zadanie. Innym poważnym wyzwaniem technicznym było stworzenie i przetestowanie Sample Caching System, najbardziej złożonego i czystego mechanizmu zbierania próbek kiedykolwiek wysłanego w kosmos. Jako, że ostateczne przygotowanie do misji Mars 2020 przypadły na szczególny moment, pandemię koronawirusa, zespół  postanowił uhonorować walczących z nią medyków medyków. Do obudowy łazika przymocowano specjalną plakietkę. Na aluminiowej płytce o wymiarach 8x13 centymetrów widzimy Ziemię wspartą na eskulapie, symbolu medycyny. Zaznaczono też trajektorię lotu misji Mars 2020 na Marsa. Chcieliśmy uhonorować tych, którzy postawili dobro innych nad swoim dobrem osobistym. Mamy nadzieję, że gdy przyszłe generacje polecą na Marsa i napotkają na nasz łazik, plakietka przypomni im, że w 2020 roku na Ziemi byli tacy ludzie, mówi Matt Wallace, zastepca dyrektora projektu Perseverance. Nowy marsjański łazik poszuka śladów życia, będzie badał klimat i geologię Marsa, przygotuje grunt pod przyszłe misje i zbierze oraz przechowa próbki gruntu. Już teraz NASA i Europejska Agencja Kosmiczna zastanawiają się nad przyszłymi misjami, które odbiorą te próbki od Perseverance i przywiozą je na Ziemię do dalszej analizy. Okienko startowe dla misji Mars 2020 będzie otwarte od 20 lipca do 11 sierpnia. Niezależnie od tego, kiedy misja wystartuje, lądowanie przewidziane jest na 18 lutego 2021 roku. Wyznaczenie ścisłej daty lądowania pozwoli lepiej zrozumieć warunki panujące w miejscu lądowania oraz odpowiednio dostosować pracę satelitów krążących na orbicie Marsa, których zadaniem będzie pomoc w komunikacji pomiędzy lądującą misją Mars 2020 a Ziemią. « powrót do artykułu
  17. Polski Kret HP3 znalazł się pod powierzchnią Marsa. Urządzenie wykonane przez firmę Astronika, Polską Akademię Nauk, Centrum Badań Kosmicznych PAN, Instytut Lotnictwa, Instytut Spawalnictwa i inne to jeden z najważniejszych, a może nawet najważniejszy element misji InSigh. Zadaniem Kreta HP3 (Heat Flow and Physical Properties Package) jest wwiercenie się na głębokość 5 metrów i wykonywanie pomiarów przepływu ciepła z wnętrza planety. Przygotowana przez NASA misja InSight ma za zadanie zbadanie wnętrza Czerwonej Planety. Wylądowała ona na Marsie pod koniec listopada 2018 roku. NASA poinformowała, że robotyczne ramię właśnie pomogło Kretowi wniknąć w marsjańską glebę. Operacja byla poważnym wyzwaniem. Ramię potrzebowało asysty z Ziemi, a jako że obie planety dzieli spora odległość, sygnał w jedną stronę wędrował przez kilka minut. "Wciąż musimy przekonać się, czy kret będzie w stanie samodzielnie wiercić dalej", czytamy na oficjalnym koncie misji na Twitterze. Po wwierceniu się na głębokość 5 metrów czujniki Kreta zaczną rejestrować przepływ ciepła z wnętrza planety. Pozwoli to naukowcom na zbadanie, w jaki sposób przemieszcza się ono od jądra Marsa. Kret to całkowicie nowy typ instrumentu naukowego, jaki znalazł się na Marsie. Wciąż nie ma pewności, czy będzie działał tak, jak zaplanowano. Co prawda był wielokrotnie testowy na Ziemi, jednak nie możemy całkowicie przewidzieć tego, jak będzie się sprawował. Już zresztą pojawiły się pierwsze problemy. Kret miał kłopoty ze wstępnym wierceniem się w powierzchnię. Utykał lub wycofywał się. Właśnie dlatego zdecydowano o użyciu robotycznego ramienia. Nie była to łatwa decyzja, gdyż ramieniem trzeba było operować tak delikatnie, by nie uszkodzić kabla łączącego Kreta z lądownikiem InSight. Kablem tym popłyną dane zarejestrowane przez Kreta. Okazało się, że użycie ramienia było dobrym pomysłem. Kret znalazł się pod powierzchnią. Oznacza to, że pomiędzy 11 a 30 maja Kret wcisnął się w marsjańskie skały na głębokość 7 centymetrów. Oczywiście przez te 20 dni nie zajmowano