Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' Perseverance' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 18 wyników

  1. Łazik Perseverance rozpoczął tworzenie na Marsie zapasowego magazynu próbek. W miejscu zwanym Three Forks złożona została tytanowa tuba z próbkami marsjańskich skał. W ciągu najbliższych 2 miesięcy łazik pozostawi tam w sumie 10 pojemników, tworząc pierwszy w historii skład próbek na innej planecie. Za 10 lat próbki mają trafić na Ziemię w ramach misji Mars Sample Return. Plan ich przywiezienia zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas śmigłowce zabiorą próbki ze składu zapasowego i dostarczą je do pojazdu. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który zawiezie je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przetransportuje próbki na Ziemię. W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033. Obecnie Perseverance ma na pokładzie 17 pojemników z próbkami, w tym 1 z próbką atmosfery. Pierwszy pojemnik złożony w Three Forks zawiera skały pobrane 31 stycznia 2022 roku na obszarze South Séítah w Kraterze Jezero. Cały proces składowania próbki trwał godzinę. Po tym, gdy pojemnik wypadł spod podwozia łazika, inżynierowie musieli sprawdzić, czy nie znajdzie się pod kołami Perseverance, gdy ten będzie odjeżdżał, ani czy nie ustawił się pionowo. Pojemniki na jednym końcu są płaskie, co ma ułatwić ich przyszłe zebranie. Jednak przez to istnieje ryzyko, że ustawią się pionowo. Podczas testów naziemnych działo się tak w 5% przypadków. « powrót do artykułu
  2. NASA kończy prace koncepcyjne nad drugą częścią Mars Sample Return Program, którego celem jest przywiezienie na Ziemię próbek z Marsa. Pierwszą część stanowi misja łazika Perseverance, który od 2020 roku bada Marsa i zbiera próbki. Za 10 lat mają one trafić na Ziemię. Jednak, by je przywieźć, konieczne będzie zorganizowanie kolejnej misji. Opracowana koncepcja opiera się na najnowszych danych z łazika Perseverance i jego przewidywanej wytrzymałości oraz na sukcesie marsjańskiego śmigłowca Ingenuity. Śmigłowiec odbył już 29 lotów i przetrwał o rok dłużej, niż zakładano. Plan przywiezienia próbek na Ziemię zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. To znaczna zmiana w porównaniu z pierwotną koncepcją. Zakładała ona, że jeden lądownik dostarczy na Czerwoną Powierzchnię rakietę Mars Ascent Vehicle, a drugi – osobny łazik Sample Fetch Rover odpowiedzialny za zebranie próbek. Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas próbki na pokład lądownika przywiozą śmigłowce. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który dostarczy je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przywiezie je na Ziemię. W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033. W październiku rozpocznie się faza projektowa misji, która potrwa około 12 miesięcy. W tym czasie powinny powstać technologie oraz prototypy głównych elementów misji. Od 18 lutego 2021 roku łazik Perseverance zebrał 11 próbek gruntu i 1 próbkę atmosfery Marsa. Dostarczenie ich na Ziemię pozwoli na przeprowadzenie badań za pomocą instrumentów, które są zbyt duże i skomplikowane, by wysłać je na Marsa. Ponadto marsjańskie próbki będą mogły badać kolejne pokolenia naukowców, podobnie ja ma to miejsce z próbkami księżycowymi przywiezionymi w ramach programu Apollo. « powrót do artykułu
  3. Marsjański śmigłowiec Ingenuity odnalazł spadochron, za pomocą którego łazik Perseverance wylądował na Marsie, oraz fragmenty osłony termicznej i inne elementy, które chroniły łazik podczas podróży w kierunku Czerwonej Planety, jak i w czasie wejścia w jej atmosferę. NASA wydłużyła czas misji Ingenuity po to, by przeprowadzić pionierskie loty, takie jak ten. Za każdym razem, gdy wznosi się w powietrze, Ingenuity sprawdza nowe fragmenty planety, oferując nam możliwości, jakich nie miała żadna z dotychczasowych misji planetarnych. Jest on idealnym przykładem możliwości i użyteczności platform lotniczych na Marsie, cieszy się Teddy Tzanetos z Jet Propulsion Laboratory, który stoi na czele zespołu odpowiedzialnego na Ingenuity. Pojazd z łazikiem na pokładzie wszedł w atmosferę Marsa z prędkością niemal 20 000 km/h. Całość musiała wytrzymać wysokie temperatury, silne drgania i inne ekstremalne zjawiska. Dotychczas pozostałości systemu lądowania mogliśmy oglądać tylko na zdjęciach zrobionych z oddali przez Perseverance. Teraz na Ziemię trafiły świetne ujęcia zrobione z góry, z niewielkiej wysokości. Inżynierowie z NASA zrobią użytek z przysłanych przez śmigłowiec fotografii. Uzyskane dzięki nim informacje posłużą do udoskonalenia urządzeń lądujących. Misja Perseverance ma najlepiej w historii udokumentowane lądowanie na Marsie. Kamery pokazały nam wszystko, do rozwinięcia spadochronów po pierwszy kontakt z powierzchnią planety. Jednak zdjęcia Ingenuity dostarczają zupełnie nowych informacji. Niezależnie od tego, czy ich analiza wykaże, że wszystkie elementy działały tak, jak przewidywaliśmy czy też stwierdzimy, że coś trzeba poprawić, będzie to nieocenioną pomocą dla planowania misji Mars Sample Return, dodaje Ian Clark, były inżynier systemów Perseverance, który jest obecnie odpowiedzialny za opracowanie fazy startu z powierzchni Marsa misji Mars Sample Return. To misja, w ramach której próbki Marsa zebrane przez Perseverance mają przylecieć na Ziemię. Na zrobionych przez Ingenuity zdjęciach widzimy osłonę oraz jej fragmenty, na które rozpadła się uderzając w Marsa z prędkością około 126 km/h. Wydaje się, że jej pokrycie nie zostało uszkodzone podczas wchodzenia w atmosferę planety. Widocznych jest też wiele z 80 lin łączących osłonę ze spadochronami. Widać też około 1/3 samego spadochronu. Reszta jest zapewne przykryta pyłem marsjańskim. Na pierwszy rzut oka można stwierdzić, że spadochron nie uległ uszkodzeniu w czasie rozwijania przy prędkościach ponaddźwiękowych. Inżynierów z NASA czeka teraz kilkanaście tygodni analiz zdjęć. « powrót do artykułu
  4. NASA do września przedłużyła misję marsjańskiego śmigłowca Ingenuity. W najbliższych miesiącach śmigłowiec będzie wspomagał łazik Perseverance w jego badaniach Jezero Crater. Jednocześnie będą prowadzone testy śmigłowca, które pomogą zaprojektować podobne urządzenia na potrzeby przyszłych marsjańskich misji. Ingenuity odbył już 21 lotów w atmosferze Marsa. Jeszcze mniej niż rok temu nie wiedzieliśmy, czy na Marsie możliwy jest kontrolowany lot statku powietrznego. Teraz chcemy zaangażować Ingenuity w drugą kampanię naukową Perseverance. Taka zmiana w tak krótkim czasie jest czymś niezwykłym i na stałe zapisze się w eksploracji przestrzeni kosmicznej, powiedział Thomas Zurbuchen, współdyrektor w Dyrektoriacie Misji Naukowych NASA. Od czasu swojego pierwszego lotu w kwietniu ubiegłego roku Ingenuity latał w płaskim łatwym terenie. Teraz otrzyma trudniejsze zadanie. Śmigłowiec będzie prowadził zwiad w wyschniętej delcie rzeki. Wznosi się ona na 40 metrów nad dnem krateru Jezero, jest pełna głazów, klifów, pochyłych zboczy i łach piasku. Takie ukształtowanie terenu jest bardzo atrakcyjne z naukowego punktu widzenia. Na powierzchni może znajdować się wiele interesujących utworów geologicznych. Jednak wszystkie te przeszkody terenowe mogą zagrozić misji łazika. Dlatego też Ingenuity będzie badał teren przed nim, pozwalając obsłudze naziemnej na wybranie optymalnej drogi. Pierwszym zadaniem Ingenuity będzie określenie, który z dwóch suchych kanałów rzecznych powinien wybrać Perseverance. Śmigłowiec nie tylko będzie dokonywał zwiadu. Ma również identyfikować interesujące cele naukowe, których badaniem mógłby zająć się łazik. NASA nie wyklucza, że może wykorzystać Ingenuity do sfotografowania struktur geologicznych znajdujących się poza zasięgiem łazika lub do poszukiwania miejsca lądowania dla misji Mars Sample Return. W ciągu ostatnich miesięcy specjaliści z NASA wielokrotnie aktualizowali oprogramowanie śmigłowca. Zmniejszyli dzięki temu liczbę błędów nawigacyjnych, znieśli też ograniczenie limit wysokości lotu wynoszący dotychczas 15 metrów. « powrót do artykułu
