Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'motyl'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 10 results

  1. Gąsienice gwiżdżą, kwiczą i wydają dźwięki przypominające stukanie. Biolodzy znają ten repertuar od ponad wieku. Dotąd niedawna nikt nie miał jednak pojęcia, jak gąsienice wytwarzają dźwięk ani czemu to w ogóle służy. Okazuje się, że chodzi o odstraszanie polujących ptaków. Kiedyś zespół Jayne Yack z Carleton University ustalił, że gąsienice antrei (Antheraea polyphemus), nocnego motyla z rodziny pawicowatych, stukają, uderzając o siebie żuchwą i szczęką. Teraz Kanadyjczycy ustalili, że gąsienice Amorpha juglandis, motyla z rodziny zawisaków, wykorzystują do gwizdania umieszczone po bokach odwłoka przetchlinki. To one umożliwiają im wymianę gazową i zwykle służą do oddychania. Jak widać, nie zawsze... Dzięki systemowi szybkiego filmowania naukowcy zauważyli, że gąsienice cofają głowę, by ucisnąć jamę ciała. Zaczęto dywagować, że w ten sposób wyciskają powietrze przez przetchlinki, czemu towarzyszy charakterystyczne gwizdanie czy piszczenie. By sprawdzić, czy tak jest naprawdę, Veronica Bura (także z Carleton University) pokryła wszystkie osiem par przetchlinek lateksem. Następnie systematycznie usuwała prowizoryczne zatyczki, podszczypując przy tym wiszącą na liściu larwę pęsetą. Okazało się, że dźwięki dobywają się z 8. pary otworów, tworząc trwające do 4 sekund serie gwizdów. Gwizdy obejmowały częstotliwości od dźwięków słyszalnych dla ptaków i ludzi po ultradźwięki. Na potrzeby końcowego eksperymentu Yack i Bura nawiązały współpracę z kolegami z Queen's University, którzy hodują lasówki żółtawe (Dendroica petechia), ptaki często jadające gąsienice i występujące w tych samych rejonach, co A. juglandis. Nieszczęsne gąsienice umieszczano na gałązkach w klatkach z lasówkami i ponownie filmowano rozwój wydarzeń. Podczas ataku gąsienice zaczynały piszczeć, ptak wzdrygał się i odskakiwał lub odlatywał. Mimo że 3 lasówki przypuściły po 2 ataki, żadnej z gąsienic nic się w efekcie nie stało.
  2. Gdy jesienią liście zaczynają żółknąć, szrotówek białaczek (Phyllonorycter blancardella) wykonuje swego rodzaju reanimację. Dzięki bakteriom z rodzaju Wolbachia larwy motyla mają się świetnie na zielonych, czyli prowadzących fotosyntezę połaciach, podczas gdy reszta drzewa przeszła już ogałacającą metamorfozę zmian pór roku. Szrotówki należą do owadów minujących, które drążą korytarze w liściach lub młodych pędach. Podobnie jak ssaki, wchodzą w symbiozę z bakteriami, pomagającymi im w trawieniu rozmaitych substancji. Często mikroby są przekazywane z pokolenia na pokolenie. Udowodniono także, że u owadów endosymbionty "opracowują" nowe metody obrony dla swoich łaskawych gospodarzy. Ekolog David Giron z Université François Rabelais w Tours z podziwem przygląda się tym organizmom. Wg Francuza, Wolbachia mogą wpływać na metabolizm roślin. Niektóre bakterie, w tym one, mają bowiem gen występujący także u przedstawicieli flory, który pobudza komórki roślinne do produkcji hormonów zwanych cytokininami. To niezwykle istotne, ponieważ związki te opóźniają śmierć komórkową. By sprawdzić, czy Wolbachia mają coś wspólnego z powstawaniem wysepek zieleni pośród morza żółtych liści, zespół Girona podał "doustnie" niektórym samicom antybiotyki. W ten sposób uśmiercono bakteryjnych współpracowników motyli. Samice złożyły później jaja na liściach jabłoni. Okazało się, że larwy samic z grupy kontrolnej (niepotraktowanej lekami) były w stanie doprowadzić do zachowania fotosyntetyzujących liści, lecz reszcie się ta sztuczka nie udawała. Bez bakterii nie masz zielonej wysepki, a jeśli jej nie masz, giniesz – podsumowuje Giron. Na razie biolodzy nie wiedzą, czy Wolbachia same wytwarzają cytokininy, czy też w grę wchodzi inny mechanizm. Tak czy siak daje to motylom dodatkowy miesiąc na rozmnożenie i wzrost.