się wyłącznie Kretem. Wszystkie instrumenty misji powinny być już gotowe do pracy więc Kretem zajmowano się raz w tygodniu. Teraz przed polskim urządzeniem najważniejsze. Najpierw zostanie przeprowadzony test „wolnego kreta”. Ma on wykazać, jak instrument radzi sobie bez asysty ramienia. Wszystko wskazuje na to, że musimy uzbroić się w cierpliwość. Na północnej półkuli Marsa zbliża się zima. Wkrótce rozpocznie się sezon burz piaskowych. W atmosferze już jest coraz więcej pyłu, spada ilość promieniowania słonecznego docierającego do lądownika InSight. Nie wiadomo zatem, czy w najbliższym czasie nie trzeba będzie ograniczyć operacji wymagających największych ilości energii. « powrót do artykułu
  18. US Air Force zapowiedziały kolejną misję tajemniczego mini wahadłowca X-37B. Pojazd wystartuje 16 maja. Będzie to już jego szósty pobyt w przestrzeni kosmicznej. O wcześniejszych misjach nie wiemy praktycznie niczego, poza tym, że przeprowadzano podczas nich tajne testy. Tym razem Amerykanie uchylili jednak rąbka tajemnicy. Wiemy, że USA posiadają dwa mini-wahadłowce tego typu. Długość każdego z nich to 8,8 metra, a rozpiętość skrzydeł wynosi 4,6 metra. Duże wahadłowce miały długość 37 metrów, przy rozpiętości skrzydeł 24 metrów. Pierwszy start X-37B odbył się w kwietniu 2010 roku, a pojazd wrócił na Ziemię po 224 dniach. Kolejne misje były coraz dłuższe. Ostatnia, najdłuższa, odbyła się pomiędzy 7 września 2017 a 27 października 2019 roku. Trwała więc 779 dni. W czasie pierwszych czterech pojazd był wynoszony przez rakietę Atlas V, podczas ostatniej wykorzystano Falcona 9. Najbliższa misja, OTV-6, wystartuje na pokładzie Atlasa V. W ramach tej ważnej misji przeprowadzili więcej badań niż podczas którejkolwiek z wcześniejszych. Znajdą się wśród nich dwa eksperymenty NASA, poinformowała sekretarz US Air Force, Barbara Barrett. Wyjaśniła, że jeden z eksperymentów dla NASA będzie badał wpływ promieniowania kosmicznego na nasiona, a podczas drugiego zostanie sprawdzone zachowanie się różnych materiałów w przestrzeni kosmicznej. Znacznie bardziej interesująco wygląda inny eksperyment, który zostanie przeprowadzony na zlecenie U.S. Naval Research Laboratory. W jego ramach badana będzie technologia zamiany energii słonecznej na energię mikrofalową i jej transfer na Ziemię. Nie zdradzono przy tym żadnych szczegółów, jednak z wcześniejszych informacji napływających z Naval Research Laboratory wiemy, że z technologią taką wiązane są duże nadzieje,  Dzięki niej Amerykanie mogliby stworzyć drony pozostające w powietrzu przez bardzo długi czas, może nawet bezterminowo, gdyż otrzymywałyby energię z satelitów. Ponadto satelity byłyby zdolne do przekazywania energii w dowolne miejsce na Ziemi, ewentualnie do pojazdów kosmicznych czy innych satelitów. Dzięki takiej technologii jednostki wojskowe czy zespoły naukowe działające w odległych miejscach globu nie musiałyby polegać na mało wydajnej technologii fotowoltaicznej czy na ciężkich, hałaśliwych zużywających sporo paliwa generatorach. Wystarczyłoby urządzenie z anteną odbierającą mikrofale. Ta sama technologia przydałaby się w regionach katastrof, gdzie zapewniłaby energię na długo zanim możliwe byłoby odbudowanie infrastruktury. Przypomnijmy, że po powrocie (maj 2017) X-37B z misji OTV-4 przyznano, że w czasie misji testowano zaawansowane systemy nawigacyjne, kontrolne, napędowe, ochrony termicznej oraz systemy lotu autonomicznego, lądowania i wejścia w atmosferę. Zauważono też wówczas, że X-37B latał niezwykle nisko. Pojawiły się sugestie, że USA testują technologie pozwalające satelitom szpiegowskim na latanie nisko nad Ziemią. To pozwoliłoby na wykonywanie bardziej dokładnych zdjęć, ale wymagałoby znacznie więcej paliwa. Wiemy też, że w ramach OTV-6 z pokładu mini wahadłowca zostanie wypuszczony niewielki satelita FalconSat-8, który przeprowadzi pięć eksperymentów na potrzeby U.S. Air Force Academy. Nie wiemy za to, jak długo potrwa misja OTV-6. « powrót do artykułu