  5. NASA informuje, że przyczyną niepowodzenia pierwszej operacji pobrania próbek przez łazik Perseverance była niezwykle miękka skała, w której wykonano wiercenia. Przed tygodniem łazik miał pobrać próbki, które następnie miały trafić do specjalnego pojemnika i oczekiwać na powierzchni Marsa na przyszłą misję, która przywiezie je na Ziemię. Jednak z danych przysłanych przez Perseverance wynikało, że żadne próbki do pojemnika nie trafiły. Po analizie dostępnych informacji inżynierowie z NASA poinformowali, że skała, w której wiercono, była zbyt miękka, by można było pobrać z niej rdzeń. Zdecydowano więc, że łazik przejedzie w inne miejsce, gdzie ponownie spróbuje pobrać próbki. Kolejna próba odbędzie się w przyszłym miesiącu. Louise Jandura, szefowa zespołu odpowiedzialnego za zbieranie próbek, mówi, że ze zdjęć wykonany przez łazik oraz śmigłowiec Ingenuity wynika, że w niedalekiej odległości znajduje się skałą osadowa, która powinna lepiej nadawać się do wykonania odwiertu i pobrania rdzenia. Sprzęt działał jak należy, ale skała z nami nie współpracowała, stwierdziła Jandura. To przypomina, jak pełne niespodzianek są badania nieznanego terenu. Nigdy nie mamy gwarancji, że się uda. Niezależnie od tego, ile wysiłku włożymy w przygotowania, dodaje. Jednym z zadań łazika Perseverance jest zebranie około 35 próbek, która mają trafić na Ziemię w ciągu dekady. « powrót do artykułu
  6. Dziewiąty już lot marsjańskiego śmigłowca Ingenuity, stał się świetną okazją, by sprawdzić teren przed łazikiem Perseverance. Śmigłowiec dostarczył zdjęć interesujących formacji skalnych, których każda warstwa może zdradzić informacje na temat warunków klimatycznych, jakie w przeszłości panowały na Marsie. Na fotografiach zauważono też przeszkody, które łazik będzie musiał ominąć. Podczas lotu, wykorzystanego do przetestowania Ingenuity w roli powietrznego zwiadowcy, śmigłowiec przeleciał nad polem wydmowym o nazwie Seitah. Perseverance minie pole od południa, gdyż próba jego przekroczenia mogłaby być zbyt ryzykowna. Kolorowe zdjęcia wykonane przez śmigłowiec z wysokości 10 metrów zdradzają znacznie więcej szczegółów, niż zdjęcia z satelity Mars Reconnaissance Orbiter, które są wykorzystywane do planowania trasy łazika. Na fotografiach z orbity widoczne są skały wielkości 1 metra, zatem kontrola misji musi wspomagać się też zdjęciami wykonywanymi przez sam łazik. Gdy Perseverance podjedzie wystarczająco blisko jakiegoś punktu, wykonuje zdjęcia, które my analizujemy i porównujemy z obrazami z satelity. Dzięki Ingenuity zyskaliśmy fotografie, które świetnie uzupełniają naszą wiedzę, mówi Ken Williford z Jet Propulsion Laboratory. Na najnowszych zdjęciach widzimy obszar nazwany Wyniesionymi Krawędziami, których istnienie prawdopodobnie ujawnia, którędy w przeszłości płynęła woda. Planujemy odwiedzić Wyniesione Krawędzie i zbadać je z bliska. Zdjęcia ze śmigłowca zapewniają nam znacznie lepszą rozdzielczość niż fotografie z orbitera. Ich analiza pozwoli nam upewnić się, że warto zbadać Wyniesione Krawędzie, dodaje Williford. Ingenuity sfotografował też niewielkie, kilkudziesięciocentymetrowej wysokości piaszczyste wydmy. Łazik może w nich utkwić. Olivier Toupet, jeden z ekspertów odpowiedzialnych za kierowanie Perseverance, przyznaje, że piach to poważny problem, który spędza mu sen z oczu. Gdy po wylądowaniu misji Mars 2020 zespół naukowy zapytał, czy łazik mógłby pojechać w taki teren, Toupet zdecydowanie odmówił wysłania tam Perseverance. Toupet odpowiada też za moduł AutoNav łazika. Wykorzystuje on system sztucznej inteligencji do autonomicznego przemieszczania łazika na większe dystansy. Jednak AutoNav nie jest w stanie wykryć piasku, dlatego też naziemna załoga musi bez przerwy definiować strefy zakazane dla łazika. Dziewiąty lot Ingenuity okazał się zatem olbrzymim sukcesem. Bez śmigłowca nie byłoby możliwe tak dokładne wcześniejsze zbadanie terenu, zobaczenie obszarów, na które łazik nie może wjechać, określenie niewielkich miejsc potencjalnie cennych z naukowego punktu widzenia. Śmigłowiec to niezwykle cenny pomocnik w planowaniu drogi łazika. Pokazuje nam w wysokiej rozdzielczości teren, przez który chcemy przejechać. Dzięki niemu możemy lepiej ocenić rozmiar wydm i miejsca, gdzie wystają skały. To dla nas bezcenne informacje. Pozwalają zidentyfikować obszary, przez które można przejechać oraz określić cenne naukowo elementy, przyznaje Toupet. « powrót do artykułu
  7. Kontrola misji Mars 2020, w ramach której na powierzchni Czerwonej Planety wylądował łazik Perseverance, odebrała pierwszy raport od śmigłowca Ingenuity. Z przesłanych danych dowiadujemy się, że zarówno śmigłowiec, jak i jego stacja bazowa, która ładuje drona i pośredniczy w komunikacji pomiędzy nim a Ziemią, są w świetnej kondycji. W przesłanym raporcie najbardziej interesowały nas dwa rodzaje danych: stan naładowania akumulatorów Ingenuity oraz to, czy stacja bazowa reaguje tak, jak powinna, odpowiednio włączając i wyłączając ogrzewanie, by utrzymać temperaturę elektroniki śmigłowca w odpowiednim zakresie. Wszystko świetnie działa, cieszy się Tim Canham, odpowiedzialny za misję śmigłowca. Celem Ingenuity jest sprawdzenie możliwości latania w atmosferze Marsa. Śmigłowiec nie stanowi części misji łazika, więc jego ewentualne niepowodzenie nie wpłynie na zadania stawiane przed Perseverance. Śmigłowiec ma latać i wykonać fotografie. Ingenuity pozostanie podczepiony pod łazikiem przez 30–60 dni od lądowania. Po tym czasie Perseverance opuści go na powierzchnię i odsunie się od niego na około 100 metrów. Pierwszy lot ma odbyć się na wysokości kilku metrów i trwać 20–30 sekund. Jeśli się powiedzie, kolejne loty będą coraz dłuższe i na coraz większej wysokości. Inżynierowie z NASA mają nadzieję, że w ciągu 30 dni uda im się wykonać 5 lotów. Ich maksymalna długość to 90 sekund. Dron wzniesie się nie wyżej niż na 10 metrów i przeleci nie więcej niż 300 metrów za jednym razem. Intenuity waży 1,8 kilograma i korzysta z dwóch umieszczonych jeden nad drugim rotorów z włókna węglowego. Obracają się one w przeciwnych kierunkach z prędkością 2400 obrotów na minutę. To 5-krotnie szybciej niż obracają się wirniki współczesnych śmigłowców. Nadanie tak dużej prędkości było konieczne ze względu na rzadką atmosferę Marsa. Gdyby wirniki obracały się wolniej, drom mógłby nie