Search the Community
Showing results for tags ' lot'.
Found 13 results
-
Polatuchy czy płazy potrafiące przemieszczać się lotem ślizgowym, mrówki i wiele owadów żyjących na drzewach są w stanie wykonywać w powietrzu manewry, chroniące je przed upadkiem na ziemię. Jednak mistrzem wśród nich wydaje się salamandra, która całe życie spędza w koronach najwyższych drzew na świecie, kalifornijskich sekwoi wiecznozielonych. To, co naukowcy zobaczyli w tunelu aerodynamicznym przeszło ich najśmielsze oczekiwania. Mają wyjątkową kontrolę nad procesem opadania. Są w stanie skręcać, obrócić się, jeśli znajdą się do góry nogami. Potrafią utrzymać odpowiednią postawę, przemieszczać ogon w górę i w dół, by wykonywać manewry. Poziom kontroli jest niesamowity, mówi doktorant Christian Brown z University of South Florida. O niezwykłych możliwościach salamandry z gatunku Aneides vagrans uczeni przekonali się podczas badań w tunelu aerodynamicznym na Uniwersytecie Kalifornijskim w Berkeley. Salamandry zrzucano z niewielkiej wysokości w poruszającej się do góry kolumnie powietrza. O ile gatunki, które nie żyły na drzewach po prostu bezradnie opadały na siatkę zabezpieczającą, co, czego dokonywały Aneides vagrans było zadziwiające. Gdy zobaczyłem nagrania, najbardziej rzuciło mi się w oczy, że salamandry płynnie poruszały się w powietrzu. W ich ruchach nie było żadnych zakłóceń, żadnych zgrzytów, po prostu płynęły. Moim zdaniem, to dowód, jak głęboko w ich motoryce jest zakodowany ten mechanizm. To pokazuje, że przypadki spadania muszą mieć miejsce dość często, więc nastąpiła presja selektywna. I to nie jest swobodne opadanie, one nie lecą po prostu w dół. Wyraźnie przemieszczają się w poziomie, szybują, mówi profesor Robert Dudley, ekspert od latania zwierząt. To zachowanie jest tym bardziej zaskakujące, że Aneides vagrans nie różnią się wyglądem od innych salamander. Mają jedynie nieco większe łapy. Salamandry te mają duże łapy, długie nogi i ruchome ogony. Te wszystkie elementy pozwalają im manewrować w powietrzu. Dotychczas jednak sądzono, że te części ciała służą im jedynie do wspinania się. Jak się okazuje, mają one podwójną funkcję. Służą i do sprawnego wspinania i do manewrowania w powietrzu, dodaje Brown. U salamander brak jest oczywistych cech anatomicznych – jak np. dodatkowe fałdy skórne – które mogłyby im pomagać w poruszaniu się w powietrzu. Nie są też postrzegane jako zwierzęta o wybitnym refleksie. Tymczasem manewrowanie w powietrzu wymaga szybkich reakcji na zmieniającą się sytuację oraz umiejętności odpowiedniego ustawienia ciała i trafienia w cel. Dlatego też naukowcy chcieliby się lepiej przyjrzeć nie tylko niezwykłym umiejętnościom salamander, ale sprawdzić też czy inne zwierzęta – których o to nie podejrzewamy – mają podobne umiejętności. Podczas swoich eksperymentów Brown i student Erik Sathe z UC Berkeley porównywali umiejętności A. vagrans z trzema innymi gatunkami salamander, które w różnym stopniu korzystają z drzew. A. vagrans, która prawdopodobnie nigdy nie schodzi na ziemię, okazała się najlepszym lotnikiem. Niemal równie dobrymi umiejętnościami charakteryzowała się A. lubugris, która żyje na znacznie niższych drzewach, jak np. dęby. Dwa inne gatunki – żyjąca na ziemi Ensatina eschscholtzii oraz okazjonalnie wchodząca na drzewa A. flavipunctatus – bezradnie spadały na ziemię. Brown rozpoczął swoje badania, gdy zauważył, że salamandry, które łapał na drzewach w ramach innego projektu badawczego, bez obaw wyskakiwały z jego dłoni i lądowały z powrotem na gałęziach. Zdziwiło go to ryzykanckie zachowanie. Brown skonsultował się z Dudleyem, specjalistą od podobnego zachowania u zwierząt, a ten poradził mu przeprowadzenie badań w tunelu aerodynamicznym. Tam, używając kamery rejestrującej 400 klatek na sekundę, naukowcy zarejestrowali niezwykłe umiejętności zwierząt. Czasami były one w stanie utrzymać się w powietrzu przez 10 sekund. Brown uważa, że niezwykłe umiejętności zostały wykształcone jako ochrona przed spadnięciem na ziemię, ale salamandry zaczęły je wykorzystywać w swoim codziennym życiu. Wspinaczka po drzewie jest dla tych niewielkich zwierząt bardzo wyczerpująca. Ale schodzenie w dół, gdy w górze nie ma niczego do zjedzenia, jest jeszcze bardziej męczące. Salamandry celowo więc odpadają od gałęzi i opadają niżej, tam, gdzie jest pożywienie. « powrót do artykułu