  19. Środowisko naukowe jest coraz bardziej zainteresowane zorganizowaniem dużej misji do Urana lub Neptuna, a jeszcze lepiej do obu planet. Te lodowe giganty to nieodkryte terytorium badań planetarnych. Wysłany przez człowieka pojazd odwiedził je tylko raz i to na krótko. W pobliżu obu planet w latach 80. przeleciał Voyager 2. Już przed 3 laty informowaliśmy, że część specjalistów z NASA zwraca uwagę, iż powoli kończy się czas na zorganizowanie tego typu misji. Jeśli w ciągu najbliższych lat nie rozpoczną się przygotowania, to na kolejną okazję do zbadania obu planet trzeba będzie czekać wiele kolejnych lat. Wtedy też cytowaliśmy Amy Simon, współprzewodniczącą grupy Ice Giants Pre-Decadal Study, która mówiła, że preferowana misja to umieszczenie orbitera w atmosferze Urana lub Neptuna. Dostarczy to najlepszych danych naukowych, pozwoli na dogłębne zbadanie całego systemu planetarnego: pierścieni, satelitów, atmosfery i magnetosfery. W styczniu bieżącego roku ta sama Amy Simon zorganizowała w Royal Society w Londynie spotkanie dotyczące tego typu misji. Najwyższy na to czas. Na początku lat 30. dojdzie bowiem do korzystnej koniunkcji pomiędzy Neptunem, Uranem a Jowiszem. Pozwoliłaby ona na skorzystanie z asysty grawitacyjnej Jowisza podczas podróży do Urana i Neptuna. Dzięki tej asyście czas podróży uległby skróceniu, więc ewentualna sonda mogłaby dotrzeć do któregoś z lodowych olbrzymów w czasie, gdy jej instrumenty będą w dobrym stanie, a ona sama będzie miała wystarczająco dużo paliwa na długotrwałe badania. Wykorzystanie Jowisza do przyspieszenia statku kosmicznego pozwoli też na zabranie mniejszej ilości paliwa, a więc będzie więcej miejsca na instrumenty naukowe. Jeśli jednak chcemy skorzystać z asysty grawitacyjnej Jowisza, to misja do Neptuna musiałaby zostać wystrzelona około 2031 roku, a do Urana nie później niż około 2035 roku. Czasu pozostało bardzo mało. Taką misję mogłaby zorganizować NASA lub byłoby to wspólne przedsięwzięcie, gdzie pierwsze skrzypce będzie grała NASA. Przygotowanie dużej misji o budżecie liczonej w miliardach dolarów zajmuje zwykle 7-10 lat. To, czy taka misja się odbędzie zależałoby od przyjęcia jej założeń w Planetary Science Decadal Survey. Okresowy przegląd tego programu odbędzie się w 2022 roku. Pozostały zatem dwa lata na przygotowanie założeń i planów misji. Jednak nawet i dobry plan nie gwarantuje sukcesu, gdyż z pewnością propozycje zorganizowania wyprawy do Urana czy Neptuna będą musiały konkurować z propozycjami dotyczącymi przywiezienia próbek z Marsa czy eksploracji Wenus. Jak zauważa Leigh Fletcher z University of Leicester, naukowcy zajmujący się lodowymi olbrzymami są daleko w tyle za kolegami specjalizującymi się w badaniach Marsa i Wenus. My nawet nie zakończyliśmy odpowiednika pierwszej fazy badań, którą Mars i Wenus mają dawno za sobą, stwierdza uczony. Fletcher mówi, że misja do którejś z lodowych planet powinna zawierać umieszczenie orbitera oraz wysłanie próbnika w atmosferę planety lub księżyca, tak jak uczyniono to w przypadku Saturna. Naukowcy postrzegają obie planety jako bliźniacze. Mają bowiem podobną masę i rozmiary. Jednak nikt nie wie, na ile rzeczywiście są podobne, jaki jest ich skład i jak powstały. Wykorzystywane modele obliczeniowe nie wyjaśniają dobrze ich struktury wewnętrznej, nie dają też odpowiedzi na pytanie, dlaczego bardziej odległy od Słońca Neptun wydaje się cieplejszy niż Uran. Zakłada się, że są zbudowane głównie z