oderwać się od powierzchni planety. Gdyby jednak obracały się znacznie szybciej, prędkość ich zewnętrznych krawędzi zbliżyłaby się do prędkości dźwięku, co wywołałoby falę uderzeniową i zdestabilizowało śmigłowiec. Naukowcy uznali też, że najlepszą porą na pierwszy lot będzie późny marsjański poranek. Słońce świeci wówczas na tyle mocno, że powinno zapewnić Ingenuity wystarczającą ilość energii do lotu. Jednak nie można lotu odkładać na późniejszą porę dnia, gdyż wówczas powierzchnia Marsa mocniej się nagrzewa przez co atmosfera unosi się, rozrzedza i lot byłby wówczas jeszcze trudniejszy. Jeśli misja Ingenuity się powiedzie, NASA będzie wyposażała w śmigłowce kolejne misje marsjańskie. Drony będą służyły łazikom, i w przyszłości ludziom, jako zwiadowcy, pokazujący, co znajduje się w trudnych do osiągnięcia miejscach, jak klify czy wulkany. Obecnie możemy obserwować Marsa albo z powierzchni, albo z orbity. A 90-sekundowy lot drona pozwoli nam na obejrzenie setek metrów terenu znajdującego się przed nami, mówi Josh Ravich, który kierował zespołem inżynierów projektujących Ingenuity. « powrót do artykułu
  8. NASA poinformowała, że śmigłowiec Ingenuity będzie pracował na Marsie miesiąc dłużej niż planowano i dostanie nowe zadania. Zdecydowano, że po zakończeniu fazy demonstracyjnej lotu w atmosferze Marsa śmigłowiec przejdzie do fazy demonstracyjnej zwiadu powietrznego. Nie planowaliśmy demonstracji zwiadu powietrznego, ale w międzyczasie wydarzyły się dwie rzeczy. Po pierwsze, początkowo zakładaliśmy, że łazik Perseverance dość szybko oddali się z miejsca lądowania, jednak zespół odpowiedzialny za Perseverance jest zainteresowany zebraniem próbek z tego regionu. Po drugie, śmigłowiec sprawuje się fantastycznie. Połączenie pomiędzy nim a łazikiem jest lepsze niż sądziliśmy. Uważamy, że nawet jeśli oba urządzenia będzie dzieliła większa odległość, wciąż będą miały ze sobą łączność, co pozwoli na prowadzenie fazy zwiadu, mówi Jennifer Trosper, zastępczyni menedżera projektu Perseverance. Spodziewane problemy z łącznością są jednym z powodów, dla których początkowo planowano, że Ingenuity będzie latał tylko przez 30 dni. Wbrew temu, co podpowiada intuicja, śmigłowiec nie jest w stanie nadążyć za łazikiem. Ingenuity jest uzależniony od komunikacji z Ziemi, która jest z nim prowadzona za pośrednictwem łazika. O ile śmigłowiec przemieszcza się szybciej niż łazik, to po każdym locie musi się przez dłuższy czas ładować. Jeśli w tym czasie Perseverance oddaliłby się na zbyt dużą odległość, Ingenuity straci z nim łączność. Ponadto misja Ingenuity jest misją dodatkową, misją z wkalkulowanym wysokim ryzykiem awarii, na którą nie przeznaczano dużych środków. Dlatego też nie prowadzono testów dotyczących możliwej interferencji pomiędzy modułem komunikacyjnym łazik-śmigłowiec, a urządzeniami pracującymi na pokładzie łazika. Z tego powodu śmigłowiec miał latać przez 30 dni, gdyż w tym czasie planowano, że Perseverance i tak pozostanie nieruchomy. Właśnie dlatego nie mamy wideo nagranego przez Perseverance, na którym widać, że kamery łazika podążają za latającym śmigłowcem. Uruchomienie aktuatorów kamer mogłoby bowiem zaburzyć łączność pomiędzy łazikiem a śmigłowcem. W końcu, podstawową misją jest misja łazika i to ona jest priorytetem. To Ingenuity będzie musiał postarać się, by nie utracić kontaktu z Perseverance. Podczas demonstracji zwiadu powietrznego śmigłowiec ma nie oddalać się od łazika bardziej niż na kilometr i próbować nawiązać łączność, kiedy będzie mógł. W tym czasie Perseverance będzie wykonywał swoje zadania. Dlatego też obecne założenia mówią, że Ingenuity ma latać przez kolejnych 30 dni, a jeśli okaże się, że nie jest w stanie tego zrobić bez zbytniego angażowania zasobów Perseverance, będzie to jego koniec. W najbliższym czasie planujemy dla Perseverance krótkie trasy. Ingenuity może więc latać i lądować w pobliżu obecnej lub planowanej lokalizacji łazika. Śmigłowiec może wykonywać w tym czasie obserwacje celów naukowych łazika, jego potencjalnych tras czy niedostępnych lokalizacji. To, w jaki sposób będzie się sprawował będzie ważną lekcją dla planowania przyszłych misji. Loty Ingenuity to dodatek, nie są one potrzebne Perseverance do wykonania jego misji, oświadczyła NASA. Wiadomo, że loty Ingenuity będą odbywały się coraz rzadziej, od jednego na kilka dni po 1 na 2 lub 3 tygodnie. Będą też planowane tak, by nie wpływały na pracę łazika. Po 30 marsjańskich dniach dokonana zostanie skuteczność Ingenuity. NASA nie ma zamiaru przedłużać misji śmigłowca poza 30 sierpnia. Musimy pamiętać, że pierwotnie Ingenuity zaplanowano jako 30-dniową misję testową. Śmigłowiec budowano z myślą o tak krótkim czasie pracy. NASA przypuszcza, że podzespoły Ingenuity powinny wytrzymać co najmniej 100 startów i lądowań, a jego panel słoneczny oraz kąt padania promieni słonecznych pozwolą na ładowanie akumulatorów przez kilka miesięcy. Prawdopodobnie po pewnej liczbie zmian temperatury pomiędzy nocą a dniem dojdzie do uszkodzenia miejsca połączenia panelu z akumulatorem i Ingenuity przestanie działać. Nie wiadomo tylko, kiedy to może nastąpić. Będziemy świętowali każdy dodatkowy dzień misji, który Ingenuity przetrwa poza wyznaczonym 30-dniowym terminem, stwierdziła MimAung, menedżerka projektu Mars Helicopter. « powrót do artykułu
  9. Marsjański śmigłowiec Ingenuity odbył 3. lot w atmosferze Czerwonej Planety. Tym razem nie skończyło się, jak podczas dwóch poprzednich lotów, jedynie na wzniesieniu się, zawiśnięciu i lądowaniu. Urządzenie odbyło też lot w poziomie. Była to pierwsza próba prędkości i zasięgu. Ingenuity poleciał dalej i szybciej niż podczas testów na Ziemi. Podczas pierwszego historycznego lotu w atmosferze Marsa Ingenuity wzniósł się na wysokość 3 metrów, zawisł nad powierzchnią i wylądował. W czasie drugiego lotu śmigłowiec znalazł się na wysokości 5 metrów nad powierzchnią. Przed dwoma dniami, 25 kwietnia, śmigłowiec wzniósł się na wysokość 5 metrów, a następnie przeleciał 50 metrów, osiągając maksymalną prędkość 2,2 m/s czyli niemal 8 km/h. Teraz zespół odpowiedzialny za śmigłowiec analizuje przysłane dane. Przydadzą się one nie tylko podczas kolejnych lotów Ingenuity, ale mogą również posłużyć przyszłym marsjańskim śmigłowca. Dzisiejszy lot mieliśmy szczegółowo zaplanowany, ale i tak było to niesamowite osiągnięcie. Test ten wykazał, że możliwe jest dołączenie pojazdu latającego do przyszłych misji marsjańskich, mówi Dave Lavery, menedżer odpowiedzialny za Ingenuity w siedzibie NASA. Lot śmigłowca został sfilmowany przez kamery znajdujące się na łaziku Perseverance. Jednocześnie sam śmigłowiec, który jest wyposażony w procesor potężniejszy niż ten wykorzystywany przez łazik, filmował w kolorze swój lot. To jeden z elementów testów śmigłowca. Opiekujący się nim zespół chce „wycisnąć” z urządzenia co tylko się da, by móc określić przydatność tego typu pojazdów dla przyszłych misji na Marsa i inne obiekty Układu Słonecznego. Ingenuity jest też wyposażony w czarno-białą kamerę nawigacyjną, która rozpoznaje ukształtowanie terenu. Obrazy są na bieżąco wysyłane do procesora śmigłowca i w ten sposób testowane są możliwości komputera pokładowego. Kamera i możliwości obliczeniowe procesora to niektóre z elementów, ograniczających prędkość śmigłowca. Jeśli będzie ona zbyt duża, algorytm nie będzie w stanie śledzić ukształtowania terenu. To pierwszy test, w czasie którego widzieliśmy jak w praktyce działa algorytm na długich dystansach. W komorze testowej nie da się tego sprawdzić, mówi MiMi Aung, menedżerka projektu. Komora, w której na Ziemi testowano Ingenuity, symulując warunki panujące na Marsie, nie pozwalała na lot dłuższy niż pół metra w każdym kierunku. Inżynierowie nie wiedzieli więc, jak się będzie sprawowała kamera oraz oprogramowania i czy będą równomiernie pracowały przez cały czas. W komorze testowej masz wszystko po kontrolą. Są tam zabezpieczenia, możesz awaryjnie lądować. Zrobiliśmy wszystko, by Ingenuity latał bez tych zabezpieczeń, wyjaśnia inżynier Gerik Kubiak.   « powrót do artykułu