-
- salamandra
- powietrze
-
(and 1 more)
Tagged with:
-
Trzmiel nie powinien latać, ale o tym nie wie, i lata, Lot trzmiela przeczy prawom fizyki. Setki tysięcy trafień w wyszukiwarkach, rozpaleni komentatorzy i teorie spiskowe, posiłkujące się tym mitem pokazują, jak bardzo trwałe potrafią być niektóre fałszywe przekonania. Bo przecież niemal każdy z nas słyszał, że zgodnie z prawami fizyki trzmiel latać nie powinien i każdy z nas widział, że jednak lata. Naukowcy najwyraźniej coś przed nami ukrywają lub coś nie tak jest z fizyką. A może coś nie tak jest z przekonaniem o niemożności lotu trzmiela? Obecnie trudno dociec, skąd wziął się ten mit. Jednak z pewnością możemy stwierdzić, że swój udział w jego powstaniu miał francuski entomolog Antoine Magnan. We wstępie do swojej książki La Locomotion chez les animaux. I : le Vol des insectes z 1934 roku napisał: zachęcony tym, co robione jest w lotnictwie, zastosowałem prawa dotyczące oporu powietrza do owadów i, wspólnie z panem Sainte-Lague, doszliśmy do wniosku, że lot owadów jest niemożliwością. Wspomniany tutaj André Sainte-Laguë był matematykiem i wykonywał obliczenia dla Magnana. Warto tutaj zauważyć, że Magnan pisze o niemożności lotu wszystkich owadów. W jaki sposób w popularnym micie zrezygnowano z owadów i pozostawiono tylko trzmiele? Według niektórych źródeł opowieść o trzmielu, który przeczy prawom fizyki krążyła w latach 30. ubiegłego wieku wśród studentów niemieckich uczelni technicznych, w tym w kręgu uczniów Ludwiga Prandtla, fizyka niezwykle zasłużonego w badaniach nad fizyką cieczy i aerodynamiką. Wspomina się też o „winie” Jakoba Ackereta, szwajcarskiego inżyniera lotnictwa, jednego z najwybitniejszych XX-wiecznych ekspertów od awiacji. Jednym ze studentów Ackerta był zresztą słynny Wernher von Braun. Niezależnie od tego, w jaki sposób mit się rozwijał, przyznać trzeba, że Magnan miałby rację, gdyby trzmiel był samolotem. Jednak trzmiel samolotem nie jest, lata, a jego lot nie przeczy żadnym prawom fizyki. Na usprawiedliwienie wybitnych uczonych można dodać, że niemal 100 lat temu posługiwali się bardzo uproszczonymi modelami skrzydła owadów i jego pracy. Konwencjonalne prawa aerodynamiki, używane do samolotów o nieruchomych skrzydłach, rzeczywiście nie są wystarczające, by wyjaśnić lot owadów. Tym bardziej, że Sainte-Laguë przyjął uproszczony model owadziego skrzydła. Tymczasem ich skrzydła nie są ani płaskie, ani gładkie, ani nie mają kształtu profilu lotniczego. Nasza wiedza o locie owadów znacząco się zwiększyła w ciągu ostatnich 50 lat, a to głównie za sprawą rozwoju superszybkiej fotografii oraz technik obliczeniowych. Szczegóły lotu trzmieli poznaliśmy zaś w ostatnich dekadach, co jednak nie świadczy o tym, że już wcześniej nie wiedziano, że trzmiel lata zgodnie z prawami fizyki. Z opublikowanej w 2005 roku pracy Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight autorstwa naukowców z Kalifornijskiego Instytut Technologicznego (Caltech) oraz University of Nevada, dowiadujemy się, że większość owadów lata prawdopodobnie dzięki temu, iż na krawędzi natarcia ich skrzydeł tworzą się wiry. Pozostają one „uczepione” do skrzydeł, generując siłę nośną niezbędną do lotu. U tych gatunków, których lot udało się zbadać, amplituda uderzeń skrzydłami była duża, a większość siły nośnej było generowanej w połowie uderzenia. Natomiast w przypadku pszczół, a trzmiele są pszczołami, wygląda to nieco inaczej. Autorzy badań wykazali, że pszczoła miodna charakteryzuje się dość niewielką amplitudą, ale dużą częstotliwością uderzeń skrzydłami. W ciągu sekundy jest tych uderzeń aż 230. Dodatkowo, pszczoła nie uderza skrzydłami w górę i w dół. Jej skrzydła poruszają się tak, jakby ich końcówki rysowały symbol nieskończoności. Te szybkie obroty skrzydeł generują dodatkową siłę nośną, a to kompensuje pszczołom mniejszą amplitudę ruchu skrzydłami. Obrany przez pszczoły sposób latania nie wydaje się zbyt efektywny. Muszą one bowiem uderzać skrzydłami z dużą częstotliwością w porównaniu do rozmiarów ich ciała. Jeśli przyjrzymy się ptakom, zauważymy, że generalnie, rzecz biorąc, mniejsze ptaki uderzają skrzydłami częściej, niż większe. Tymczasem pszczoły, ze swoją częstotliwością 230 uderzeń na sekundę muszą namachać się więcej, niż znacznie mniejsza muszka owocówka, uderzająca skrzydłami „zaledwie” 200 razy na sekundę. Jednak amplituda ruchu skrzydeł owocówki jest znacznie większa, niż u pszczoły. Więc musi się ona mniej napracować, by latać. Pszczoły najwyraźniej „wiedzą” o korzyściach wynikających z dużej amplitudy ruchu skrzydeł. Kiedy bowiem naukowcy zastąpili standardowe powietrze (ok. 20% tlenu, ok. 80% azotu) rzadszą mieszaniną ok. 20% tlenu i ok. 80% helu, w której do latania potrzebna jest większa siła nośna, pszczoły utrzymały częstotliwość ruchu skrzydeł, ale znacznie zwiększyły amplitudę. Naukowcy z Caltechu i University of Nevada przyznają, że nie wiedzą, jakie jest ekologiczne, fizjologiczne i ekologiczne znaczenie pojawienia się u pszczół ruchu skrzydeł o małej amplitudzie. Przypuszczają, że może mieć to coś wspólnego ze specjalizacją w kierunku lotu z dużym obciążeniem – pamiętajmy, że pszczoły potrafią nosić bardzo dużo pyłku – lub też z fizjologicznymi ograniczeniami w budowie ich mięśni. W świecie naukowym pojawiają się też głosy mówiące o poświęceniu efektywności lotu na rzecz manewrowości i precyzji. Niezależnie jednak od tego, czego jeszcze nie wiemy, wiemy na pewno, że pszczoły – w tym trzmiele – latają zgodnie z prawami fizyki, a mit o ich rzekomym łamaniu pochodzi sprzed około 100 lat i czas najwyższy odłożyć go do lamusa. « powrót do artykułu
-
Marsjański śmigłowiec Ingenuity odbył 3. lot w atmosferze Czerwonej Planety. Tym razem nie skończyło się, jak podczas dwóch poprzednich lotów, jedynie na wzniesieniu się, zawiśnięciu i lądowaniu. Urządzenie odbyło też lot w poziomie. Była to pierwsza próba prędkości i zasięgu. Ingenuity poleciał dalej i szybciej niż podczas testów na Ziemi. Podczas pierwszego historycznego lotu w atmosferze Marsa Ingenuity wzniósł się na wysokość 3 metrów, zawisł nad powierzchnią i wylądował. W czasie drugiego lotu śmigłowiec znalazł się na wysokości 5 metrów nad powierzchnią. Przed dwoma dniami, 25 kwietnia, śmigłowiec wzniósł się na wysokość 5 metrów, a następnie przeleciał 50 metrów, osiągając maksymalną prędkość 2,2 m/s czyli niemal 8 km/h. Teraz zespół odpowiedzialny za śmigłowiec analizuje przysłane dane. Przydadzą się one nie tylko podczas kolejnych lotów Ingenuity, ale mogą również posłużyć przyszłym marsjańskim śmigłowca. Dzisiejszy lot mieliśmy szczegółowo zaplanowany, ale i tak było to niesamowite osiągnięcie. Test ten wykazał, że możliwe jest dołączenie pojazdu latającego do przyszłych misji marsjańskich, mówi Dave Lavery, menedżer odpowiedzialny za Ingenuity w siedzibie NASA. Lot śmigłowca został sfilmowany przez kamery znajdujące się na łaziku Perseverance. Jednocześnie sam śmigłowiec, który jest wyposażony w procesor potężniejszy niż ten wykorzystywany przez łazik, filmował w kolorze swój lot. To jeden z elementów testów śmigłowca. Opiekujący się nim zespół chce „wycisnąć” z urządzenia co tylko się da, by móc określić przydatność tego typu pojazdów dla przyszłych misji na Marsa i inne obiekty Układu Słonecznego. Ingenuity jest też wyposażony w czarno-białą kamerę nawigacyjną, która rozpoznaje ukształtowanie terenu. Obrazy są na bieżąco wysyłane do procesora śmigłowca i w ten sposób testowane są możliwości komputera pokładowego. Kamera i możliwości obliczeniowe procesora to niektóre z elementów, ograniczających prędkość śmigłowca. Jeśli będzie ona zbyt duża, algorytm nie będzie w stanie śledzić ukształtowania terenu. To pierwszy test, w czasie którego widzieliśmy jak w praktyce działa algorytm na długich dystansach. W komorze testowej nie da się tego sprawdzić, mówi MiMi Aung, menedżerka projektu. Komora, w której na Ziemi testowano Ingenuity, symulując warunki panujące na Marsie, nie pozwalała na lot dłuższy niż pół metra w każdym kierunku. Inżynierowie nie wiedzieli więc, jak się będzie sprawowała kamera oraz oprogramowania i czy będą równomiernie pracowały przez cały czas. W komorze testowej masz wszystko po kontrolą. Są tam zabezpieczenia, możesz awaryjnie lądować. Zrobiliśmy wszystko, by Ingenuity latał bez tych zabezpieczeń, wyjaśnia inżynier Gerik Kubiak. « powrót do artykułu
- 15 replies
-
- 1
-