zamarzniętej wody lub z zamarzniętego amoniaku. Zbadanie obu planet znakomicie poszerzyłoby naszą wiedzę o egzoplanetach, gdyż około 40% znanych egzoplanet to lodowe olbrzymy. Dlatego też naukowcy chcieliby zorganizować misję chociaż do jednej z nich. Misja do obu byłaby zbyt kosztowna Trudno też zdecydować, którą z nich wybrać jako cel. Neptun wydaje się bardziej obiecujący, gdyż przy okazji można by zbadać jego księżyc, Trytona, który jest prawdopodobnie aktywny geologicznie, a pod jego powierzchnią może znajdować się ocean wody w stanie ciekłym. Z drugiej jednak strony Uran ma więcej dziwnych właściwości, których wyjaśnienie jest trudniejsze na gruncie obecnej wiedzy. Ponadto na zorganizowanie misji do Urana mamy więcej czasu. A czas się kończy. Europejska Agencja Kosmiczna (ESA) właśnie pracuje nad dwoma dużymi misjami, które miałyby się odbyć na początku przyszłej dekady. Nawet jeśli by zatwierdziła plany misji do Urana lub Neptuna w swoim najbliższym przeglądzie zadań, to może nie zdążyć z ich przygotowaniem na najbliższe okienko startowe. To zaś oznacza, że ESA mogłaby co najwyżej partycypować w misji zorganizowanej przez NASA. Oczywiście każda z tych agencji mogłaby przygotować mniejsza misję, związaną jedynie z przelotem obok któregoś z lodowych olbrzymów. To też poszerzyłoby naszą wiedzę, jednak nie pozwoliłoby na przeprowadzenie dogłębnych badań na jakie liczą naukowcy. Jeśli w 2031 roku wystrzelono by misję do Urana, to w roku 2036 pojazd skorzystałby z asysty grawitacyjnej Jowisza, a w 2043 roku dotarłby do Urana. Jeśli jednak nie wykorzystamy najbliższego okienka startowego, to kolejna okazja na wystrzelenie pojazdu pojawi się w połowie lat 40. Inną możliwością będzie wykorzystanie potężniejszego systemu rakietowego, takiego jak SLS przygotowywanego przez NASA. Jednak jego powstanie do kwestia kolejnych lat. « powrót do artykułu
  20. Chiny jeszcze w bieżącym roku przeprowadzą swoją pierwszą samodzielną misję na Marsa. W lipcu ma wystartować rakieta Long March-5 Y4, która wyniesie chiński próbnik i łazik. Po dotarciu do Czerwonej Planety próbnik ma wejść na jej orbitę, a łazik wyląduje na powierzchni. Wiadomo, że w listopadzie ubiegłego roku chińska agencja kosmiczna przeprowadzała symulacje procesu unikania przeszkód i lądowania na Marsie. Niedawno przeprowadzono też udany 100-sekundowy test silnika rakiety Długi Marsz-5 Y4. Na bieżący rok planowane są kolejne 24 testy takich silników, gdyż misja marsjańska nie będzie jedyną, którą Chiny zaplanowały. Przed końcem roku Państwo Środka rozpocznie też misję, której celem będzie pobranie próbek księżycowego gruntu i przywiezienie ich na Ziemię. Najpoważniejszym wyzwaniem dla chiński ekspertów będzie bezpieczne posadowienie łazika na powierzchni Marsa. Czerwona Planeta ma bardzo cienką atmosferę, trudno więc jest wyhamować pojazd z łazikiem. Dotychczas jedynie NASA udało się bezpiecznie wylądować na Marsie. Próby podejmowane przez ZSRR i Unię Europejską były nieudane. Chiny próbowały wcześniej przeprowadzić misję marsjańską wspólnie z Rosją. Misja Fobos-Grunt zakończyła się spektakularną porażką. Teraz Państwo Środka chce spróbować swoich sił samodzielnie. Misja nazwana Huoxing-1 (Huoxing to po chińsku Mars) zakłada umieszczenie na orbicie Marsa pojazdu, który pozostanie na niem przez co najmniej 1 ziemski rok. Z kolei niewielki łazik, o masie 240 kilogramów, ma pracować na Czerwonej Planecie przez 90 marsjańskich dni. Jego zadaniem będzie prowadzenie chemicznych analiz gruntu oraz wykorzystanie radaru do wykonania obrazowania na głębokość do 100 metrów pod powierzchnią planety. Chiny chcą też przy okazji sprawdzić technologie, których mają zamiar użyć w latach 30. w ramach misji przywiezienia próbek marsjańskiego gruntu. « powrót do artykułu