  3. Samce motyli Heliconius charithonia siadają na poczwarkach samic na 10 dni przed wylęgiem imago. W ten sposób upewniają się, że będą ich pierwszymi partnerami (Proceedings of the Royal Society B). Rodzi się tylko jedno pytanie: skąd panowie wiedzą, że usiedli na przyszłych samicach? Okazuje się, że wchodząc w okres dojrzewania, żeńskie poczwarki wydzielają pewien feromon. Catalina Estrada i zespół z Uniwersytetu Teksańskiego w Austin wyekstrahowali z oskórka 10 poczwarek szereg związków. W laboratorium zidentyfikowali też lotne związki organiczne, wydzielane przez 12 innych poczwarek. Stwierdzili, że związkiem unikatowym dla poczwarek samic był monoterpen tlenku linalolu, a dla samców linalol. Następnie Amerykanie pomalowali wszystkie poczwarki oboma zapachami. W takiej sytuacji samce Heliconius charithonia jedynie z rzadka siadały na poczwarkach samic pachnących linalolem. Jeśli jednak pomazano je tlenkiem linalolu, "zagnieżdżały się" na nich w 65% przypadków, a więc tak często jak na poczwarkach żeńskich niepoddawanych żadnym zabiegom.
  4. Niektórzy mówią (a inni śpiewają), że nic dwa razy się nie zdarza. Pewnie jest w tym sporo prawdy, ale czy to samo powiedzenie ma rację bytu w biologii? Badacze z Uniwersytetu Kalifornijskiego postanowili to sprawdzić. Badania przeprowadzone na amerykańskiej uczelni są niczym innym, jak unowocześnioną wersją eksperymentów prowadzonych w XIX wieku przez Grzegorza Mendla, pioniera genetyki. Tym razem jednak, zamiast oceniać wyłącznie wygląd badanych roslin, naukowcy wykorzystali testy genetyczne pozwalające na śledzenie ewolucji niemal w czasie rzeczywistym. Obiektem studium był orlik - roślina wieloletnia z rodzaju Aquilegia. Charakterystyczną cechą tego organizmu jest wytwarzanie kwiatów w jednym z dwóch kolorów: czerwonym oraz białawo-żółtym. Pociąga to za sobą ogromne konsekwencje, gdyż jaskrawe kwiaty są zapylane niemal wyłącznie przez kolibry, zaś te bardziej płowe - przez motyle z rodziny zawisakowatych (Sphingidae). Nieco wcześniej wykazano, że liczebność motyli oraz kolibrów wywiera istotny wpływ na zmianę koloru kwiatów orlika. Wiąże się to ze zjawiskiem selekcji naturalnej - rośliny wytwarzające kwiaty "dopasowane" do preferencji zwierząt będą rozwijały się szybciej od konkurentów. Bardzo podobnie wygląda kwestia zmiany kształtu kwiatów w reakcji na kształty aparatów gębowych owadów oraz ptasich dziobów. Co ważne, zarówno zmiana barwy, jak i kształtu kwiatów jest z punktu widzenia populacji odwracalna i po upływie dostatecznie długiego czasu wygląd roślin powraca do stanu sprzed mutacji. Teraz naukowcy postanowili pójść o krok dalej. Dzięki badaniom z zakresu genomiki zidentyfikowali 34 geny biorące udział w wytwarzaniu poszczególnych barwników. Do zbadania pozostaje więc "tylko" sekwencja mutacji utrwalanych w populacji pod wpływem zmian w otoczeniu. Mówiąc najprościej, badacze chcą sprawdzić, czy za każdym razem orlik będzie ewoluował w identyczny sposób, tzn. na drodze mutacji w tych samych genach. Ostatecznie chcemy wiedzieć, czy ewolucja może być przewidywalna, tłumaczy prof. Scott A. Hodges, kierownik badań. Wiedza zdobyta dzięki wysiłkom jego zespołu może mieć niebagatelne znaczenie dla lepszego zrozumienia procesów adaptacji organizmów żywych do warunków środowiska.
  5. Białko Bt, wytwarzane w naturze przez bakterie Bacillus thuringiensis, jest jednym z najskuteczniejszych środków owadobójczych znanych człowiekowi. Jego aktywność jest na tyle wysoka, że kodujący je gen wykorzystywany jest do modyfikacji genetycznej niektórych roślin, lecz, jak pokazują najnowsze badania, jego skuteczność jest ściśle zależna od składu flory bakteryjnej zamieszkującej ciała szkodników atakujących uprawy. Odkrycia dokonali badacze z Uniwersytetu Wisconsin. Badali oni efekty działania Bt na motyle, których larwy żywią się roślinami uprawianymi przez ludzi. Aby ocenić wpływ flory bakteryjnej na działanie toksycznej proteiny, owadom podawano antybiotyki. Po zakończeniu terapii ponownie oceniano skuteczność naturalnego pestycydu. Przeprowadzony eksperyment wykazał, że u pięciu spośród sześciu gatunków badanych motyli zabicie bakterii zamieszkujących jelita powodowało utratę wrażliwości na toksynę. Co więcej, ponowne zasiedlenie ciał owadów tymi samymi drobnoustrojami przywróciło u czterech gatunków wrażliwość na działanie białka Bt. Wygląda więc na to, że do zadziałania tego środka na organizm szkodnika konieczne jest występowanie w nim naturalnej "kolekcji" bakterii. Wyniki doświadczenia mogą być istotne dla rolników, którzy chcieliby zwiększyć skuteczność ochrony własnych upraw przed niechcianymi gośćmi. Można także spekulować, że kontrola składu flory bakteryjnej zamieszkującej organizmy nieszkodliwych gatunków motyli mogłaby pozwolić na uchronienie ich przed szkodliwym działaniem białka Bt.
  6. Jak to możliwe, że przednia para skrzydeł w zupełności wystarcza motylom do utrzymania się powietrzu, a mimo to wydatkują one tak wiele energii na wytworzenie dwóch par tego niezwykle pięknego narządu lotu? Okazuje się, że ich rolą nie jest napędzanie zwierzęcia ani wytwaranie siły nośnej, lecz wykonywanie gwałtownych zwrotów podczas ucieczki przed drapieżnikami. Aby uciec przed drapieżnikiem, nie musisz być szybki, za to musisz być nieprzewidywalny, tłumaczy prof. Tom Eisner, specjalista z zakresu ekologii i ewolucji pracujący dla Uniwersytetu Cornell. Badania przeprowadzone przez jego zespół sugerują, że ruchy tylnej pary skrzydeł motyli umożliwiają nagłą zmianę kierunku, która pozwala na uniknięcie ataku ze strony drapieżnika. Swój eksperyment prof. Eisner przeprowadził wspólnie z Benjaminem Jantzenem, magistrem fizyki i doktorantem z zakresu filozofii nauki. Badanie miało dość nietypowy przebieg, bowiem wymagało... wycięcia tylnej pary skrzydeł. Po wykonaniu amputacji następowała zasadnicza część testu, czyli obserwacja lotu zwierzęcia. Dokonywano tego za pomocą dwóch kamer sprzężonych z komputerem, który analizował uzyskany obraz i generował na jego podstawie dane m.in. na temat szybkości, przyśpieszenia oraz zmiany kierunku, do jakich był zdolny okaleczony motyl. Testy wykazały, że brak tylnej pary skrzydeł nie wpływa na podstawowe cechy lotu, takie jak jego szybkość czy stabilność, lecz dramatycznie, bo aż o połowę, obniża zdolność do zmiany kierunków. Wszystko wskazuje więc na to, że tylne skrzydła działają podobnie do powierzchni sterowych spotykanych w samolotach. Ich rolą jest zaburzanie przepływu powietrza wokół skrzydeł i generowanie sił odpowiedzialnych za zmianę kierunku lotu. To nie jedyna forma zabezpieczenia, w którą ewolucja "wyposażyła" te piękne owady. Motyle dzienne, na przykład, posiadają przeważnie jaskrawe ubarwienie, będące jednocześnie sygnałem ostrzegawczym i "błyskotką" utrudniającą dokładną analizę ruchów owada. Wiele motyli posiada jeszcze jedną, bardzo przyziemną cechę: nieprzyjemny smak, zaś ich charakterystyczna budowa (tzn. ogromne skrzydła i niewielka reszta ciała) nadają motylom znikomą wartość energetyczną w porównaniu do rozmiarów ciała zwierzęcia. Sprawia to, że wiele drapieżników omija taki kąsek szerokim łukiem, wiedząc, że będzie miał niewielki pożytek ze swojej gonitwy. O swoich badaniach nad defensywnymi taktykami motyli badacze poinformowali na łamach czasopisma Proceedings of the National Academy of Sciences.
  7. Zaledwie jeden gen wystarcza pewnemu afrykańskiemu motylowi do wytwarzania na skrzydłach wzorów upodabniających go do przedstawicieli innych gatunków, trujących dla próbującego je pożreć drapieżnika. Zjawisko to odkryto u motyli z gatunku Papilio dardanus. Już w momencie przeobrażenia z larwy do postaci dorosłej (imago) motyle tego gatunku posiadają na skrzydłach wzory. Samo w sobie nie jest to zaskakujące, lecz u większości motyli wzór ten jest charakterystyczny dla gatunku. U Papilio dardanus zaś możliwych jest wiele różnych układów kolorystycznych. Dodatkowo wiele z nich przypomina do złudzenia wzory używane przez ich toksycznych krewniaków, odstraszających w ten sposób swoich naturalnych wrogów. Odkrycia tego dokonano już w latach pięćdziesiątych XX wieku - już wtedy przypuszczano, że musi istnieć "genetyczny przełącznik" decydujący o tym, który z wzorów skrzydeł pojawi się u danego osobnika. Mimo to położenie, budowa i liczba genów wpływających na tworzenie wzorów na skrzydłach nie były znane aż do teraz. Naukowcy chcą teraz odkryć, jak dokładnie zachodzi proces wytwarzania wzorów na skrzydłach tego motyla. Wiedza ta pomoże ustalić, czy zmiany ewolucyjne zachodzą skokowo, czy też w powolnym procesie dostosowywania się do warunków otoczenia. W celu zbadania tego fenomenu naukowcy zastosowali różnorodne techniki, na czele z "etykietkami molekularnymi" (ang. molecular tags) oraz sekwencjonowaniem DNA, by poznać dokładne różnice w genach determinujące różnorodność wzorów. Choć odnaleziono pojedynczy gen odpowiadający za to zjawisko, potrzebne są dalsze badania. Wykonaliśmy duży krok naprzód w kierunku odkrycia, w jaki sposób natura obdarowała ten fascynujący gatunek owadów niezwykłą różnorodnością wzorów na skrzydłach. Mimo to odnalezienie genu to zaledwie pierwszy krok - teraz musimy spojrzeć dokładniej na różnice w wariantach tego genu oraz kolejnego, leżącego zaraz obok niego - mówi Alfried Vogler, główny autor publikacji na ten temat. Dodaje: Można przypuszczać, że mało korzystne byłoby dla tego gatunku, gdyby powoli ewoluował, zanim osiągnie zdolność naśladowania trującego motyla - zmiana tego typu ma sens wyłącznie wtedy, gdy zachodzi skokowo i od razu daje pożądany efekt. To mogłoby sugerować, że w pewnych warunkach ewolucja może być procesem skokowym. Potwierdzenie tego byłoby niezwykle ekscytującym zjawiskiem. Papilio dardanus zamieszkuje tereny subsaharyjskie Afryki. Rozpiętość jego skrzydeł to ok. 10 cm. Co ciekawe, tylko samice tego gatunku noszą na skrzydłach charakterystyczne wzory, przypominające inne, toksyczne dla drapieżników, gatunki. Samce tego gatunku są żółte, noszą na skrzydłach czarne wzory i identyczne ogony. Publikacja na temat tego odkrycia ukazała się w najnowszym numerze czasopisma Proceedings of the Royal Society B.
  8. Biolodzy postanowili zebrać fundusze na dalsze badania, sprzedając prawa do nazwy nowo odkrytego gatunku meksykańskiego motyla. Andrew Warren ma nadzieję, że uda się wylicytować 50 tys. dolarów. Kwota ta wystarczyłaby na prawie 2 lata, a jak mówią naukowcy, droga do Meksyku jest długa, także dla pieniędzy... Rzeczony motyl mierzy 10 cm i zamieszkuje Sonorę, meksykański stan graniczący z Arizoną. Jego skrzydła pokrywa wzór przypominający sowie oczy. Zgodnie z niepisaną tradycją, przy nazywaniu nowego gatunku ostatnie słowo (i nie jest to przenośnia) należy do jego odkrywców. W ciągu kilku lat paru odkrywców zlicytowało swoje prawa do nazwy. Uzyskali w ten sposób fundusze na dalsze badania. Motyle nie są tak samo cenne jak inne gatunki, lepszy jednak rydz niż nic. Za możliwość nazwania gatunku małpy 2 lata temu uzyskano 650 tys. dolarów, a za tegoroczną zgrupowaną aukcję 10 gatunków ryb aż 2 mln dol. Warren i jego kolega George Austin nie odkryli motyla w Meksyku. Znaleźli go nieprawidłowo skatalogowanego w gablotce we Florydzkim Muzeum Historii Naturalnej w Gainesville. Po przejrzeniu zdjęć i porównaniu z innymi znanymi gatunkami motyli okazało się, że to odrębny gatunek. Należy do rodzaju Opsiphanes. Nazwę należy więc uzupełnić o człon następujący po Opsiphanes. Aukcja odbywa się na serwisie Igavel.com. Kończy się w najbliższy piątek (2 listopada).
  9. Dwóch włoskich i jeden polski naukowiec zrewolucjonizowało poglądy na ostatnią epokę lodowcową. A wszystko przez małego błękitnego motyla Parnassius mnemosyne... Valerio Sbordoni i Paolo Gratton z Rome Tor Vergata University oraz Maciej Konopiński z Polskiej Akademii Nauk odkryli ślady jego mitochondrialnego DNA na obszarze od Europy Zachodniej po Daleki Wschód, co oznacza, że wśród śniegów plejstocenu zachowały się całkiem spore wyspy roślinności. Pozostałości po owadach znajdowały się poza sprecyzowanym wcześniej przez naukowców zasięgiem ich występowania. Trzech biologów sporządziło nową mapę obszarów zielonych ostatniego zlodowacenia (zakończyło się ono 10 tys. lat temu, a rozpoczęło 200 tys. lat p.n.e.). Motyl miewa się dobrze tylko w wilgotnych habitatach leśnych – powiedział Sbordoni na międzynarodowej konferencji biologii motyli. Łaty leśne przeżyły uderzenie zimna i występowały jeszcze ok. 150 tys. lat temu. Istniały oazy, w których niepylak mnemozyna (Parnassius mnemosyne) rozkwitał, zwłaszcza w Karpatach i w rejonie starożytnej Pannonii. To jeden z rzadkich przypadków tak szerokiego zakresu występowania gatunku motyla. Pannonia (Panonia) była w starożytności prowincją rzymską. Jej granice wytyczały widły Dunaju i Sawy. Obecnie są to rejony zachodnich Węgier, wschodniej Austrii, Słowenii, Chorwacji, a także Czarnogóry i Serbii. Analizując mitochondrialne DNA, które dziedziczy się tylko po matce, można cofać się w czasie aż do momentu natrafienia na wspólnego przodka badanej rodziny motyli.
  10. Naukowcy natrafili na ślad białek, które zapobiegają zamarzaniu. Pokrywają one powierzchnię kryształów lodu i nie dopuszczają do ich powiększania się (tworzą na powierzchni coś w rodzaju imadła). Jednym ze związków o największym potencjale jest substancja uzyskiwana od będących szkodnikami jodeł motyli Choristoneura fumiferana. Badacze mają nadzieję, że bazując na ich najnowszym odkryciu, uda się m.in. opracować cząsteczki utrzymujące narządy do przeszczepów dłużej przy życiu. Białka zapobiegające zamarzaniu nazywa się też białkami ISP (od ang. ice-structuring proteins). To one pomagają zwierzętom przeżyć w temperaturach, w których teoretycznie tkanki powinny obumrzeć, rozsadzone przez kryształy lodu. Już teraz producenci lodów dodają ISP do swoich niskotłuszczowych wyrobów, by poprawić ich strukturę. Rozkoszując się smakiem, nie natrafiamy dzięki temu na zgrzytające w zębach miniaturowe sople. Aby sprawdzić, do których fragmentów kryształów lodu przylegają białka, zespół biofizyka Ido Braslavsky'ego z Ohio University połączył różne rodzaje ISP z proteinami jarzącymi się pod mikroskopem na zielono. Badacze zanurzali niewielkie kryształy lodu w roztworze białek uzyskanych z Choristoneura fumiferana. W miarę obniżania temperatury do pewnego momentu rozmiary kryształów pokrytych ISP nie zmieniały się. Potem nagle zaczynały one rosnąć, kiedy było zbyt zimno, aby białka mogły to wytrzymać. Kryształy lodu gromadzą się razem i tworzą struktury przypominające plastry miodu. Naukowcy zauważyli, że słabiej działające białka ISP, które uzyskiwano z ryb, nie dopuszczały do bocznego powiększania się plastrów. Ponieważ nowe cząsteczki lodu mogły się przyczepiać tylko do górnych lub dolnych krawędzi, zmieniły swój kształt (z dysków czy kropli przemieniły się w sześciościenne diamenty). Białka ISP z motyli gromadzą się na wszystkich krawędziach i ścianach kryształów, blokując oba kierunki rozrastania się płacht lodu.
×
×
  • Create New...