Dzisiaj, 19 kwietnia 2021 roku, miał miejsce pierwszy w historii kontrolowany lot w atmosferze Marsa. Śmigłowiec Ingenuity, który trafił na Czerwoną Planetę w ramach misji Mars 2020 łazika Perseverance, wzniósł się na wysokość 3 metrów, zawisł nad powierzchnią Marsa i wylądował. To początek testów śmigłowca. Misja Ingenuity nie ma znaczenia dla misji łazika, a sam śmigłowiec nie prowadzi żadnych badań. Jednak dzisiejsza udana demonstracja technologiczna może mieć wielkie znaczenie dla przyszłości podboju kosmosu. Sukces oznacza bowiem, że w przyszłych misjach – zarówno załogowych jak i bezzałogowych – udział mogą wziąć śmigłowce. Będą one służyły np. do szybkich zwiadów okolicy i poszukiwania interesujących celów naukowych. Śmigłowiec może dotrzeć też do miejsc, do których łazik nie dojedzie. Lot na Marsie to poważne wyzwanie. Gęstość tamtejszej atmosfery to zaledwie 1% gęstości atmosfery Ziemi. I tę tak rzadką atmosferę trzeba wykorzystać do uzyskania siły nośnej i kontroli pojazdu. Nigdy wcześniej żaden ziemski śmigłowiec nie latał w takich warunkach. Ingenuity został wyposażony w dwa rotory z włókna węglowego. Obracają się one w przeciwnych kierunkach z prędkością ok. 2500 obrotów na minutę. To pięciokrotnie szybciej niż wirniki śmigłowca na Ziemi. Gdyby obracały się wolniej, dron mógłby się nie oderwać od Marsa. Jednak gdyby obracały się szybciej, końcówki wirników zbliżyłyby się do prędkości dźwięku, co wywołałoby falę uderzeniową, a ta zdestabilizowałaby pojazd. Testy Ingenuity mają potrwać przez 30 dni. Inżynierowie NASA mają nadzieję, że w tym czasie uda się wykonać co najmniej 5 lotów. Żaden z nich nie potrwa dłużej niż 90 sekund, Jako, że misja Ingenuity została dołączona do misji łazika Perseverance i nie jest jej częścią, od śmigłowca nie oczekuje się zbyt wiele. To zaś powoduje, że nie musi on spełniać tak wysokich wymagań dotyczących minimalizacji ryzyka. Przez to zastosowany w nim sprzęt nie musi spełniać wyśrubowanych wymagań. Dlatego też wiele elementów śmigłowca zostało wykonanych z powszechnie dostępnych materiałów. Na przykład zastosowano w nim standardowy procesor Snapdragon 801. Dlatego też, ironią losu, śmigłowiec, który ma po po prostu latać, dysponuje mocą obliczeniową o całe rzędy wielkości większą niż łazik, wykonujący złożone badania naukowe. Jako, że moc procesora znakomicie przewyższa moc potrzebną do samego sterowania, Ingenuity wyposażono też w kamerę rejestrującą obraz z prędkością 30 klatek na sekundę oraz oprogramowanie nawigacyjne, które na bieżąco obraz analizuje. Śmigłowiec będzie działał w trybie półautonomicznym. Dostanie z Ziemi szczegółowy plan lotu, który będzie musiał wykonać. Specjaliści z NASA stwierdzili, że najlepszą porą na lot będzie późny poranek. Słońce świeci na tyle mocno, że powinno zapewnić wystarczającą ilość energii do lotu. Jednak później lot mógłby być trudniejszy, gdyż powierzchnia planety rozgrzewa się, przez co atmosfera unosi się i jeszcze bardziej rozrzedza. « powrót do artykułu
-
W końcu udało się przeprowadzić testowy lot Starship SN8. Lot, który zakończył się spektakularną eksplozją rakiety. Nie było to jednak zbyt wielkim zaskoczeniem. Oceniano bowiem, że szanse, iż rakieta wyląduje nietknięta wynoszą około 30%. Starship SN8 wystartował wczoraj o godzinie 23:45 czasu polskiego z ośrodka testowego SpaceX w pobliżu wsi Boca Chica w Teksasie. Jego celem było osiągnięcie wysokości 12,5 kilometra, wykonanie kilku skomplikowanych manewrów – w tym odwrócenie się poziomo w celu spowolnienia opadania – powrót do pozycji pionowej i pionowe lądowanie. SN8 wykonał wszystkie zadania, z wyjątkiem ostatniego. W 6 minut i 42 sekundy po starcie doszło do wielkiej eksplozji na lądowisku. Wszystko wskazuje na to, że Starship miał podczas lądowania zbyt dużą prędkość. Firma SpaceX uznała jednak test za sukces. Podczas lądowania ciśnienie w zbiorniku paliwowym na szczycie rakiety było zbyt niskie, przez co silniki nie wyhamowały pojazdu do odpowiedniej prędkości. Mamy jednak wszystkie dane, jakich potrzebowaliśmy. Gratulacje dla całego zespołu SpaceX, napisał na Twitterze Elon Musk. Niedługo potem dodał: Marsie, przybywamy!. Wczorajszy test był najbardziej skomplikowany ze wszystkich dotychczasowych testów Starship. Wcześniej pojazdy te (Starhopper, SN5 i SN6) osiągały wysokość około 150 metrów. Były prostymi konstrukcjami, wyposażonymi w jeden silnik Raptor. SN8 to znacznie bardziej skomplikowany pojazd, o większych możliwościach. Korzysta on z trzech Raptorów, wyposażony jest w klapy i nos. Wszystkie te nowe elementy spisały się na medal, zapewnił Musk. Udane wznoszenie, przełączenie na