  21. NASA zdecydowała o otwarciu zapieczętowanych dotychczas próbek księżycowego gruntu i skał, przywiezionych na Ziemię w ramach misji Apollo 17. Po raz pierwszy od ponad 40 lat agencja ma szansę badać nienaruszone próbki z misji Apollo. Naukowcy wykorzystają próbki do ćwiczeń, które posłużą im do badania próbek, jakie w przyszłości trafią na Ziemię w ramach projektu Artemis (Artemida). Projekt ten ma na celu doprowadzenie do powrotu człowieka na Księżyc. Jeśli wszystko pójdzie zgodnie z planem, to w 2024 roku ramach misji Artemis 3 ludzie staną na Księżycu. Próbki, które właśnie odpieczętowano, zostały zebrane przez Gene'a Cernana i Jacka Schmitta. Obecnie możemy wykonać badaniach, jakie nie były możliwe w czasie trwania programu Apollo, mówi doktor Sarah Noble. Analiza tych próbek przyniesie kolejne korzyści z programu Apollo oraz pozwoli przyszłej generacji naukowców udoskonalić swoją technikę i przygotować przyszłych astronautów. NASA do dzisiaj przechowuje wszystkie próbki przywiezione w ramach programu Apollo. Większość z nich została dobrze przebadana, część wciąż jest tematem badań. Już w czasie trwania Apollo zdecydowano, że niektóre próbki zostaną zapieczętowane, a ich badania rozpoczną się w przyszłości, gdy pojawią się bardziej zaawansowane techniki badawcze. Nieotwarte dotychczas próbki zostały zebrane w ramach misji Apollo 15, 16 i 17. Dwie właśnie otwarte, oznaczone numerami 73002 i 73001, będą teraz przedmiotem badań za pomocą zaawansowanych technik, takich jak niedestrukcyjne obrazowanie 3D czy spektrometria mas. Próbki te stanowią część zbioru znajdującego się w metrowej długości tubie. Zebrano je w miejscu osuwiska w pobliżu krateru Lara. Zostały zebrane tak, że zachowano układ warstw księżycowego gruntu. Pierwszą próbką wyjętą z tuby jest 73002. Była ona szczelnie zapieczętowana, ale nie zamknięta w warunkach próżniowych. Przez kolejne miesiące będzie ona badana przez różne zespoły. Przed otwarciem próbki przeprowadzono badania za pomocą mikrotomografii komputerowej o wysokiej rozdzielczości. Zdjęcia pozwoliły wstępnie zbadań strukturę próbki przed wyjęciem oraz posłużyły do opracowania sposobu wyjęcia jej w nienaruszonym stanie. Z kolei próbka 73001 zostanie otwarta na początku przyszłego roku. Już na księżycu zamknięto ją w pojemniku próżniowym, który został umieszczony w kolejnym pojemniku próżniowym, a ten zapieczętowano na Ziemi. Naukowcy otworzą ją, gdy dopracują metody przechwycenia gazów, który się z niej uwolnią po otwarciu. « powrót do artykułu
  22. Panel ekspertów złożony ze specjalistów z NASA i zewnętrznych instytucji zakończył przegląd założeń misji Lucy, pierwszej misji do planetoid trojańskich. Lucy Critical Design Review trwał od 15 do 18 października. W tym czasie eksperci zostali zapoznani ze wszelkimi szczegółami planowanej misji, w tym z budową pojazdu, jego wyposażeniem, szczegółami budowy, planowanych testów, systemów naziemnych, założeń naukowych misji itp. itd. Przegląd wypadł pomyślnie i eksperci dali zielone światło do kontynuowania misji. Tym samym misja Lucy wkroczyła w etap budowania odpowiedniego sprzętu. To bardzo ekscytujący moment, gdyż wykraczamy poza fazę planowania oraz projektowania i zaczynamy budować pojazd. W końcu staje się on rzeczywistością, mówi Hal Levison z Southwest Research Institute, główny naukowiec misji Lucy. Critical Design Review to ostatni etap planowania i projektowania. Jego celem jest zapewnienie, że wszystko przygotowano jak należy, a misja spełni stawiane przez nią cele, jest wsparta solidną wiedzą naukową, odpowiednimi analizami, dokumentacją i będzie przebiegała bezpieczne. Lusy będzie pierwszą misją do asteroid