  10. Łazik Perseverance dokonał kolejnego ważnego kroku w kierunku załogowej eksploracji Marsa. Znajdujący się na nim instrument MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment) wykorzystał bogatą w węgiel atmosferę Marsa do wytworzenia tlenu. Udany eksperyment przeprowadzono przed dwoma dniami, 20 kwietnia. Bez możliwości produkcji i przechowywania tleny na Marsie trudno będzie myśleć o załogowej misji na Czerwoną Planetę. To krytyczny krok w kierunku zamiany dwutlenku węgla na tlen na Marsie. MOXIE ma jeszcze sporo do roboty, ale uzyskane właśnie wyniki są niezwykle obiecujące, gdyż pewnego dnia chcemy wysłać ludzi na Marsa. Tlen to nie tylko coś, czym oddychamy. Napędy rakietowe zależą od tlenu, a przyszłe misje załogowe będą uzależnione od produkcji na Marsie paliwa, które pozwoli astronautom wrócić do domu, mówi Jim Reuter dyrektor w Space Technology Mission Directorate (STMD). Inżynierowie obliczają, że do przywiezienia 4 astronautów z Marsa na Ziemię rakieta będzie potrzebowała 7 ton paliwa i 25 ton tlenu. To znacznie więcej, niż potrzeba ludziom do oddychania. Ci sami astronauci podczas rocznego pobytu na Marsie zużyją może 1 tonę tlenu, mówi Michael Hecht z Massachusetts Institute of Technology. Przewożenie 25 ton tlenu z Ziemi na Marsa byłoby bardzo trudnym i kosztownym przedsięwzięciem. Znacznie łatwiej będzie przetransportować większą wersję MOXIE, 1-tonowe urządzenie, które na miejscu wyprodukuje tlen potrzebny do powrotu. Atmosfera Marsa w 96% składa się z dwutlenku węgla. MOXIE oddziela atomy tlenu od molekuł dwutlenku węgla, uwalniając do atmosfery Marsa tlenek węgla. Konwersja odbywa się w temperaturze około 800 stopni Celsjusza, dlatego MOXIE jest zbudowany ze specjalnych materiałów, w tym wydrukowanych w 3D stopów aluminium, w których odbywa się ogrzewanie i chłodzenie gazów oraz aerożelu działającego jak izolacja. Z zewnątrz MOXIE pokryte jest cienką warstwą złota, które zatrzymuje promieniowanie podczerwone wewnątrz urządzenia, chroniąc w ten sposób inne elementy łazika Perseverance. Podczas pierwszego testu MOXIE wytworzył około 5 gramów tlenu, co wystarczyłoby człowiekowi na około 10 minut oddychania. Urządzenie jest w stanie wytworzyć do 10 gramów tlenu na godzinę. Przeprowadzony właśnie test miał pokazać, czy urządzenie bez szwanku przetrwało start, podróż i lądowanie na Marsie. NASA chce jeszcze co najmniej 9-krotnie prowadzić testy MOXIE. To nie jest po prostu pierwsze urządzenie, które wyprodukowało tlen na innej planecie. To pierwsza technologia tego typu, która ma wspomóc przyszłe misje wykorzystując lokalnie występujące zasoby, stwierdza Trudy Kortes odpowiedzialna w STMD za demonstracje technologii. « powrót do artykułu
  11. NASA wciąż nie ogłosiła daty pierwszego lotu marsjańskiego śmigłowca Ingenuity. Obowiązuje zatem termin nie wcześniej niż 14 kwietnia, który został podany po tym, jak podczas rozruchu rotorów doszło do automatycznego awaryjnego przerwania testu. Inżynierowie wiedzą już, co było przyczyną przerwania testu i pracują nad rozwiązaniem. Wszystko wskazuje na to, że pojawił się błąd w oprogramowaniu. Przypomnijmy, że Ingenuity to misja o niskim priorytecie, której nie stawia się dużych wymagań co do niezawodności. Dlatego też wykorzystano w niej wiele komercyjnie dostępnych podzespołów – jak np. wykorzystywany w telefonach komórkowych procesor Snapdragon 801 – i nie wkładano zbyt wiele środków i wysiłku w zabezpieczenie całości przed szkodliwym promieniowaniem kosmicznym. A promieniowanie to może uszkadzać podzespoły i powodować błędy w układach elektronicznych, szczególnie tych nowocześniejszych. W czasie minionego weekendu zespół z NASA przemyślał wiele możliwych rozwiązań problemu i doszedł do wniosku, że najprostszym z nich jest dokonanie niewielkich modyfikacji w oprogramowaniu odpowiedzialnego za kontrolę lotu śmigłowca i jego aktualizacja. Aktualizacja oprogramowania ma zmodyfikować proces uruchamiania kontrolerów lotu, co pozwoli sprzętowi i oprogramowaniu na bezpieczną zmianę statusu z „Pre-flight” na „Flight”. O ile stworzenie odpowiedniej aktualizacji jest proste, to jego sprawdzenie i zainstalowanie na urządzeniu znajdującym się na Marsie zajmie nieco czasu. Gdy już to się uda, zostanie przeprowadzony test rotorów i wyznaczona data pierwszego lotu. Na razie jest mowa o wyznaczeniu daty pierwszego lotu w przyszłym tygodniu. Najważniejsze, że Ingenuity jest w dobrym stanie. Takie funkcje jak zasilanie, komunikacja i kontrola temperatury działają bez zarzutu. Misja Ingenuity nie jest w żaden sposób powiązana z misją Perseverance, zatem ewentualne niepowodzenie śmigłowca nie wpłynie na zadania stawiane przed łazikiem. Tymczasem łazik Perseverance sfotografował wir pyłowy przemieszczający się za śmigłowcem. « powrót do artykułu
  12. Teraz, gdy łazik Perseverance pracuje na Marsie, przed NASA i ESA stoi nowe niezwykle trudne wyzwanie. Obie agencje przygotowują Mars Sample Return, misję, w ramach której próbki zebrane przez Perseverance mają trafić na Ziemię. Jeśli misja się uda, otworzy ona nowy rozdział w robotycznej eksploracji kosmosu. Zgodnie z założeniami Mars Sample Return najpierw na Czerwoną Planetę zostanie wysłana misja Sample Retrieval Lander. Wyląduje ona w pobliżu miejsca lądowania misji Mars 2020 – czyli łazika Perseverance – i umieści tam specjalną platformę, z której wyjedzie zbudowany przez ESA niewielki łazik, Sample Fetch Rover. Łazik pozbiera próbki przygotowane przez Perseverance i wróci z nimi do platformy. Tam załaduje je do kontenera wielkości piłki do koszykówki znajdującego się na pokładzie Mars Ascent Vehicle (MAV). MAV będzie pierwszym w historii pojazdem, który wystartuje z powierzchni Marsa. Jego zadaniem będzie dostarczenie kontenera na orbitę Marsa. W tym czasie na orbicie Czerwonej Planety krążył będzie Earth Return Orbiter autorstwa ESA. Ma on przechwycić orbitujący kontener, zdekontaminować go i umieścić w kapsule lądującej. Earth Return Orbiter wróci następnie w okolice Ziemi i uwolni kapsułę, która trafi na naszą planetę. Skoordynowanie i przeprowadzenie tak złożonej misji to poważne wyzwanie inżynieryjne. Dość wspomnieć, że wszystko musi odbyć się automatycznie i musi udać się za pierwszym razem. Odległość pomiędzy Marsem a Ziemią jest tak duża, że sygnał w obie strony biegnie kilkanaście minut. Jeśli