górny zbiornik, precyzyjna praca klap, które naprowadziły rakietę na lądowisko, cieszył się założyciel SpaceX. Pojazdy Starships mają w przyszłości latać na Księżyc, Marsa i w inne miejsca. Docelowo cały system będzie składał się dwóch zasadniczych elementów – pojazdu Starship, który w przyszłości będzie wyposażony w sześć silników Raptor oraz z olbrzymiej rakiety SuperHeavy, napędzanej około 30 silnikami. Oba elementy mają być wielokrotnego użytku, oba konstruowane są tak, by po starcie i lądowaniu były szybko gotowe do kolejnego startu. SpaceX chce, by Starship i SuperHeavy były wkrótce gotowe do regularnych lotów. Musi być to nieodległa perspektywa, gdyż NASA rozważa wykorzystanie Starship podczas załogowej misji na Księżyc. Elon Musk ogłosił niedawno, że SpaceX zorganizuje pierwszą załogową misję na Marsa już w roku 2026, szybko jednak dodał, że jeśli będziemy mieli szczęście, to misja taka odbędzie się już w roku 2024. Jeśli traktować te zapewnienia poważnie, to kolejne loty Starship muszą odbywać się często. Wiemy, że Starship SN9jest już niemal gotowa. Trwają też prace nad wersją SN10. Obie wersje będą bardzo podobne do SN8, mają jednak zawierać sporo niewielkich usprawnień. Duże zmiany przewidziane są w wersji SN15. « powrót do artykułu
- 15 replies
-
- Starship SN8
- SpaceX
- (and 4 more)
-
Ważący do 15 kg kondor wielki (Vultur gryphus) lata nawet 5 godzin, nie machając przy tym skrzydłami. W jaki sposób tak duży ptak może odbywać loty tej długości? Międzynarodowy zespół naukowców posłużył się nowoczesnymi rejestratorami parametrów lotu. Okazało się, że kondory wykorzystują prądy powietrzne, uciekając się do poruszania skrzydłami tylko przez 1% czasu trwania lotu. Wyniki badania ukazały się w piśmie PNAS. Emily Shepard i Hannah Williams z Uniwersytetu w Swansea oraz Sergio Lambertucci z Universidad Nacional del Comahue posłużyli się rejestratorami lotu, które utrwalały skręty i uderzenia skrzydłami, wykonywane przez ptaki (8) podczas poszukiwania pokarmu. Naukowcy chcieli sprawdzić, czy wysiłek związany z lotem różni się w zależności od warunków środowiskowych. Ich ustalenia pomogą zdobyć więcej informacji na temat zdolności dużych ptaków do szybowania i specyficznych warunków utrudniających lot. Biolodzy stwierdzili, że ponad 75% machania skrzydłami wiąże się u kondora ze wznoszeniem. Po wzbiciu w przestworza ptaki mogły podtrzymywać szybowanie przez długi czas w szerokim zakresie warunków termicznych i wiatrowych. Jeden z kondorów unosił się w powietrzu bez machania aż 5 godzin, przebywając w tym czasie ok. 172 km. Akademicy zastanawiali się, czy istnieją rodzaje wzorców pogodowych czy typy terenu, w przypadku których kondory muszą machać skrzydłami. Co zaskakujące, to, ile ptak uderzał skrzydłami, właściwie się nie zmieniało; nie miało znaczenia, czy kondor znajduje się w Andach, czy nad stepem i czy jest wietrznie, czy nie - podkreśla Shepard. Kondory należą do świetnych lotników, ale nie spodziewaliśmy się, że są aż tak wytrawnymi zawodnikami - dodaje. Ptaki szybujące latają w warunkach pogodowych, które pozwalają im pozostawać w powietrzu przy absolutnym minimum kosztów poruszania. Czasem jednak muszą się one uciekać do kosztownego lotu aktywnego. Nasze wyniki sugerują, że decyzje, kiedy i gdzie lądować i kiedy przemieszczać się między prądami powietrznymi, są kluczowe. Kondor musi być w stanie wystartować po wylądowaniu, poza tym niepotrzebne lądowania znacząco podwyższają ogólne koszty [energetyczne] lotu - wyjaśnia Hannah Williams, która pomagała w badaniach, pracując na Uniwersytecie w Swansea (obecnie jest związana z Instytutem Zachowania Zwierząt Maxa Plancka). Najbardziej wymagające sytuacje miały miejsce wtedy, gdy kondory próbowały szybować między słabymi kominami termicznymi; wg Shepherd, opadały wtedy bliżej ziemi i więcej uderzały skrzydłami. Lambertucci dodaje, że to dla ptaków krytyczny moment, bo muszą znaleźć wznoszący prąd powietrza, by uniknąć nieplanowanego lądowania. Argentyńczyk porównuje działanie takich kominów do lamp lava. Bąble powietrza wznoszą się [bowiem] okresowo, gdy powietrze jest wystarczająco ciepłe. Kondory mogą się więc pojawić w miejscu właściwym dla komina, ale w niewłaściwym czasie. Zebranie danych do analizy zajęło naukowcom 5 lat. Wiele godzin poświęcono na czekanie przy padlinie owiec, by oznakować