trojańskich. Zostanie wystrzelona w październiku 2021 rkou i w ciągu 12 lat odwiedzi siedem planetoid, jedną z pasa głównego – znajdującego się pomiędzy Marsem a Jowiszem – i sześć trojańczyków. Asteroidy trojańskie to pozostałości po formowaniu się planet. Są one uformowane w dwóch grupach znajdujących się na orbitach bardzo podobny do orbity Jowisza. Dotychczas nie odwiedził ich żaden wysłany z Ziemi pojazd. Od strony naukowej ze misję Lucy będzie odpowiedzialny Southwest Research Institute (SwRI) w Boulder w stanie Colorado. Pojazd zostanie zbudowany przez Lockheed Martin Space Systems, a zarządzanie całą misją, kwestie inżynieryjne oraz bezpieczeństwa spoczną na barkach specjalistów z Goddard Space Flight Center. Misje przygotowywane w ramach programu Discovery, takie jak Lucy, są stosunkowo tanie. Maksymalny koszt rozwoju każdej z nich określono na 450 milionów dolarów. Celem takich misji jest znalezienie kluczowych odpowiedzi na pytania dotyczące Układu Słonecznego. Są one zarządzane przez głównego badacza, który dobiera sobie zespół naukowców i inżynierów, a ich celem jest przygotowanie misji od początku do końca.   « powrót do artykułu
  23. Misja Dragonfly będzie kolejną – czwartą – jaką NASA przygotuje w ramach programu New Frontiers. Koncepcja badań Tytana, największego księżyca Saturna, wygrała więc w propozycją przywiezienia próbek komety 67P/Churyumov-Gerasimenko. Misja, którą kieruje Elizabeth Turtle z Uniwersytetu Johnsa Hopkinsa, wystartuje w 2026 roku. Będzie ona odmienna od innych przedsięwzięć związanych z robotyczną eksploracją Układu Słonecznego. Tytan jest inny niż jakiekolwiek miejsce w Układzie Słonecznym, więc i Dragonfly będzie inną misją, powiedział Thomas Zurbuchen, wiceadministrator NASA ds. badań naukowych. Tytan otoczony jest przez atmosferę składającą się głównie z azotu. Jest on większy od Merkurego, a naukowcy przypuszczają, że pod zamarzniętą skorupą znajduje się ocean. Księżyc był badany przez sondę Cassini, która w 2005 roku umieściła w atmosferze Tytana próbnik Huygens. Na powierzchni Tytana znajdują się skały, wyżyny i pustynie. Są one jednak zbudowane z lodu, a rzeki i oceany to płynny metan. Zarejestrowano tam też obecność molekuł organicznych. To niezwykle interesujące miejsce. Tytan może być kolebką dla jakiegoś rodzaju życia. Niezależnie od tego, czy życie się tam pojawiło, czy też nie, węglowodorowe rzeki i jeziora Tytana oraz węglowodorowy śnieg, czynią go jednym z najbardziej fascynujących obiektów w Układzie Słonecznym, mówi Lindy Elkins-Tanton z Arizona State University i główna badaczka misji Psyche. Jako, że Tytan jest tak zróżnicowany, umieszczenie próbnika w jednym miejscu nie da nam zbyt wielu informacji na temat procesów chemicznych zachodzących na księżycu. Stąd też pomysł misji Dragonfly – śmigłowca, który będzie latał nad Tytanem i pobierał próbki. Dragonfly będzie składał się z czterech ramion, z których każde zostanie wyposażone w dwa śmigła, jedno u dołu, drugie u góry. Dzięki gęstej atmosferze i słabej grawitacji 300-kilogramowy śmigłowiec wielkości samolotu, zasilany generatorem radioizotopowym, będzie mógł podróżować nad Tytanem pobierając co 16 ziemskich dni próbki i zużywając przy tym 38-krotnie mniej energii niż na Ziemi. Dragonfly przybędzie na Tytana w 2034 roku. W tym czasie na półkuli północnej będzie panowała długotrwała zima. Okolice bieguna północnego to miejsce występowania interesujących naukowców mórz metanowych. Jednak Dragonfly nie będzie mógł tam lądować ani komunikować się z Ziemią. Dlatego pojazd zajmie się badaniem okolic równika. Znajdujące się tam wielkie pustynie zawierają prawdopodobnie materiał opadający z całego księżyca. Dragonfly skupi się na poszukiwaniu kraterów uderzeniowych i wulkanów lodowych. Misja podstawowa Dragonfly potrwa 3 lata. W tym czasie pojazd przebędzie 175 kilometrów, a każdy z lotów będzie miał długość do 8 km. W końcu śmigłowiec dotrze do krateru Selk, który jest jego głównym celem. To 80-kilometrowy krater uderzeniowy. Dragonfly nie zostanie wyposażony w robotyczne ramię. Badania będzie prowadził emitując promieniowanie gamma, dzięki któremu rozróżni różne typy gruntu. Zostanie też wyposażony w wiertło, za pomocą którego pobierze próbki. Te trafią do tuby próżniowej, a stamtąd do spektrometru mas, który przeanalizuje ich skład. Taki system badań najbardziej niepokoił NASA. Obawiano się, że bogata w węglowodory atmosfera Tytana doprowadzi do jego zatkania. Potrzeba było dwóch lat badań, testowania nowych materiałów i architektury systemu, by rozwiać te wątpliwości. Dragonfly nie skupi się jedynie na powierzchni Tytana. Będzie też badał wnętrze księżyca i jego atmosferę. Podczas lotu będzie zbierał próbki atmosfery, a dzięki sejsmometrowi zarejestruje wibracje powodowane przez interakcje Tytana z Saturnem oraz wpływ grawitacji planety na uwięziony pod lodem ocean. Jeśli śmigłowiec nie ulegnie awarii, to nie można wykluczyć, że jego misja zostanie przedłużona. Zasilania wystarczy mu bowiem na 8 lat, a – jak pamiętamy z dotychczasowych misji – NASA często, gdy ma taką możliwość, wydłuża misje poza ich program podstawowy i próbuje osiągnąć dodatkowe cele Całkowity koszt misji zamknie się w kwocie 1 miliarda dolarów. Dragonfly – czyli New Frontiers 4 – to kolejne po New Horizons (misja do Plutona i obiektu 2014 MU69 w Pasie Kuipera), Juno (misja do Jowisza) i OSIRIS-REx (misja do asteroidy Bennu) – przedsięwzięcie w ramach programu New Frontiers. Jak poinformował Thomas Zurbuchen, w roku 2021 lub 2022 NASA rozpocznie przyjmowanie propozycji dla misji New Frontiers 5.   « powrót do artykułu
  24. NASA ujawniła szczegóły programu Artemis (Artemida), w ramach którego człowiek ma wrócić na Księżyc. Nazwa programu wyraźnie nawiązuje do misji Apollo, w ramach którego ludzie po raz pierwszy stanęli na Srebrnym Globie. Artemida była siostrą Apollina. Jeszcze przed końcem bieżącego miesiąca NASA podpisze pierwszy kontrakt na dostawę sprzętu na Księżyc. Jeśli lądowniki księżycowe, rozwijane przez prywatne firmy, będą gotowe, to pierwszy ładunek sprzętu dla programu Artemis trafi na powierzchnię Księżyca jeszcze w bieżącym roku. W przyszłym roku ma odbyć się misja Artemis 1. Będzie to pierwszy wspólny start SLS (Space Launch System) i kapsuły Orion. Będzie to bezzałogowy próbny lot testowy. W jego ramach zostaną też wyniesione satelity typu CubeSat, które będą prowadziły eksperymenty naukowe i testy technologii. Na rok 2022 przewidziano Artemis 2 – pierwszy załogowy test Oriona i SLS. Po raz pierwszy od 50 lat ludzie polecą poza orbitę Księżyca. W tym samym roku ma zostać wystrzelony pierwszy element stacji Lunar Gateway. Wczoraj NASA poinformowała, że za stworzenie modułu odpowiedzialnego za zapewnienie energii, napędu oraz komunikacji będzie odpowiedzialna firma Maxar Technologies. Lunar Gateway to niewielka stacja kosmiczna, która zostanie umieszczona na orbicie Księżyca. Będzie ona spełniała rolę huba komunikacyjnego, laboratorium naukowego, tymczasowego miejsca zamieszkania oraz miejsca przechowywania łazików i innych robotów. Kolejnym elementem misji Artemis będzie umieszczenie w 2023 roku na Księżycu łazika. Jego zadaniem będzie lepsze zbadanie i zrozumienie pyłu księżycowego oraz zbadanie lodu pod kątem wykorzystania go do produkcji paliwa, tlenu i wody pitnej. W tym samym 2023 roku na orbitę Srebrnego Globu trafi drugi element stacji Gateway. Będzie to niewielki moduł mieszkalny. Pierwsi astronauci, którzy trafią na stację, przejdą z kapsuły Orion do tego modułu i tam przygotują się do lądowania na Biegunie Południowym Księżyca. W roku 2024 odbędzie się kilka misji, w ramach których w przestrzeń kosmiczną trafią poszczególne elementy Human Landing System. Zostaną one złożone na orbicie i zadokowane do Gateway. W tym samym roku odbędzie się załogowa misja Artemis 3. Astronauci, korzystając z SLS i Oriona, polecą na orbitę Księżyca i zadokują do stacji Gateway. Załoga sprawdzi stację oraz Human Landing System, a następnie uda się na Księżyc. Będzie to pierwsze od ponad 50 lat lądowanie człowieka na Księżycu. W latach 2025–2028 każdego roku będzie odbywała się kolejna misja załogowa. Astronauci biorący udział w Artemis 4 – Artemis 7 będą pracowali zarówno na stacji Gateway jak i na powierzchni satelity Ziemi. Stacja będzie ciągle rozbudowywana tak, by od roku 2028 możliwa była stała obecność i praca ludzi na stacji i Księżycu. W końcu, w oparciu o możliwości eksploracji Księżyca, w latach 30. ma odbyć się załogowa misja na Marsa. « powrót do artykułu
  25. NASA wybrała przyszłą misję, która pozwoli lepiej zrozumieć ewolucję wszechświata oraz zbadać, na ile powszechne w naszej galaktyce są podstawowe składniki niezbędne do powstania życia. Wspomniana misja to Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer (SPHEREx). Ma ona wystartować w 2023 roku i została zaplanowana na 2 lata. Koszt misji, bez kosztów wystrzelenia, to 242 miliony dolarów. SPHEREx będzie badała nieboskłon zarówno w świetle widzialnym jak i w bliskiej podczerwieni. Posłuży ona do zebrania informacji o ponad 300 milionach galaktyk i ponad 100 milionach gwiazd w Drodze Mlecznej. Ta niezwykła misja będzie prawdziwą skarbnicą unikatowej wiedzy. Dzięki niej stworzymy wyjątkową mapę galaktyk, zawierającą ślady pierwszych chwil istnienia wszechświata. I dostarczy nam danych, które pomogą w odpowiedzi na jedną z największych tajemnic nauki: co spowodowało, że wszechświat zaczął rozszerzać się tan szybko w ciągu mniej niż nanosekundy po Wielkim Wybuchu?, mówi Thomas Zurbuchen, menedżer Dyrektoriatu Misji Naukowych. SPHEREx będzie badała zarówno pobliskie galaktyki, jak i te znajdujące się w odległości 10 miliardów lat świetlnych. Misja będzie poszukiwała też wody i molekuł organicznych w Drodze Mlecznej. Co sześć miesięcy SPHEREx będzie tworzył mapę całego nieboskłonu w 96 zakresach fal świetlnych. To znaczący skok jakościowy w porównaniu z obecnie dostępnymi mapami. Dane takie posłużą, m.in., do określenia celów badawczych dla innych misji, jak JWST czy WFRIST. SPHEREx odbędzie się w ramach Astrophysics Explorers Program. We wrześniu 2016 roku NASA poprosiła o przedstawienie propozycji misji. Otrzymała 9 takich koncepcji, z czego w sierpniu 2017 roku do dalszych prac wybrano dwie. Po ich szczegółowej przeprowadzonej zarówno przez NASA jak i niezależne zespoły eksperckie uznano, że największy potencjał naukowy oraz najbardziej realny plan realizacji ma SPHEREx. Głównym naukowcem misji jest James Bock z Caltechu (California Institute of Technology). Za zarządzanie misją będzie odpowiedzialne Jet Propulsion Laboratory. Pojazd i urządzenia potrzebne do wykonania misji dostarczy firma Ball Aerospace, a Koreański Instytut Astronomii i Nauki o Kosmosie z Daejeon jest odpowiedzialny za dostarczenie urządzeń testowych oraz analizy naukowe. Program Explorer, którego częścią jest Astrophysics Explorers Program to najstarszy wciąż kontynuowany program naukowy NASA. Pierwszą misją, jaką przeprowadzono w jego ramach, była Explorer 1 wystrzelona w 1958 roku. Dotychczas w ramach programu przeprowadzono ponad 90 misji w przestrzeni kosmicznej. « powrót do artykułu
×
×
  • Create New...