więc w krytycznych momentach misji pojawią się nieprzewidziane problemy, ludzie nie będą mogli im zaradzić. Największe wyzwanie będzie stanowiło przeprowadzenie startu MAV z powierzchni Marsa. Za opracowanie odpowiednich technologi odpowiedzialna jest firma Northrop Grumman. Tworzymy napęd na paliwo stałe, który wyniesie MAV na orbitę. To kluczowy element powrotu próbek na Ziemię, mówi Mike Lara, dyrektor firmy ds. strategii i rozwoju biznesowego. Anita Sengupta, inżynier na Wydziale Inżynierii Kosmicznej University of Southern California mówi, że głównym problemem jest tutaj uwzględnienie różnic w grawitacji i oddziaływaniu atmosfery Marsa i Ziemi. Grawitacja na Ziemi jest trzykrotnie większa. A ciśnienie na powierzchni Marsa jest około 100-krotnie niższe niż na Ziemi. Patrząc tylko na te czynniki, wyniesienie z Marsa tej samej masy co z Ziemi wymaga znacznie mniejszej rakiety. Jednak prawdziwym wyzwaniem jest fakt, że na miejscu nie będzie ludzi. Wszystko trzeba zrobić automatycznie. To musi zadziałać za pierwszym razem, stwierdza uczona. Nawet na Ziemi, gdy mamy pełną kontrolę, start rakiety jest poważnym wyzwaniem, a niewielkie problemy techniczne czy zła pogoda niejednokrotnie powodują, że start przerywany jest dosłownie w ostatnich sekundach, przypomina Lara. Inżynierowie pracujący nad napędem dla MAV muszą też pamiętać, że na Marsie panują bardzo niskie temperatury. Sample Fetch Rover będzie zbierał pozostawione przez Perseverance próbki przez około 18 miesięcy. W tym czasie MAV będzie czekał na powierzchni Czerwonej Planety. Inżynierowie muszą więc zaprojektować taki system utrzymywania odpowiedniej temperatury układu napędowego, by MAV mógł bez przeszkód wystartować po kilkunastu miesiącach postoju w temperaturach minus kilkudziesięciu stopni Celsjusza. Na szczęście dysponujemy odpowiednimi modelami i mocami obliczeniowymi, dzięki którym inżynierowie będą mogli sprawdzić np. jak zachowuje się paliwo w takich warunkach. Ponadto wiele systemów zostanie zdublowanych, więc gdy jeden zawiedzie, można będzie uruchomić drugi. Bardzo pomocne będzie też to, czego dowiedzieliśmy się podczas misji Apollo, kiedy to startowano z powierzchni Księżyca, oraz z innych misji. Każda misja uczy nas czegoś, co wykorzystujemy w kolejnych misjach. Tak naprawdę jest to kwestia dobrego rozumienia fizyki, mówi Sengupta.   « powrót do artykułu
  13. Jutro na powierzchni Marsa ma wylądować łazik Perseverance ze śmigłowcem Ingenuity na pokładzie. To najbardziej skomplikowana misja kosmiczna od czasu lądowania człowieka na Księżycu. W chwili pisanie tego tekstu misja Mars 2020 znajduje się w odległości około 2 milionów 500 tysięcy kilometrów od Marsa i pędzi w jego stronę z prędkością 76 941 km/h. Łazik ma dotknąć powierzchni Marsa jutro, 18 lutego, o godzinie 21:55 czasu polskiego. Wyprawy na Marsa są niezwykle trudne. Dotychczas ludzkość przeprowadziła 47 misji, z czego całkowicie lub częściowo udanych było 24, w tym 16 zorganizowanych przez USA, 3 przez ZSRR, 1 wspólna UE/Rosja oraz po 1 przez UE, Indie, Zjednoczone Emiraty Arabskie i Chiny. Jak dotychczas jedyną agencją, która potrafi przeprowadzić pełną misję wraz z miękkim lądowaniem na Marsie jest NASA. Co prawda w 1971 roku na Czerwonej Planecie miękko lądował radziecki Mars 3, jednak kontakt z nim utracono już 104,5 sekundy później. Najprawdopodobniej udało się też wylądować Beagle'owi 2 wysłanemu przez Europejską Agencję Kosmiczną w 2003 roku, jednak nigdy nie nawiązano z nim kontaktu. Amerykanie próbowali lądować na Marsie 9-krotnie, z czego 8 razy im się udało. Nic więc dziwnego, że istnieje spore prawdopodobieństwo, że uda się i tym razem. Misja Mars 2020 wygląda podobnie do misji łazika Curiosity z 2011 roku. Jednak to tylko pozory. Łazik Perseverance jest najcięższym obiektem, jaki ludzkość próbowała umieścić na Marsie. Jego masa to 1025 kilogramów. NASA postanowiła przy okazji wypróbować nową osłonę termiczną, która podczas lądowania nie tylko ochroni lądujący pojazd, ale zbierze też więcej danych na temat temperatury, wiatru i rozgrzewania się osłony. Nowością jest też wspomagający lądowanie system TRN, który będzie w czasie rzeczywistym wykonywał zdjęcia terenu i na tej podstawie zdecyduje o ostatecznym punkcie lądowania. Dzięki niemu łazik można posadowić znacznie bardziej precyzyjnie, a przygotowujący misję specjaliści mieli większy wybór miejsca lądowania. Na pokładzie Perseverance znalazł się śmigłowiec Ingenuity. To pierwszy wysłany przez człowieka obiekt, który ma latać w atmosferze Marsa. Tego typu drony mogą przydać się w przyszłości podczas misji bezzałogowych i załogowych. Będą mogły bowiem służyć do szybkich zwiadów w okolicy. Po raz pierwszy w historii na Marsa wysłano też... fragmentu marsjańskich skał, które posłużą do kalibracji urządzeń badawczych łazika. Na powierzchnię Czerwonej Planety mają trafić fragmenty kombinezonów kosmicznych zaprojektowanych dla misji załogowych na Księżyc i Marsa. Z jednej strony, dzięki dobrze znanemu składowi, posłużą one do kalibracji urządzeń łazika. Z drugiej zaś będzie można zbadać, jak warunki panujące na Marsie wpływają na kombinezony. Jednak głównym zadaniem misji jest poszukiwanie śladów dawnego życia. Dlatego też na miejsce lądowania wybrano Krater Jezero. Naukowcy sądzą, że w przeszłości płynęła tam rzeka, która wpadała do jeziora. Jeśli gdzieś można znaleźć ślady życia, to właśnie tam. Dlatego też wybór padł na to miejsce, mimo iż jest to najtrudniejszy z dotychczas wybranych obszarów do lądowania na Czerwonej Planecie. Gdy Mars 2020 dotrze do Marsa, czeka nas słynne 7 minut horroru. To tytuł filmu, w którym NASA opisywała, w jaki sposób będzie lądował łazik Curiosity. Nazwa bierze się stąd, że od momentu wejścia pojazdu w atmosferę Marsa do chwili lądowania Curiosity minęło 7 minut. Tymczasem sygnał z Marsa na Ziemię biegnie 14 minut. Podobnie będzie w przypadku misji Mars 2020. Oznacza to, że w momencie, gdy NASA odbierze sygnał, iż lądujący pojazd wszedł w atmosferę Marsa łazik od 7 minut może leżeć roztrzaskany na powierzchni planety. Minie kolejnych 7 minut, zanim otrzymamy sygnał o lądowaniu. I to właśnie są te minuty horroru. Lądowanie Perseverance można będzie śledzić na NASA TV. Sekwencja lądowania będzie wyglądała następująco: – o godzinie 21:38 czasu polskiego moduł lądujący z łazikiem oddzieli się od pojazdu Mars 2020, – o 21:48 nastąpi wejście w atmosferę Marsa. Odbędzie się ono z prędkością około 19 500 km/h, – o 21:49 osłona termiczna rozgrzeje się do maksymalnej temperatury ok. 1300 stopni Celsjusza, – ok. 21:52 przy prędkości wciąż przekraczającej prędkość dźwięku zostaną rozwinięte spadochrony, dokładny czas ich rozwinięcia będzie korygowany na bieżąco przez komputer pokładowy, – 20 sekund po rozwinięciu spadochronów odłączona zostanie dolna osłona termiczna, dzięki czemu łazik będzie mógł włączyć radary i skorzystać z technologii precyzyjnego lądowania, – o 21:54, gdy zostanie wybrane dokładne miejsce lądowania, łazik wraz z przymocowanym do niego „plecakiem rakietowym” odłączy się od tylnej osłony i spadochronów, a przymocowane do „plecaka” silniki spowolnią pojazd i pokierują go na miejsce lądowania, – całość przybędzie na miejsce lądowania, a łazik z wysokości 20 metrów zostanie opuszczony na linach rozwijanych przez „plecak” i o godzinie 21:55 wyląduje na powierzchni Marsa. Liny zostaną zwolnione, a „plecak” odleci na bezpieczną odległość i rozbije się na powierzchni planety. NASA zastrzega, że centrum kontroli misji – w związku ze złożonością komunikacji na takie odległości – może nie być w stanie na bieżąco potwierdzać poszczególnych etapów lądowania. Przypomina przy tym, że łazik jest w stanie wylądować w pełni autonomicznie, bez potrzeby komunikacji z Ziemią. Po wylądowaniu jednym z pierwszych zadań łazika będzie wykonanie zdjęć otoczenia i przesłanie ich na Ziemię. Poniżej prezentujemy film wyjaśniający, jak będzie przebiegało lądowanie Perseverance.   « powrót do artykułu