ptaki. Później organizowano ekspedycje, by odzyskać urządzenia. Ten etap był konieczny, bo pozyskano tyle danych, że nie dało się ich przesłać satelitarnie czy przez sieci komórkowe. Jak naukowcy wyjaśnili w rozmowie z portalem Conversation, koncepcję badania zmodyfikowano, biorąc pod uwagę trudność dotarcia do odległych i niebezpiecznie stromych lokalizacji w Andach, gdzie lubią przebywać dorosłe kondory wielkie. By oszczędzić czas i zwiększyć szanse na odzyskanie tagów, obierano na cel młodociane osobniki, które gniazdują w grupach w bardziej dostępnych wzgórzach patagońskiego stepu. W przyszłości Williams chce głębiej zbadać podejmowanie decyzji lotniczych przez kondory. Zamierza sprawdzić, czy kondory i inne zwierzęta wykorzystujące prądy powietrzne obserwują czyjś lot, by zmapować środowisko. Czy wykorzystując mapę, mogą zwiększyć szanse na podjęcie właściwych decyzji i stwierdzać, kiedy i gdzie się przemieścić bez popełniania kosztownych pomyłek? « powrót do artykułu
-
- kondor wielki
- uderzanie skrzydłami
- (and 6 more)
-
Robot z piórami gołębia to najnowsze dzieło naukowców z Uniwersytetu Stanforda. Korzysta ono z dodatkowego elementu, ułatwiającego ptakom latanie – możliwości manipulowania rozstawem piór i kształtem skrzydeł. David Lentink ze Stanforda przyglądał się sposobowi pracy skrzydeł, poruszając skrzydłami martwego gołębia. Zauważył, że najważniejszy dla zmiany kształtu skrzydeł są kąty poruszania się dwóch stawów: palca i nadgarstka. To dzięki ich zmianie sztywne pióra zmieniają kształt tak, że zmienia się cały układ skrzydeł, co znakomicie pomaga w kontroli lotu. Korzystając z tych doświadczeń Lentink wraz z zespołem zbudowali robota, którego wyposażyli w prawdziwe pióra gołębia. Robot to urządzenie badawcze. Dzięki niemu naukowcy z USA mogą prowadzić eksperymenty bez udziału zwierząt. Zresztą wielu testów i tak nie udało by się przeprowadzić wykorzystując zwierzęta. Na przykład uczeni zastanawiali się, czy gołąb może skręcać poruszając palcem tylko przy jednym skrzydle. Problem w tym, że nie wiem, jak wytresować ptaka, by poruszył tylko jednym palcem, a jestem bardzo dobry w tresurze ptaków, mówi Lentink, inżynier i biolog z Uniwersytetu Stanforda. Robotyczne skrzydła rozwiązują ten problem. Testy wykazały, że zgięcie tylko jednego z palców pozwala robotowi na wykonanie zakrętu, a to wskazuje, że ptaki również mogą tak robić. Uczeni przeprowadzili też próby chcąc się dowiedzieć, jak ptaki zapobiegają powstaniu zbyt dużych przerw pomiędzy rozłożonymi piórami. Pocierając jedno pióro o drugie zauważyli, że początkowo łatwo się one z siebie ześlizgują, by później się sczepić. Badania mikroskopowe wykazały, że na krawędziach piór znajdują się niewielkie haczyki zapobiegające ich zbytniemu rozłożeniu. Gdy pióra znowu się do siebie zbliżają, haczyki rozczepiają się. W tym tkwi ich tajemnica. Mają kierunkowe rzepy, które utrzymują pióra razem, mówi Lentink. Uczeni, aby potwierdzić swoje spostrzeżenia, odwrócili pióra i tak skonstruowane skrzydło umieścili w tunelu aerodynamicznym. Pęd powietrza utworzył takie przerwy między piórami, że wydajność skrzydła znacznie spadła. « powrót do artykułu
-
Pterodaktyle umiały latać od urodzenia. To bardzo ważne odkrycie, bo nauce nic nie wiadomo o żadnych innych współczesnych czy znanych z zapisu kopalnego kręgowcach, które również posiadałyby tę umiejętność. Wcześniej sądzono, że podobnie jak ptaki czy nietoperze, pterodaktyle były w stanie wzbić się w powietrze dopiero po osiągnięciu niemal dorosłych rozmiarów. Te przypuszczenia opierały się na znalezionych w Chinach sfosylizowanych embrionach tych istot, które miały słabo rozwinięte skrzydła. Hipoteza ta została jednak obalona przez dr Davida Unwina z Uniwersytetu w Leicester, paleobiologa, który specjalizuje się w badaniu pterodaktyli, oraz dr Charlesa Deeminga z Uniwersytetu w Lincoln, który zajmuje się rozmnażaniem ptaków i gadów. Panowie porównali wspomniane wcześniej embriony z danymi dotyczącymi prenatalnego wzrostu ptaków i krokodyli. Stwierdzili, że znajdowały się one na bardzo wczesnym etapie rozwoju i daleko im było do wylęgu. Odkrycie w Chinach i Argentynie bardziej rozwiniętych embrionów, które obumarły krótko przed wylęgiem, zapewniło dowody, że pterodaktyle posiadły umiejętność latania od urodzenia. Teoretycznie jednoczesny wzrost i latanie są niemożliwe. Pterodaktyle tego jednak nie wiedziały, dlatego udało im się to zrobić - żartuje dr Unwin. W odróżnieniu od młodych ptaków i nietoperzy, młode pterodaktyle nie mogły liczyć na rodzicielską opiekę. Zdolność do latania od urodzenia to zatem mechanizm zapewniający przeżycie, który pozwalał umknąć drapieżnikom. Ta sama umiejętność była także często zgubą pterodaktyli, bo wymagający i niebezpieczny proces latania doprowadzał do zgonu wielu osobników w bardzo młodym wieku. Odkrycie, że młode pterodaktyle latały i rosły od momentu narodzin, pomaga rozwiązać parę zagadek dotyczących tych zwierząt. Sugeruje np., skąd mogła się u nich wziąć tak duża rozpiętość skrzydeł (o wiele większa niż u współczesnych i wymarłych ptaków i nietoperzy). « powrót do artykułu
-
- pterodaktyle
- wylęg
-
(and 6 more)
Tagged with:
-
Jerzykowate są stworzone do jedzenia i spania w locie. Trzy lata temu zespół prof. Andersa Hedenströma z Uniwersytetu w Lund zaobserwował, że u jerzyków zwyczajnych (Apus apus) niektóre osobniki funkcjonują w ciągłym locie nawet przez 10 kolejnych miesięcy - to rekord w tej dziedzinie. Inne badania pokazały, że jerzyki alpejskie także prowadzą głównie powietrzny tryb życia. W ramach najnowszego badania Hedenström i naukowcy ze Szwecji i Włoch badali 4 jerzyki blade (Apus pallidus). Okazało się, że ptaki nie lądują przez 2-3,5 miesiąca. Naukowcy posłużyli się mocowanymi do jerzyków mikrorejestratorami, które odnotowywały aktywność ptaków co 5 minut, a ich położenie raz w miesiącu. Dzięki temu ustalono, że w miesiącach zimowych, spędzanych w zachodniej Afryce po sezonie lęgowym we Włoszech, ptaki były cały czas w powietrzu. Lądują, gdy rozmnażają się i gniazdują pod dachówką lub w zagłębieniach. W pozostałym czasie żyją w locie. Lecąc, zjadają owady, a gdy osiągną pewną wysokość i zaczynają szybować, zapadają na krótki czas w sen - opowiada Hedenström. Ponieważ jerzyki blade wyprowadzają dwa lęgi, nie pozostają w locie przez tak długi czas, jak jerzyki zwyczajne, które w jednym sezonie lęgowym tylko raz składają jaja. De facto nie ma jednak znaczenia, czy dany gatunek spędza w powietrzu 3 czy 10 miesięcy z rzędu. Tak czy siak jerzykowate są przystosowane do takiego trybu życia. Wydajność ich lotu jest zmaksymalizowana, bez względu na to, czy ptak macha skrzydłami, czy szybuje. Jerzykowate mają, w porównaniu do wielu innych ptaków, wysoki wskaźnik przeżywalności. Naukowcy sądzą, że zawdzięczają to właśnie powietrznemu trybowi życia. W powietrzu drapieżnikom trudniej je zaskoczyć. Zmniejsza się też obciążenie pasożytami. « powrót do artykułu
- 1 reply
-
- jerzyki blade
- lot
-
(and 2 more)
Tagged with:
-
To, że trzmiele utrzymują się w powietrzu, jest raczej kwestią brutalnej siły, a nie misternej aerodynamiki – uważają naukowcy z Uniwersytetu Oksfordzkiego (Experiments in Fluids). Analizując lot tych owadów, przez kilka lat badacze skupiali się głównie na komputerowych modelach obliczeniowych, które upraszczały zarówno ruchy, jak i kształt skrzydeł. Brytyjczycy postanowili więc wrócić do źródeł, czyli rzeczywistego trzmiela, przedzierającego się przez wypełniony dymem tunel aerodynamiczny. Potem wystarczyło przeanalizować swobodny lot owada, uwieczniony przez kamerę zapisującą 2000 klatek na sekundę. Odkryliśmy, że lot trzmieli jest wyjątkowo nieudolny – w sensie aerodynamicznym są one podzielone na pół. Ich skrzydła pracują niezależnie od siebie, a przepływ powietrza jest taki, że strumienie opływające owady od prawej i lewej nie łączą się, by wspomóc lot – wyjaśnia dr Richard Bomphrey z Wydziału Zoologii. Wygląda więc na to, że trzmiele poruszają się inaczej niż większość latających owadów. Zaadaptowały brutalną siłę, funkcjonującą dzięki wielkiemu tułowiowi i wysokoenergetycznemu nektarowi. Podejście to może być skutkiem określonych kształtów ciała – szerokiego przekroju – albo czymś, co wyewoluowało, aby trzmiele potrafiły lepiej manewrować. Niestety, kosztem stylu latania. Profesor Adrian Thomas porównuje trzmiele do latających tankowców, które transportują do gniazda pyłek i nektar. Wg niego, przy takim trybie życia sprawność nie jest czymś istotnym. Na potrzeby eksperymentu zoolodzy nauczyli trzmiele ziemne (Bombus terrestris) latać po nektar z ciętych kwiatów przez tunel aerodynamiczny. Mit, że trzmiele nie powinny w ogóle latać, ma już prawie 100 lat. Na podstawie teorii aerodynamicznej z 1918-1919 r. "ustalono", że skrzydła tych owadów są zbyt małe, żeby wytworzyć wystarczającą siłę nośną. « powrót do artykułu