  14. Przed kilkoma minutami nadeszło potwierdzenie, że łazik Perseverance i śmigłowiec Ingenuity bezpiecznie wylądowały na powierzchni Marsa. Po ponad 200 dniach podróży i przebyciu 470 milionów kilometrów NASA udało się posadowić na Czerwonej Planecie najcięższy obiekt, jaki kiedykolwiek ludzkość tam umieściła. Po emocjach lądowania rozpoczyna się zasadnicza część misji Mars 2020 – badania w poszukiwaniu dawnego życia na Marsie. Wyprawy na Marsa są niezwykle trudne. Do wczoraj ludzkość miała na swoim koncie 47 misji, z czego całkowicie lub częściowo udanych było 24, w tym 16 zorganizowanych przez USA, 3 przez ZSRR, 1 wspólna UE/Rosja oraz po 1 przez UE, Indie, Zjednoczone Emiraty Arabskie i Chiny. Misja Mars 2020, w ramach której lądował Perseverance, jest zatem 48. misją w ogóle, 25. udaną, w tym 17. udaną misją USA. Jak dotychczas jedyną agencją, która potrafi przeprowadzić pełną misję wraz z miękkim lądowaniem na Marsie jest NASA. Co prawda w 1971 roku na Czerwonej Planecie miękko lądował radziecki Mars 3, jednak kontakt z nim utracono już 104,5 sekundy później. Najprawdopodobniej udało się też wylądować Beagle'owi 2 wysłanemu przez Europejską Agencję Kosmiczną w 2003 roku, jednak nigdy nie nawiązano z nim kontaktu. Razem z dzisiejszym lądowaniem Amerykanie próbowali lądować na Marsie 10-krotnie, z czego 9 razy im się udało. Perseverance Łazik Perseverance – który bardziej szczegółowo opisaliśmy tutaj – z wyglądu przypomina swojego poprzednika, Curiosity, który bada Marsa od 2012 roku. Jednak został wyposażony w wiele nowatorskich technologii, w tym w nowy system napędowy, dzięki któremu będzie najszybszym łazikiem kiedykolwiek wysłanym na Marsa. Powodem, dla którego przykładaliśmy taką wagę do prędkości jest fakt, że jeśli jedziemy, to nie wykonujemy badań naukowych. Jeśli wybierasz się do Disneylandu, to chcesz dojechać do Disneylandu. Nie chodzi o to, by jechać, a by znaleźć się na miejscu, mówi Rich Rieber, którego zespół przez pięć lat pracował nad napędem łazika. Perseverance otrzymał nowy układ napędowy, zawieszenie, koła, system rozpoznawania otoczenia czy algorytmy planowania trasy. Wszystko po to, by łazik mógł nawigować po trudnym terenie Krateru Jezero. Perseverance ma przemieszczać się trzykrotnie szybciej, niż jakikolwiek inny łazik marsjański, dodaje Matt Wallace, zastępca dyrektora misji. Daliśmy mu sporo autonomii, sztucznej inteligencji, by mógł wykonywać swoją misję. Prędkość łazika nie będzie imponująca. Wyniesie maksymalnie 4,4 cm/s (158,4 m/h). Będzie najszybszy nie dlatego, że będzie jechał szybciej ale dlatego, że mniej czasu będziemy spędzali na planowaniu trasy, wyjaśnia Rieber. Perseverance ma wgraną mapę, stworzą na podstawie zdjęć z satelity Mars Reconnaissance Orbiter. Pokazuje ona obiekty mniejsze niż 30 centymetrów. Mapa ta pozwoli łazikowi zorientować się, w którym miejscu się znajduje. Wyposażony jest też w dwie kamery nawigacyjne (Navcams) umieszczone na maszcie, które przekazują mu obraz stereo, oraz sześć pokładowych kamer służących wykrywaniu przeszkód. Navcams zapewniają 90-stopniowy kąt widzenia i z odległości 25 metrów potrafią wykryć obiekty rozmiarów piłeczki golfowej. Kamery, w połączeniu z algorytmami sztucznej inteligencji mają umożliwić łazikowi nawigację w czasie rzeczywistym. Będzie on w stanie zauważyć przeszkody i większość z nich ominąć bez pomocy z Ziemi. Każdego marsjańskiego ranka centrum sterowania wyśle łazikowi marszrutę na dany dzień i poczeka, aż Perseverance zamelduje, że dotarł do wyznaczonego punktu. To znakomicie usprawni poruszanie się. Wcześniejsze łaziki najpierw wykonywały zdjęcia otoczenia, wysyłały je na Ziemię i czekały do następnego dnia na instrukcje. Dlatego też np. Curiosity w dni, w których miał się przemieszczać, spędzał na podróży jedynie 13% czasu. Perseverance co najmniej potroić ten wynik. Oczywiście to wszystko brzmi prosto, ale proste nie jest. Inżynierowie na Ziemi są w stanie obliczyć, jak daleko Perseverance się przemieścił zbierając dane o obrotach każdego z jego sześciu kół. Co jednak w przypadku, gdy któreś koło będzie miało poślizg bo znajdzie się na piasku? Jak wówczas określić, jak daleko od wyznaczonej trasy znalazł się łazik? Może to obliczyć komputer pokładowy łazika, jednak jego moc obliczeniowa nie jest imponująca. Nasz komputer ma mniej więcej wydajność bardzo dobrego komputera z roku około 1994, mówi Rieber. Problemem jest tutaj promieniowanie kosmiczne. Im bardziej nowoczesny procesor tym mniejsze i gęściej upakowane tranzystory, przez co są one bardziej podatne na zakłócenia powodowane promieniowaniem. Głównym zadaniem Perseverance jest znalezienie śladów życia. Żeby jednak na nie trafić, łazik musi się przemieszczać, by badać kolejne miejsca. Im bardziej efektywnie będzie to robił, tym większa szansa, że dokona odkrycia. Na miejsce lądowania wybrano Krater Jezero. Naukowcy sądzą, że w przeszłości płynęła tam rzeka, która wpadała do jeziora. Jeśli gdzieś można znaleźć ślady życia, to właśnie tam. Dlatego też wybór padł na to miejsce, mimo iż jest to najtrudniejszy z dotychczas wybranych obszarów do lądowania na Czerwonej Planecie. Ingenuity Pod „brzuchem” łazika umieszczono śmigłowiec Ingenuity, którego budowę szczegółowo opisywaliśmy. Został on zabrany w misję niejako przy okazji. Nie stanowi zasadniczej jej części. Śmigłowiec nie będzie prowadził żadnych badań. Wysłano go po to, by sprawdzić, czy potrafimy zbudować drona poruszającego się w atmosferze Marsa. Takie drony mogą przydać się podczas przyszłych misji załogowych i bezzałogowych np. do dokonywania szybkich zwiadów w okolicy. Zadaniem Ingenuity będzie wykonanie serii 90-sekundowych lotów. Ze względu na odległość pomiędzy Ziemią a Marsem jakakolwiek komunikacja w czasie rzeczywistym czy sterowanie będą niemożliwe. Jeśli wszystko przebiegnie zgodnie z planem śmigłowiec odbędzie loty i wykona kilka zdjęć. I to wszystko. Jednak dostarczy bezcennych danych, dzięki którym możliwe będzie zbudowanie w przyszłości pojazdów latających wykonujących bardziej ambitne zadania w atmosferze Marsa i – być może – innych planet. Jako, że Ingenuity to misja demonstracyjna, NASA akceptuje w tym wypadku wyższe ryzyko niepowodzenia. Zgodnie z klasyfikacją NASA misja Perseverance należy do Klasy B czyli "wysoce priorytetowych zasobów narodowych, których utrata będzie miała duży wpływ na [...] osiągnięcie celów naukowych". W takich misjach wymaga się minimalizacji ryzyka z minimalnymi kompromisami. Dlatego przy ich przygotowaniu przez wiele lat pracują olbrzymie rzesze ludzi, którzy m.in. przygotowują odpowiedni sprzęt. Przed Ingenuity nie stawia się takich wymagań, dlatego też wiele elementów śmigłowca zostało wykonanych z powszechnie dostępnych materiałów. Na przykład zastosowano w nim standardowy procesor Snapdragon 801. Dlatego też, ironią losu, śmigłowiec, który ma po po prostu latać, dysponuje mocą obliczeniową o całe rzędy wielkości większą niż łazik, wykonujący złożone badania naukowe. Jako, że moc procesora znakomicie przewyższa moc potrzebną do samego sterowania, Ingenuity wyposażono też w kamerę rejestrującą obraz z prędkością 30 klatek na sekundę oraz oprogramowanie nawigacyjne, które na bieżąco obraz analizuje. Twórcy śmigłowca mówią, że część elementów – jak np. laserowy miernik wysokości – zakupili w firmie SparkFun Electronics, produkującą elektronikę do zabawek. Stwierdziliśmy, że co prawda to sprzęt komercyjny, ale go przetestujemy. Jeśli będzie działał, będziemy go używali, mówi Tim Canham z Jet Propulsion Laboratory. Ingenuity będzie działał w trybie półautonomicznym. Z Ziemi będzie otrzymywał szczegółowy plan lotu, a zadaniem śmigłowca będzie go wykonać, utrzymując się na ścieżce. Twórcy śmigłowca nie mieli czasu na opracowanie dla niego prawdziwej autonomii. Ale nie wykluczają, że w przyszłości tego typu dronom będzie można wydać polecenie, by np. podleciały do konkretnej skały i wykonały jej zdjęcia, a one to zrobią, bez otrzymanego wcześniej z Ziemi szczegółowego planu. Istnieją już plany koncepcyjne przyszłych misji, w ramach których pracujemy nad większymi śmigłowcami, zdolnymi do wykonania takich zadań. Ale jeśli przypomnimy sobie pierwszy marsjański łazik, Pathfindera, to miał on bardzo proste zadaniem. Miał jeździć w kółko wokół stacji bazowej, wykonywać zdjęcia i pobierać próbki skał. Skromnie planujemy misje demonstracyjne. I tak też postępujemy z pierwszym śmigłowcem na Marsie, dodaje Canham. Obecnie na Marsie i w jego okolicach pracuje zatem 11 misji. Oprócz Mars 2020 (Perseverance, są to orbitery Mars Odyssey (NASA), Mars Express (ESA), Mars Reconnaissance Orbiter (NASA), Mars Orbiter Mision (ISRO – Indie), MAVEN (NASA), HOPE (Zjednoczone Emiraty Arabskie), Tianwen-1 (Chiny) oraz łazik Curiosity (NASA) i lądownik InSight (NASA). « powrót do artykułu
  15. Mars 2020 rozpoczęła procedurę zbliżania się do Czerwonej Planety. Misja, w ramach której na powierzchni Marsa wyląduje łazik Perseverance, znajduje się w odległości 80 milionów kilometrów od planety i pędzi w jej kierunku z prędkością ponad 82 000 km/h. Zgodnie z planem uruchomiono sekwencję zbliżania, a za 41 dni, 18 lutego, Perseverance wejdzie w atmosferę Marsa i po 7 minutach wyląduje na jego powierzchni. Pracujemy nad ostatnimi korektami, by zapewnić łazikowi idealną pozycję do lądowania w jednym z najbardziej interesujących miejsc na Marsie. Nie możemy się doczekać, aż koła łazika dotkną powierzchni, stwierdził Fernando Abilleira, zastąpca dyrektora misji. Perseverance to najbardziej skomplikowane laboratorium naukowe, jakie kiedykolwiek wysłano na Marsa. Kluczową rolę w poszukiwaniu śladów przeszłego życia na Czerwonej Planecie odegrają instrumenty SHERLOC, który ma wykrywać minerały i materię organiczną, oraz PIXL, który stworzy mapę składu chemicznego skał i osadów. Łazik wyposażono też w aparaty fotograficzne o dużej rozdzielczości. Bardzo interesującym instrumentem jest SuperCam, kamera współpracująca z laserem. To udoskonalona wersja ChemCam zamontowana na łaziku Curiosity. SuperCam wykorzystuje podczerwony laser, by podgrzać odległe skały czy grunt do temperatury 10 000 stopni Celsjusza i je odparować. Następnie kamera rejestruje obraz tak powstającej plazmy i określa skład chemiczny odparowanego materiału. Tę metodę badawczą nazywa się laserowo indukowaną spektroskopią rozpadu. Nie można też zapominać o czymś zupełnie wyjątkowym, czyli o śmigłowcu, który stanowi część misji Mars 2020. O nim i innych instrumentach oraz misjach marsjańskich pisaliśmy w notce Jutro startuje najtrudniejsza misja od czasów lądowania człowieka na Księżycu – Mars 2020. Perseverance wyląduje w Kraterze Jezero, bardzo interesującym miejscu otoczonym wysokimi klifami, zawierającym wydmy i pola wielkich głazów. Przed ponad 3,5 miliardami lat płynęła tam rzeka. Naukowcy mają nadzieję, że w naniesionych przez nią osadach znajdą ślady dawnego życia. Krater Jezero został dokładnie obfotografowany przez pojazdy krążące na orbicie Marsa. Jednak jego zbadanie wymaga umieszczenia tam zaawansowanego laboratorium. Perseverance jest pierwszą misją, która pobierze próbki z Marsa po to, by w przyszłości trafiły one na Ziemię. Łazik wyposażono w wiertło, dzięki któremu będzie mógł pobierać fragmenty skał i gruntu wielkości szkolnej kredy. Próbki będą przechowywane na pokładzie łazika do czasu, aż przybędzie on do wyznaczonego miejsca, gdzie pozostawi je, by przyszłe misje mogły je zabrać. Teoretycznie łazik może też dostarczyć próbki bezpośrednio do lądownika, którego wyprawę – właśnie po próbki – planują NASA i ESA. Zapraszamy do obejrzenia animacji przedstawiającej lądowanie Perseverance na Marsie.   « powrót do artykułu
  16. NASA ponownie przesunęła zaplanowany na 22 lipca start misji Mars 2020, w ramach którego na Czerwoną Planetę ma trafić łazik Perseverance oraz pierwszy w historii dron – Ingenuity. Agencja poinformowała, że z powodu kłopotów z rakietą, misja wystartuje nie wcześniej niż 30 lipca. To spore opóźnienie, gdyż dotychczas mówiono, że okno startowe będzie trwało od 20 lipca do 13 sierpnia. Na szczęście jednocześnie nieco wydłużono ten okres i poinformowano, że ostatnim dniem, w którym misja może wystartować jest 15 sierpnia. Okno do startu na Marsa otwiera się raz na 26 miesięcy. Jeśli Mars 2020 nie wystartuje w bieżącym roku, to NASA będzie musiała poczekać do roku 2022. Takie opóźnieni kosztowałoby około... 500 milionów dolarów. Mars 2020 to najbardziej ambitna misja marsjańska podjęta dotychczas przez NASA. Jej całkowity koszt wynosi około 3 miliardów USD. W ramach tej misji na powierzchni Marsa ma zostać posadowiony najcięższy z dotychczasowych ładunków wysłanych przez człowieka. Łazik Perseverance będzie szukał śladów życia, zbierze też próbki skał i gruntu, które w przyszłości mogą zostać przywiezione na Ziemię. W jej ramach będzie też testowany śmigłowiec Ingenuity. Pierwotnie start misji przewidywano na 17 lipca. Jednak gdy pojawiły się problemy z dźwigiem na stanowisku startowym, przesunięto go na 20, a następnie na 22 lipca. Teraz okazało się, że firma United Launch Alliance, która jest twórcą rakiety nośnej, potrzebuje więcej czasu, by poradzić sobie z czujnikami systemu tankowania ciekłego tlenu. Wczoraj podczas testów pojawiły się w nich niestandardowe odczyty. W ciągu najbliższych tygodni jeszcze dwa inne kraje spróbują swojego szczęścia na Marsie. Chiny mają zamiar wysłać tam misję Tianwen-1, w ramach której chcą na posadowić na powierzchni Marsa niewielki lądownik. Z kolei Zjednoczone Emiraty Arabskie planują wysłać na orbitę Marsa orbiter Hope Mars. Z kolei w marcu informowaliśmy o opóźnieniu o 2 lata europejsko-rosyjskiej misji ExoMars. « powrót do artykułu
  17. Łazik marsjański Perseverance, który ma wystartować za trzy tygodnie, zabierze ze sobą nietypowy ładunek. Na jego pokładzie znajdzie się niewielki autonomiczny helikopter Ingenuity. Jeśli wszystko pójdzie dobrze, będzie on pierwszym pojazdem wysłanym przez człowieka, który wykona wspomagany silnikiem lot w atmosferze innej planety. Lot na Marsie może nie wydawać się niczym imponującym, ale jest to niezwykle trudne zadanie. Dość wspomnieć, że gęstość atmosfery Marsa to zaledwie 1% gęstości atmosfery ziemskiej, a temperatura na Czerwonej Planecie może w nocy spaść do -100 stopni Celsjusza. Wyobraźmy sobie lekki wietrzyk na Ziemi. A teraz wyobraźmy sobie 100-krotnie mniej gęste powietrze, które trzeba wykorzystać do uzyskanie siły nośnej i kontroli pojazdu, mówi Theodore Tzanetos z Jet Propulsion Laboratory. Żaden ziemski śmigłowiec nigdy nie latał w tak rozrzedzonej atmosferze. Preserverance i Ingenuity mają wystartować 20 lipca bieżącego roku (okno startowe będzie otwarte do 11 sierpnia), a lądowanie na Marsie planowane jest na 18 lutego przyszłego roku. Około 60 marsjańskich dni później łazik opuści drona na powierzchnię planety i odsunie się od niego na odległość 100 metrów. Ingenuity waży 1,8 kilograma. Wyposażono go w dwa umieszczone jeden na drugim rotory z włókna węglowego. Obracają się one w przeciwnych kierunkach z prędkością około 2400 obrotów na minutę. To pięciokrotnie szybciej niż wirniki śmigłowców na Ziemi. Gdy obracały się wolniej, dron nie mógłby oderwać się od powierzchni Marsa. Gdyby jednak obracały się znacznie szybciej, zewnętrzne krawędzie wirników zbliżyłyby się do prędkości dźwięku, wywołały falę uderzeniową, która zdestabilizowałaby pojazd. Głównym zadaniem Ingenuity jest sprawdzenie wykorzystanych technologii. Twórcy drona mają nadzieję, że w ciągu 30 dni uda im się wykonać 5 lotów. Żaden z nich nie ma trwać dłużej niż 90 sekund. Dron ma nie przekraczać wysokości 10 metrów, a długość każdego z lotów ma być nie większa niż 300 metrów. Josh Ravich, który stał na czele zespołu inżynierów projektujących Ingenuity, mówi, że dron będzie nieco mniej manewrowy niż drony wykorzystywane na Ziemi. Musimy jednak pamiętać, że marsjański śmigłowiec musi przetrwać start rakiety, lot z Ziemi na Marsa, wejście w atmosferę i lądowanie oraz zimne marsjańskie noce. Dlatego też inżynierowie przez wiele lat pracowali nad znalezieniem równowagi pomiędzy zużyciem energii, wytrzymałością, wagą i manewrowością. Większość energii, którą Ingenuity pozyskuje z niewielkiego panelu słonecznego umieszczonego nad wirnikami, zostanie zużyta nie na loty, a na ogrzewanie systemów drona podczas zimnych marsjańskich nocy. Inżynierowie zastanawiali się nad izolacją cieplną z aerożelu, jednak zrezygnowali z niej, gdyż uznali, że będzie zbyt wiele ważyła. Modelowanie wykazało, że marsjańska atmosfera, która w większości składa się z dwutlenku węgla, będzie w pewnym stopniu zapobiegała utracie ciepła przez drona. Naukowcy uznali też, że najlepszą porą na pierwszy lot będzie późny marsjański poranek. Słońce świeci wówczas na tyle mocno, że powinno zapewnić Ingenuity wystarczającą ilość energii do lotu. Jednak nie można lotu odkładać na późniejszą porę dnia, gdyż wówczas powierzchnia Marsa mocniej się nagrzewa przez co atmosfera unosi się, rozrzedza i lot byłby wówczas jeszcze trudniejszy. Jeśli misja Ingenuity się powiedzie, NASA będzie wyposażała w śmigłowce kolejne misje marsjańskie. Drony będą służyły łazikom, i w przyszłości ludziom, jako zwiadowcy, pokazujący, co znajduje się w trudnych do osiągnięcia miejscach, jak klify czy wulkany. Obecnie możemy obserwować Marsa albo z powierzchni, albo z orbity. A 90-sekukndowy lot drona pozwoli nam na obejrzenie setek metrów terenu znajdującego się przed nami, mówi Ravich. « powrót do artykułu
  18. Za miesiąc, 20 lipca, wystartuje kolejna misja na Marsa. Tym razem NASA chce umieścić na powierzchni Czerwonej Planety łazik Perseverance. Zadaniem pojazdu będzie poszukiwanie śladów życia w Kraterze Jezero oraz przetestowanie kluczowych technologii, które zostaną wykorzystane podczas przyszłych robotycznych oraz załogowych misji marsjańskich. Jednocześnie Perseverance pobierze próbki gruntu i skał, które zostaną przywiezione na Ziemię w ramach kolejnych misji. Pięćdziesiąt jeden lat temu NASA kończyła przygotowania do pierwszej załogowej misji na Księżyc. Obecnie stoimy w przededniu kolejnego ważnego momentu eksploracji kosmosu: zebrania próbek na Marsie, stwierdził szef NASA, Jim Bridenstine. Misja Mars 2020 została zaplanowana w grudniu 2012 roku. Od początku zakładano, że wystartuje ona latem 2020 roku. Na razie wszystko wskazuje na to, że misja odbędzie się zgodnie z planem. Biorąc pod uwagę pozycje Ziemi i Marsa, okienko startowe do misji na Czerwoną Planetę otwiera się co 26 miesięcy. Jeśli Perseverance nie wystartuje w planowanym terminie, trzeba będzie czekać do września 2022 roku. Takie opóźnienie poważnie zaburzyłoby realizację długoterminowych planów realizowanych przez NASA w ramach Mars Exploration Program. Każda z marsjańskich misji obarczona jest sporym ryzykiem. W przypadku Mars 2020 największym problemem jest posadowienie łazika Perseverance na powierzchni. Jest to bowiem najcięższy ładunek, jaki kiedykolwiek próbowano umieścić na Marsie. Inżynierowie NASA musieli opracować nowe procedury testowe, by sprawdzić, czy zaprojektowane przez nich spadochrony spełnią stawiane przed nimi zadanie. Innym poważnym wyzwaniem technicznym było stworzenie i przetestowanie Sample Caching System, najbardziej złożonego i czystego mechanizmu zbierania próbek kiedykolwiek wysłanego w kosmos. Jako, że ostateczne przygotowanie do misji Mars 2020 przypadły na szczególny moment, pandemię koronawirusa, zespół  postanowił uhonorować walczących z nią medyków medyków. Do obudowy łazika przymocowano specjalną plakietkę. Na aluminiowej płytce o wymiarach 8x13 centymetrów widzimy Ziemię wspartą na eskulapie, symbolu medycyny. Zaznaczono też trajektorię lotu misji Mars 2020 na Marsa. Chcieliśmy uhonorować tych, którzy postawili dobro innych nad swoim dobrem osobistym. Mamy nadzieję, że gdy przyszłe generacje polecą na Marsa i napotkają na nasz łazik, plakietka przypomni im, że w 2020 roku na Ziemi byli tacy ludzie, mówi Matt Wallace, zastepca dyrektora projektu Perseverance. Nowy marsjański łazik poszuka śladów życia, będzie badał klimat i geologię Marsa, przygotuje grunt pod przyszłe misje i zbierze oraz przechowa próbki gruntu. Już teraz NASA i Europejska Agencja Kosmiczna zastanawiają się nad przyszłymi misjami, które odbiorą te próbki od Perseverance i przywiozą je na Ziemię do dalszej analizy. Okienko startowe dla misji Mars 2020 będzie otwarte od 20 lipca do 11 sierpnia. Niezależnie od tego, kiedy misja wystartuje, lądowanie przewidziane jest na 18 lutego 2021 roku. Wyznaczenie ścisłej daty lądowania pozwoli lepiej zrozumieć warunki panujące w miejscu lądowania oraz odpowiednio dostosować pracę satelitów krążących na orbicie Marsa, których zadaniem będzie pomoc w komunikacji pomiędzy lądującą misją Mars 2020 a Ziemią. « powrót do artykułu
×
×
  • Dodaj nową pozycję...