- 3 replies
-
- dr Richard Bomphrey
- tunel aerodynamiczny
-
(and 2 more)
Tagged with:
-
Zdolność nasion mniszka do pokonywania sporych odległości - nawet powyżej 1 km - tylko dzięki sile wiatru ma związek z unikatowymi "bańkami" powietrza, które utrzymują się nad wiązkami włosków (puchem kielichowym). Naukowcy z Uniwersytetu w Edynburgu przeprowadzili eksperyment, który miał pokazać, czemu nasiona mniszka tak dobrze latają, mimo że w ich spadochronowej czaszy większą część stanowią puste przestrzenie. Okazało się, że gdy powietrze przelatuje przez włoski, tworzą się wiry w postaci kręgów. Są one fizycznie odseparowane od puchu kielichowego, stąd nazwa: separowane kręgi wirowe (ang. separated vortex ring). Ilość powietrza przelatującego przez kręgi, która ma krytyczne znaczenie zarówno dla zachowania stabilności, jak i utrzymania kręgu bezpośrednio nad lecącymi nasionami, jest precyzyjnie kontrolowana dzięki odpowiedniemu rozmieszczeniu włosków. Autorzy publikacji z pisma Nature podkreślają, że wydajność lotu nasion mniszka jest 4-krotnie większa niż w przypadku konwencjonalnej czaszy. Szkoci dodają, że porowatość puchu kielichowego (włosków) jest precyzyjnie dostosowana, by stabilizować wir. Naukowcy sugerują, że porowaty spadochron tych roślin mógłby zainspirować projektantów drobnych dronów z niewielkim zużyciem mocy. Służyłyby one np. do monitorowania skażenia powietrza. « powrót do artykułu
-
Przed uniesieniem się na wietrze pająki sprawdzają warunki atmosferyczne, a następnie przędą nanowłókna. Moonsung Cho z Uniwersytetu Technicznego w Berlinie pisze na ten temat pracę doktorską. Biolodzy z jego zespołu podkreślają, że babie lato (ang. ballooning) występuje u wielu rodzajów pająków. W ten sposób mogą się rozprzestrzeniać z miejsca urodzenia czy szukać pokarmu, partnerów albo nowego obszaru do skolonizowania. Choć w takie zachowanie najczęściej angażują się osobniki młodociane lub młodzi dorośli o długości poniżej 3 mm, latają też większe pająki. Autorzy publikacji z pisma PLoS Biology wyjaśniają, że inni co prawda badali babie lato, ale oni jako pierwsi tak drobiazgowo ocenili zarówno pajęcze testy pogodowe, jak i włókna wykorzystywane do chwytania wiatru "w żagle". Naukowcy prowadzili obserwacje w terenie i eksperymenty w tunelu aerodynamicznym. Okazało się, że pająki z rodzaju Xysticus o długości ok. 5 mm i wadze do 25 mg aktywnie oceniają warunki wiatrowe, unosząc raz po raz jedno z przednich odnóży. Przy prędkościach wiatru poniżej 3 m/s i stosunkowo lekkich prądach wstępujących (0,1–0,5 m/s) przędą liczne nici o średniej długości 3 m. Później produkują kolejną nić, przytwierdzającą je do źdźbła trawy stanowiącego miejsce startu. Testy pokazały, że pająki wytwarzały 50-60 włókien o średnicy 121-323 nanometrów. Włókna te różnią się od jedwabiu wiodącego (ang. drag silk) i powstają w odrębnym gruczole. Akademicy podsumowują, że pająki aktywnie badają pogodę i wznoszą się w wąskim zakresie prędkości wiatru i prądów wznoszących, zwiększając swoje szanse na udany lot. « powrót do artykułu
-
- babie lato
- pająk
-
(and 3 more)
Tagged with:
-
Firma World View Enterprises z Arizony poinformowała o udanym teście balonu, który będzie wynosił turystów na wysokość 32 kilometrów nad Ziemią. Przedsiębiorstwo wykorzystuje balon podobnego typu, który w 2012 roku pozwolił Feliksowi Baumgartnerowi na wykonanie skoku z największej wysokości w dziejach. Dyrektor wykonawcza World View Enterprises, Jane Poynter, powiedziała, że ubiegłotygodniowy test był pierwszą próbą wszystkich komponentów połączonych w jedną całość. W czasie testu wykorzystano balon trzykrotnie mniejszy niż ten, który będzie wynosił turystów. Był on obciążony ładunkiem 10-krotnie mniejszym niż kapsuła z turystami. Pierwsze komercyjne loty balonu mają rozpocząć się w 2016 roku, a bilet na lot będzie kosztował 75 000 USD. Podczepiona pod balon kapsuła zabierze sześciu turystów i dwóch członków załogi. Przez dwie godziny będą oni znajdowali się na wysokości 32 kilometrów. Kapsuła będzie na tyle duża, że pozwoli pasażerom na spacerowanie. « powrót do artykułu
- 1 reply
-
- balon
- World View Enterprises
-
(and 2 more)
Tagged with: