Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Prędkość światła przekroczona

Recommended Posts

Międzynarodowy zespół uczonych poinformował, że neutrino podróżują szybciej od światła. Jeśli doniesienia te się potwierdzą, jesteśmy być może świadkami olbrzymiego przełomu w fizyce.

Antonio Ereditato, rzecznik prasowy grupy, stwierdził, że prowadzone wielokrotnie w ciągu ostatnich trzech lat eksperymenty wykazały, że neutrino wysyłane z CERN-u do włoskiego wykrywacza neutrin Borexino przybywały tam o 60 nanosekund szybciej, niż mogłoby przybyć światło.

Jesteśmy pewni naszych wyników. Sprawdzaliśmy je wielokrotnie, braliśmy pod uwagę wszystko, co mogło je zakłócić. Teraz chcemy, by sprawdziły je niezależne zespoły naukowe - mówił Ereditato.

Założenie, że nic nie może podróżować szybciej niż światło wynika ze szczególnej teorii względności Einsteina. Prędkość światła i przekonanie o jej nieprzekraczalności to jeden z kluczowych elementów Modelu Standardowego.

Podczas eksperymentów prowadzonych w ramach projektu OPERA z CERN-u do Gran Sasso wysłano 15 000 wiązek neutrino. CERN od Gran Sasso dzieli 730 kilometrów. Światło przebyłoby taką odległość w 2,4/1000 części sekundy. Neutrino były o 60 nanosekund szybsze. To maleńka różnica, jednak niezwykle ważna. Odkrycie jest tak niesamowite, że każdy powinien bardzo ostrożnie do niego podchodzić - dodał Ereditato.

Share this post


Link to post
Share on other sites

Ciekawe, czy uwzględnili prędkość obrotową ziemi, bo jeśli neutrino leciało "pod prąd" to wtedy wykrywacz neutrin mógł się przesunąć w stronę lecącej cząstki skracając de facto między nimi dystans.

Share this post


Link to post
Share on other sites

Ciekawe, czy uwzględnili prędkość obrotową ziemi, bo jeśli neutrino leciało "pod prąd" to wtedy wykrywacz neutrin mógł się przesunąć w stronę lecącej cząstki skracając de facto między nimi dystans.

Jeszcze mozna dorzucic predkosc poruszania sie ziemi po orbicie (~30km/s), ukladu slonecznego w galaktyce (~200km/s). Ale podejrzewam ze juz na to dawno wpadli :)

Share this post


Link to post
Share on other sites

Podejrzewam że oba ośrodki są dość solidnie osadzone na jednej ziemi, więc prędkość galaktyki raczej nie będzie miała wpływu + neutrino nie lecą po promieniu ziemi, tylko na skróty :)

Share this post


Link to post
Share on other sites

Tu jest artykuł: http://arxiv.org/ftp/arxiv/papers/1109/1109.4897.pdf

730km to 2.4ms, z czego 60ns to 1/40600 czyli jakieś 18m - różnica niby niewielka, ale jednak spora z perspektywy pomiaru prędkości światła. Pewnie jeszcze pozostało dużo niewyeliminowanych możliwych źródeł błędów, jak np. to że wcale nie żyjemy w układzie inercjalnym (jest dużo przyspieszeń związanych z ruchem obrotowym Ziemi, dookoła słońca etc.)...

 

Natomiast jeśli to rzeczywiście jest prawda, to różnica prędkości jest zdecydowanie za mała żeby rezygnować ze szczególnej teorii względności. Oznaczałoby to tylko i wyłącznie że jednak nam się tylko wydawało że to foton osiąga największą możliwą prędkość ośrodka które nas otacza (m.in. pola elektromagnetycznego) - że jednak możliwe są też bardziej "aerodynamicze" (polodynamiczne :) ) konstrukcje pola, które przemierzają je ciut szybciej.

 

Wiemy że czyste pole elektromagnetyczne może propagować co najwyżej z prędkością światła, ale czy na pewno wiemy że np. pole odpowiedzialne za oddziaływanie słabe także? Neutrino jest konstrukcją na pograniczu tych dwóch pól.

Bezpośrednie eksperymentalne zweryfikowanie takiej hipotezy jest dla mnie wręcz niewyobrażalne (ma ktoś pomysł? Albo np. jak się zastanowić, to tak naprawdę wiemy tylko jak grawitacja działa na nukleony - jak praktycznie zweryfikować że tak samo działa na same elektrony? Sterna-Gerlacha dla elektronów dalej nie udało się przeprowadzić...)

 

ehhh ... już widzę na Phsorgu wytłumaczenie że to przecież idą na skróty przez dodatkowe wymiary ;/ w takim razie dlaczego fotony nie mogą? Ale podstawowy problem z dodatkowymi wymiarami to to, że jeśli jest jakakolwiek interakcja z nimi (chociażby poprzez neutrina), to bardzo wyraźnie by to było widać na poziomie termodynamiki - np. energia by odpływała do tamtych wymiarów ...

Share this post


Link to post
Share on other sites

 

Oznaczałoby to tylko i wyłącznie że jednak nam się tylko wydawało że to foton osiąga największą możliwą prędkość ośrodka które nas otacza (m.in. pola elektromagnetycznego) - że jednak możliwe są też bardziej "aerodynamicze" (polodynamiczne :) ) konstrukcje pola, które przemierzają je ciut szybciej.

 

Czyli energie uzyskiwane z wykorzystaniem E=mc2 byłyby trochę większe, itd?

Share this post


Link to post
Share on other sites

Piotrze, E=mc2 tylko wiąże ze sobą dwa rodzaje mas (z jakichś bodajże czterech: inercjalna, grawitacyjna, energia którą można by uzyskać podczas anihilacji i dająca częstotliwość de Broglie/Zitterbewegung).

W teorii pola jest ukrytych dużo więcej stałych i naleciałości historycznych (o bardzo wysokiej inercji), tak że z automatu przyjmuje się że prędkość propagacji wszystkich pól jest stała i basta ... co tak naprawdę nie jest zupełnie potwierdzone eksperymentalnie, pozostawiając dużo miejsca na takie niedokładności jak rzędu 1/40000.

Foton to konstrukcja pola elektromagnetycznego, natomiast neutrino raczej głównie pola oddziaływań słabych.

Share this post


Link to post
Share on other sites

Natomiast jeśli to rzeczywiście jest prawda, to różnica prędkości jest zdecydowanie za mała żeby rezygnować ze szczególnej teorii względności.

 

Biorąc pod uwagę jak zachowuje się współczynnik Lorentza w okolicy c to nie trzeba przekraczać c - wystarczy je osiągnąć i STS nadaje się na...

 

Próżnia ma niezerowe przenikalności, być może chodzi prędkość w hipotetycznej próżni o zerowych przenikalnościach, zatem nie stawiającej "oporu" fali em.

Share this post


Link to post
Share on other sites

Jajcenty, przepraszam - przez STW miałem cały czas na myśli lorenzowsko niezmiennicze teorie pola.

W bardzo upraszczającym rozumieniu STW o którym mówisz, rzeczywiście pojawia się istotny problem.

Zrozumienie kryształu dwójłomnego o dwóch różnych prędkościach światła nie wymaga łamania STW, tak samo STW nie wyklucza że próżnia pozwala na różne prędkości propagacji różnych rodzajów drgań. Szukano różnic w prędkości fotonów o różnej energii z błysków gamma dla wytłumaczenia egzotycznych teorii, bodajże z silnie negatywnym rezultatem.

Tutaj natomiast mamy coś bardzo innego - jedne drgania to pola elektromagnetycznego, drugie (neutrin) głównie pola oddziaływań słabych - "ortogonalnych w bardzo fundamentalnym sensie". Tego drugiego oddziaływania to tak naprawę dobrze nie rozumiemy i przeprowadzenie bezpośrednich eksperymentów jest praktycznie niemożliwe.

Share this post


Link to post
Share on other sites

A swoją drogą - znamy jakąkolwiek cząstkę, coś innego niż światło (mam na myśli całe widmo EM), co poruszało by się ze stałą  prędkością c lub bardzo zbliżoną? (naturalnie sama z siebie, bez rozpędzania w akceleratorze)

Share this post


Link to post
Share on other sites

Ciekawe, czy uwzględnili prędkość obrotową ziemi, bo jeśli neutrino leciało "pod prąd" to wtedy wykrywacz neutrin mógł się przesunąć w stronę lecącej cząstki skracając de facto między nimi dystans.

 

To kompletnie nie moja dziedzina ale z tego co pamiętam z lekcji fizyki takie parametry się nie liczą bo jak to nam obrazowo tłumaczono jeśli będziemy lecieli statkiem kosmicznym rozpędzonym do prędkości światła i wystrzelimy z tego statku pocisk ten pocisk będzie się nadal poruszał z prędkością światła o ile dobrze pamiętam miało to związek z teoria względności czy coś w tym stylu .

Share this post


Link to post
Share on other sites
Pewnie jeszcze pozostało dużo niewyeliminowanych możliwych źródeł błędów, jak np. to że wcale nie żyjemy w układzie inercjalnym (jest dużo przyspieszeń związanych z ruchem obrotowym Ziemi, dookoła słońca etc.)...

W ramach wciąż obowiązującej teorii nie ma to znaczenia. Więc albo błąd jest czysto techniczny albo teoria jest zła.

O przenikalności "mi" i "epsilon" i prędkości światła uczą w szkole średniej, więc też nie szukałbym tu błędu.

Dla mnie albo to błąd techniczny albo coś naprawdę wielkiego. Dodajmy że neutrina mają masę spoczynkową.

Dalej, oddziaływanie słabe nie słynie z dużego zasięgu, więc generalnie nie pasuje do tych 700 km.

Prędzej stawiałbym na nieznany proces fizyki kwantowej.

Share this post


Link to post
Share on other sites

.....Prędzej stawiałbym na nieznany proces fizyki kwantowej.

 

Tak! Prędzej cos takiego, rodzaj odwrocenia zasady nieoznaczonosci Heisenberga. Neutrino za chwile od wyslania bedzie zmierzone w punkcie "b", jednak upiornie "ono" juz to wie, ze będzie złapane, wiec sie dluzej nie ukrywa i pokazuje sie wczesniej niz jego nadejscie jest spodziewane;D Taka neutrinowa "ciuciubabka" - "i tak mnie zaraz zlapiesz wiec popsuje ci zabawe i juz jestem:P" wow:D

Share this post


Link to post
Share on other sites

A ja nie rozumiem dlaczego gdyby to okazało się prawdą miałoby skreślać STW? Istnieje całkiem zgrabna teoria o tachionach. Neutrina jeśli przemieszczają się szybciej niż światło, to po prostu mają urojoną masę. Mnie to pasuje. Wiem, masę neutrin określano do tej pory jako rzeczywistą, więszką od zera a nie większą niż (tu jakaś tam liczba) eV. Jednak to jak to wyznacząją jest dość pokrętne. Poszukałem prac na ten temat i znalazem taką np.:

http://arxiv.org/pdf/1108.5034v1

O ile dobrze rozumiem, to naukowcy nie wyznacząją bezpośrednio masy neutrin, ale kwadrat ich masy, który w dodatku wychodzi im na minusie. Mają rozkład dla tej wartości z wartością oczekiwaną poniżej zera i odchyleniem standardowym przekraczającym zero. Widząc to brać naukowa wywala część rozkładu poniżej 0 jako niefizyczny. A może to błąd?

Share this post


Link to post
Share on other sites

thikim, po pierwsze w szczególnej teorii względności istotne jet założenie inercjalności układu, czyli braku przyśpieszeń. Jednak tego typu poprawki raczej nie miałyby szans wytłumaczyć tych 60ns.

 

Co do tego że oddziaływanie słabe nie słynie z dużego zasięgu ...

Jest ono związane zwykle z większymi energiami niż EM - stopnie swobody pola odpowiadające za oddziaływanie słabe trudniej wychylić ze stanu równowagi. Dzięki tej większej 'stałej sprężystości'(węższych studni potencjału), deformacja tych stopni swobody mogłaby teoretycznie propagować szybciej ... tyle że energia z tych 'twardych sprężyn' zwykle szybko ucieka(dysypuje) do innych stopni swobody, czyli oddziaływanie słabe ma bezpośrednio niewielki zasiąg.

Sytuacja się zmienia w przypadku cząstek - tutaj deformacja stopni swobody związanych z oddziaływaniem słabym jest integralną częścią cząstki - porusza się razem z nią. Myślę że teoretycznie oddziaływanie słabe mogłoby się poruszać jeszcze szybciej, ale trochę spowalnia cząstkę w pobliże c to że występują tam też zjawiska EM.

 

A co do konieczności jakichś dodatkowych 'efektów kwantowych', to jeśli tylko nie trzymamy się ortodoksyjnie jej mistycyzmu, to można ją po prostu

zrozumieć ( http://www.racjonalista.pl/forum.php/s,404014 ) - to wszystko jest bardzo sensowne i nie ma tam miejsca na jakieś dodatkowe magiczne efekty.

Share this post


Link to post
Share on other sites

Też mam wyjaśnienie i to nawet całkiem proste:P  posiada 3 założenia.

1. prędkość światła jest nieprzekraczalna.

2. neutrina nie oddziałują z ośrodkiem w którym się poruszają, dlatego poruszają się z maksymalną możliwą prędkością z jaka jest osiągalna - w tym wypadku prędkością światła.

3. Na szybkość rozchodzenia się fali elektromagnetycznej wpływ posiada rodzaj oraz gęstość ośrodka w jakim się ona rozchodzi.

 

Rozwinięcie:

- dysponujemy prędkością rozchodzenia się fali elektromagnetycznej w próżni, która jak jednak wiadomo nie jest wcale "pusta", ponieważ ośrodek może spowalniać rozchodzenie się fali elektromagnetycznej, mierzona przez nas prędkość jest rzeczywistą prędkością rozchodzenia się fali w jakimś ośrodku (w tym wypadku próżni), a nie maksymalną rzeczywistą prędkością rozchodzenia się fali w pustce.

- jak powszechnie wiadomo neutrina oddziałują z ośrodkiem w minimalnym zakresie, nie są spowalniane przez ośrodek, lub dzieje się to w nieznacznym stopniu.

 

Wniosek:

- nie wykonano żadnych błędów pomiarowych przy badaniu prędkości neutrin. Jedynie prędkość światła jaką zmierzyliśmy i która porównujemy z szybkością neutrin okazuje się mniejsza od maksymalnej prędkości światła, ponieważ nie dysponujemy ośrodkiem w którym światło nie byłoby spowalniane.

 

Proste i logiczne no nie? Szczególna teoria względności dalej się trzyma a E=mc2 nadal obowiązuje ;]

Share this post


Link to post
Share on other sites

Stawiałbym raczej na desynchronizację zegarów. Bo skąd wiadomo, że czas mierzony w jednym ośrodku badawczym jest taki sam ja w drugim? Czy kiedy mamy 2 zegary atomowe, synchronizujemy je ze sobą, a następnie jeden z nich przewozimy na pewną odległość, to czy nie zachodzi mikro dylatacja czasu (przemieszczenie zegara z miejsca na miejsce ma wpływ prędkość upływu czasu)?

Share this post


Link to post
Share on other sites

Bardzo ciekawy artykuł o dyskusji na temat możliwych źródeł błędów:

http://arstechnica.com/science/news/2011/09/neutrino-results-depend-on-exquisite-measurements-of-time-space.ars

Dobrym argumentem że neutrina poruszają się z prędkością światła jest to że ich strumień z wybuchu supernowej jest obserwowany równocześnie z fotonami ... jednak pozostaje np. ewentualność że można je rozpędzić do większej prędkości, ale pole elektromagnetyczne je dość szybko wyhamowuje do c (poprzez jakieś promieniowanie Czerenkowa?)

Share this post


Link to post
Share on other sites

Proste i logiczne no nie? Szczególna teoria względności dalej się trzyma a E=mc2 nadal obowiązuje ;]

 

Nieco wcześniej ja również zasugerowałem, że c w próżni to mniej niż c w "pustej" próżni :) ale po namyśle: istnienie idealnego ośrodka z zerowymi przenikalnościami (próżnia ma małe ale niezerowe) obala STW.

J.C. Maxwell pokazuje, że c = 1/sqrt(e0*m0) -> nieskończoności i w takim ośrodku foton jest wszędzie  :P

Share this post


Link to post
Share on other sites

Dobrym argumentem że neutrina poruszają się z prędkością światła jest to że ich strumień z wybuchu supernowej jest obserwowany równocześnie z fotonami ... jednak pozostaje np. ewentualność że można je rozpędzić do większej prędkości, ale pole elektromagnetyczne je dość szybko wyhamowuje do c (poprzez jakieś promieniowanie Czerenkowa?)

 

No tak, skoro na 780 metrach mamy 60 ns to na latach świetlnych powinniśmy obserwować strumień neutrin potem długo długo nic, a wreszcie rozbłysk. Jeśli dobrze policzyłem różnica powinna wynosić około 20 godzin na każdy rok świetlny.

 

Jaka jest szansa na weryfikację tego eksperymentu przez inną ekipę na innym sprzęcie?

Share this post


Link to post
Share on other sites

Nieco wcześniej ja również zasugerowałem, że c w próżni to mniej niż c w "pustej" próżni :) ale po namyśle: istnienie idealnego ośrodka z zerowymi przenikalnościami (próżnia ma małe ale niezerowe) obala STW.

J.C. Maxwell pokazuje, że c = 1/sqrt(e0*m0) -> nieskończoności i w takim ośrodku foton jest wszędzie  :P

 

Dopiero po napisaniu swojego posta zauważyłem twój :) jakoś tak mi przemknął. Ale, nie jest ważneczy taki ośrodek istnieje czy nie, ważne jest to że próżnia wyhamowuje falę elektromagnetyczną, i mierzona przez nas prędkość jest pozorną prędkością maksymalną, mniejszą od rzeczywistej jaka może zostać osiągnięta w układzie (wszechświecie).

 

- To że na krótkim odcinku neutrina są szybsze do fali EM, nie znaczy że w dużej skali też tak będzie, fala EM pędzi w ośrodku ze stałą prędkością, cząsteczki którym układ mimo wszystko stawia drobny opór stopniowo wyhamowują, im mniejsza prędkość cząsteczki tym mniejszy opór stawia ośrodek, dlatego też bardzo prawdopodobne, że po jakimś czasie ich prędkość się zrównuje.

 

- Jednak mimo powyższego, powinna być możliwość zaobserwowania drobnych odchyleń w czasie rejestracji neutrin i fotonów z rozbłysków w kosmosie, neutrina na krótkich dystansach powinny być trochę szybciej, a te na dłuższych minimalnie wolniejsze. Ale wymaga to istnienia sprzężonego detektora, który byłby w stanie rejestrować jednocześnie obie cząsteczki.

 

- A może jednak jak ktoś wspomniał komuś się po prostu zegarek spieszy? ;)

Share this post


Link to post
Share on other sites

Co do śpieszenia się zegarków to polecam wczorajszy wykład z CERNu:

http://cdsweb.cern.ch/record/1384486

wszystko wygląda bardzo porządnie zrobione...

A co wyhamowywania, to naturalne tutaj wydawałoby się promieniowanie Czernkowa o którym wspomniałem - jeśli w strukturze neutrina jest coś związanego z polem EM (np. jakieś wyższe momenty elektryczne, magnetyczne), powinien być wyhamowywany do prędkości światła.

Właśnie sprawdziłem że z SN1987A (168 tys. lat świetlnych) też neutrina (24 w 13s) pojawiły się przed fotonami(3 godziny):

http://en.wikipedia.org/wiki/Supernova_Early_Warning_System

ale to opóźnienie wydaje się wynikać z charakteru procesu: netrina pochodzą z zapadnięcia jądra, a fotony muszą dopiero przebić się przez otoczkę.

Share this post


Link to post
Share on other sites

Z tą prędkością światła i teorią względności jest jak z każdą poprzednią słuszną teorią, jeśli faktycznie to prawda to teoria względności będzie miała tylko "mały" update tzn założenia dla których działa. Wkurzają mnie z lekka opinie niektórych  naukowców i dziennikarzy którzy mówią już o pomyłce Einsteina i obaleniu teorii z której korzystamy od lat i dotychczas nas nie zawiodła, a w codziennym życiu wykorzystujemy wynalazki które ją wykorzystują zjawiska opisane w tej teorii.

To jest chyba normalne że razem ze zgłębianiem struktury świata, poznajemy coraz dokładniej prawa które zawsze są tylko uogólnieniem. Każdy by chciał aby to wszystko było jak E=mc^2 gdzie jedno i drugie jest całkowicie znane, w rzeczywistości nie ma tak, prawo to znowu może być z lekka poprawione o dodatkowe czynniki zazwyczaj bliskie zeru...,

Odkrycie jeśli prawdziwe to wg. mnie wcale nie zaprzeczyłoby STW, tylko nada jej jakieś ograniczenia/założenia i nadal będziemy spokojnie korzystać z LASERów i GPSu ;-) wiedząc jak działają.

Share this post


Link to post
Share on other sites

Fragment wypowiedzi prof. Krzysztofa Meissnera na ten temat:

"Prędkość światła, której nic nie może przekroczyć, odnosi się do próżni. Może więc to ośrodek, przez który neutrina wędrowały ze Szwajcarii do Włoch - a więc skały - dał taki dziwaczny efekt? Już kiedyś zresztą pomierzono, że samo światło może pozornie poruszać się szybciej od "prędkości światła", jeśli tylko przechodzi przez coś, co... zatrzymuje fotony. Bo de facto część z nich się wtedy przedziera, a dzięki mechanice kwantowej mają krótszą drogę do pokonania - dlatego wydaje się, jakby przyspieszały."

 

Prof. Ewa Rondio:

"Już dawniej myślano, że neutrina mogą być tachionami, czyli hipotetycznymi cząstkami elementarnymi, które poruszają się szybciej od światła."

Share this post


Link to post
Share on other sites

Z calkowitą pewnością zakładam hipotezę iż w odpowiednim ośrodku istnieje możliwość ruchu z prędkością większą od prędkości cząstki neutrino podpierając tezę, że jeżeli prędkość czegokolwiek posiada określoną granicę to jest to dowodem istnienia dyferencjału ośrodków przedgranicznego i zagranicznego z punktu widzenia obserwatora rozpatrującego zagadnienie, a zatem konkludując twierdzę istnienie ośrodka ograniczającego ogranicznik górnego kresu (stanowiącego ogranicznik niższego rzędu) prędkości światła w odmaterializowanym ośrodku przestrzennym.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      CERN udostępnił swój pierwszy publiczny Raport Środowiskowy, dotyczący m.in. emisji gazów cieplarnianych. Dowiadujemy się z niego, że w 2018 roku ta instytucja wyemitowała 223 800 ton ekwiwalentu dwutlenku węgla. To tyle co duży statek wycieczkowy.
      Z raportu dowiadujemy się, że aż 3/4 tej emisji powodują zawierające fluor gazy, używane podczas prac z wykrywaczami cząstek. CERN planuje zmniejszenie emisji.
      Obejmujący lata 2017–2018 raport sprowokował debatę zarówno wśród pracowników, jak i wśród osób z zewnątrz. Zaczęliśmy zastanawiać się, co można zrobić z tym już teraz i w jaki sposób projektować akceleratory przyszłości, mówi Frederick Bordry, dyrektor CERN ds. akceleratorów i technologii.
      Raport porusza wszelkie kwestie związane z wpływem CERN na środowisko, od emitowanego hałasu, po wpływ na bioróżnorodność, zużycie wody czy emitowane promieniowanie. Specjaliści orzekli, że to redukcja gazów cieplarnianych będzie miała największy wpływ na poprawę stanu środowiska. Inżynierowie już planują uszczelnienie miejsc wycieków w LHC i zoptymalizowanie systemu cyrkulacji gazu. Docelowo chcą, żeby w roli chłodziwa czujników gazy zawierające fluor zostały zastąpione przez dwutlenek węgla, który ma kilka tysięcy razy mniejszy potencjał cieplarniany. Gdy budowaliśmy Wielki Zderzacz Hadronów, nie docenialiśmy potencjału cieplarnianego tych gazów. Naszym głównym zmartwieniem była dziura ozonowa, mówi Bordry. Na razie CERN chce obniżyć swoją bezpośrednią emisję gazów cieplarnianych o 28% do roku 2024.
      Raport uwzględnia też pośrednią emisję generowaną przez CERN. Laboratorium zużywa bowiem tyle energii elektrycznej co niewielkie miasteczko. Zakładamy w LHC systemy odzyskiwania energii. Jesteśmy pionierami wykorzystania nadprzewodnictwa na duża skalę, co może zwiększyć efektywność sieci energetycznych.
      Jak jednak zauważają specjaliści, znacznie lepiej jest emitować gazy cieplarniane w celu dokonywania odkryć naukowych, niż w innych celach. Postęp naukowy jest bardzo ważny i trudno znaleźć ważniejszą instytucję naukową niż CERN. Osobiście wolę, byśmy emitowali gazy cieplarniane pracując w CERN niż lecąc samolotem do Pragi, by się upić na weekend, mówi John Barrett, z Sustainability Research Institute.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki wykryciu neutrin pochodzących z jądra Słońca fizycy byli w stanie potwierdzić ostatni brakujący element opisu fuzji zachodzącej wewnątrz naszej gwiazdy. Potwierdzili tym samym obowiązujący od dziesięcioleci model teoretyczny przewidujący, że część energii słonecznej pochodzi z łańcucha reakcji, w którym udział mają atomy węgla i azotu.
      W procesie tym cztery protony łączą się w jądro helu. Dochodzi do uwolnienia dwóch neutrin, innych cząstek subatomowych i olbrzymich ilości energii. Ten cykl węglowo-azotowo-tlenowy (CNO) nie odgrywa większej roli w Słońcu, gdzie dzięki niemu powstaje mniej niż 1% energii. Uważa się jednak, że gdy gwiazda się starzeje, zużywa wodór i staje się czerwonym olbrzymem, wówczas rola cyklu CNO znacząco rośnie.
      O odkryciu poinformowali naukowcy pracujący przy włoskim eksperymencie Borexino. To wspaniałe, że udało się potwierdzić jedno z podstawowych założeń teorii dotyczącej gwiazd, mówi Marc Pinsonnealut z Ohio State University.
      Borexino już wcześniej jako pierwszy wykrył neutrina pochodzące z trzech różnych etapów reakcji zachodzącej w Słońcu, która odpowiada za produkcję większości energii naszej gwiazdy. Dzięki obecnemu odkryciu Borexino w pełni opisał dwa procesy zasilające Słońce, mówi rzecznik eksperymentu Gioacchino Branucci z Uniwersytetu w Mediolanie. Kończymy wielkim bum!, dodał Marco Pallavicini z Uniwersytetu w Genui. Może to być bowiem ostatnie odkrycie Borexino, któremu grozi zamknięcie z powodu ryzyka dla źródła wody pitnej.
      Odkrycie neutrin pochodzących z cyklu węglowo-azotowo-tlenowego nie tylko potwierdza teoretyczne modele procesów zachodzących w Słońcu, ale rzuca też światło na strukturę jego jądra, szczególnie zaś na koncentrację w nim metali. Tutaj trzeba podkreślić, że astrofizycy pod pojęciem „metal” rozumieją wszelkie pierwiastki o masie większej od wodoru i helu.
      Liczba neutrin zarejestrowanych przez Borexino wydaje się zgodna ze standardowym modelem przewidującym, że metaliczność jądra jest podobna do metaliczności powierzchni. To ważne spostrzeżenie, gdyż w ostatnim czasie pojawiało się coraz więcej badań kwestionujących taki model.
      Badania te sugerowały, że metaliczność jądra jest niższa niż powierzchni. A jako, że to skład pierwiastków decyduje o tempie przepływu energii z jądra, badania te sugerowały jednocześnie, że jądro jest nieco chłodniejsze niż sądzono. Jako, że proces, w którym powstają neutrina jest niezwykle wrażliwy na temperaturę, dane zarejestrowane przez Borexino wskazują raczej na starsze wartości temperatury, nie na te sugerowane przez nowe badania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rada CERN jednogłośnie przyjęła dzisiaj plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Plan zakłada m.in. wybudowanie 100-kilometrowego akceleratora cząstek. O stworzeniu wstępnego raportu projektowego budowy Future Cilcular Collider (FCC) informowaliśmy na początku ubiegłego roku.
      The European Strategy for Particle Physics został po raz pierwszy przyjęty w 2006 roku, a w roku 2013 doczekał się pierwszej aktualizacji. Prace nad jego obecną wersją rozpoczęły się w 2018 roku, a w styczniu ostateczna propozycja została przedstawiona podczas spotkania w Niemczech. Teraz projekt zyskał formalną akceptację.
      CERN będzie potrzebował znaczniej międzynarodowej pomocy, by zrealizować swoje ambitne plany. Stąd też w przyjętym dokumencie czytamy, że Europa i CERN, za pośrednictwem Neutrino Platform, powinny kontynuować wsparcie dla eksperymentów w Japonii i USA. W szczególności zaś, należy kontynuować współpracę ze Stanami Zjednoczonymi i innymi międzynarodowymi partnerami nad Long-Baseline Neutriono Facility (LBNF) oraz Deep Underground Neutrino Experiment (DUNE).
      Obecnie szacuje się, że budowa nowego akceleratora, który byłby następcą Wielkiego Zderzacza Hadronów, pochłonie co najmniej 21 miliardów euro. Instalacja, w której dochodziłoby do zderzeń elektronów z pozytonami, miała by zostać uruchomiona przed rokiem 2050.
      Zatwierdzenie planów przez Radę CERN nie oznacza jednak, że na pewno zostaną one zrealizowane. Jednak decyzja taka oznacza, że CERN może teraz rozpocząć pracę nad projektem takiego akceleratora, jego wykonalnością, a jednocześnie rozważać inne konkurencyjne projekty dla następcy LHC. Myślę, że to historyczny dzień dla CERN i fizyki cząstek, zarówno w Europie jak i poza nią, powiedziała dyrektor generalna CERN Fabiola Gianotti po przyjęciu proponowanej strategii.
      Z opinią taką zgadzają się inni specjaliści. Dotychczas bowiem CERN rozważał wiele różnych propozycji. Teraz wiadomo, że skupi się przede wszystkim na tej jednej.
      Przyjęta właśnie strategia zakłada dwuetapowe zwiększanie możliwości badawczych CERN. W pierwszym etapie CERN wybuduje zderzacz elektronów i pozytonów, którego energia zostanie tak dobrana, by zmaksymalizować produkcję bozonów Higgsa i lepiej zrozumieć ich właściwości.
      Później instalacja ta zostanie rozebrana, a w jej miescu powstanie potężny zderzacz protonów. Urządzenie będzie pracowało z energiami rzędu 100 teraelektronowoltów (TeV). Dla porównania, LHC osiąga energie rzędu 16 TeV.
      Zadaniem nowego zderzacza będzie poszukiwanie nowych cząstek i sił natury. Większość technologii potrzebna do jego zbudowania jeszcze nie istnieje. Będą one opracowywane w najbliższych dekadach.
      Co ważne, mimo ambitnych planów budowy 100-kilometrowego zderzacza, nowo przyjęta strategia zobowiązuje CERN do rozważenia udziału w International Linear Collider, którego projekt jest od lat forsowany przez japońskich fizyków. Japończycy są zadowoleni z takiego stanowiska, gdyż może pozwoli to na przekonanie rządu w Tokio do ich projektu.
      W przyjętej właśnie strategii czytamy, że CERN będzie kontynuował rozpoczęte już prace nad High Luminosity LHC (HL-LHC), czyli udoskonaloną wersją obecnego zderzacza. Budowa 100-kilometrowego tunelu i zderzacza elektronów i pozytonów ma rozpocząć się w roku 2038. Jednak zanim ona wystartuje, CERN musi poszukać pieniędzy na realizację swoich zamierzeń. Chris Llewellyn-Smith, były dyrektor generalny CERN, uważa, że do europejskiej organizacji mogłyby dołączyć Stany Zjednoczone, Japonia i Chiny, by powołać nową globalną organizację fizyczną.
      Nie wszyscy eksperci entuzjastycznie podchodzą do planów CERN. Sabine Hossenfelder, fizyk teoretyczna z Frankfurckiego Instytutu Zaawansowanych Badań krytykuje wydawanie olbrzymich kwot w sytuacji, gdy nie wiemy, czy zwiększanie energii zderzeń cząstek przyniesie jakiekolwiek korzyści naukowe poza pomiarami właściwości już znanych cząstek. Z opinią tą zgadza się Tara Shears z University of Liverpool. Uczona zauważa, że o ile powodem, dla którego budowano LHC było poszukiwanie bozonu Higgsa i urządzenie spełniło stawiane przed nim zadanie, to obecnie brak dobrze umotywowanych powodów naukowych, by budować jeszcze potężniejszy akcelerator. Nie mamy obecnie żadnych solidnych podstaw. A to oznacza, że cały projekt obarczony jest jeszcze większym ryzykiem, mówi. Dodaje jednak, że jednocześnie wiemy, że jedynym sposobem na znalezienie odpowiedzi są eksperymenty, a jedynymi miejscami, gdzie możemy je znaleźć są te miejsca, w które jeszcze nie zaglądaliśmy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Jedną z największych tajemnic fizyki jądrowej jest odpowiedź na pytanie, dlaczego wszechświat jest zbudowany z takich a nie innych pierwiastków. Dlaczego nie z innych? Naukowców szczególnie interesują procesy fizyczne stojące u podstaw powstania ciężkich pierwiastków, jak złoto, platyna czy uran. Obecnie uważa się, że powstają one podczas łączenia się gwiazd neutronowych oraz eksplozji gwiazd.
      W Argonne National Laboratory opracowano nowe techniki badania natury i pochodzenia ciężkich pierwiastków, a uczeni z Argonne stanęli na czele międzynarodowej grupy badawczej, która prowadzi w CERN eksperymenty mające dać nam wgląd w procesy powstawania egzotycznych jąder i opracowani modeli tego, co dzieje się w gwiazdach i wydarzeń we wczesnym wszechświecie.
      Nie możemy sięgnąć do wnętrza supernowych, więc musimy stworzyć na Ziemi ekstremalne warunki, jakie w nich panują i badać reakcje, jakie tam zachodzą, stwierdził fizyk Ben Kay z Argonne National Laboratory i główny autor najnowszych badań.
      Uczonym biorącym udział w projekcie udało się – jako pierwszym w historii – zaobserwować strukturę jądra o mniejszej liczbie protonów niż w jądrze ołowiu i o liczbie neutronów przekraczających 126. To jedna z liczb magicznych fizyki jądrowej. Liczba magiczne dla protonów i neutronów wynoszą m.in. 8, 20, 28, 50 i 126. To wartości kanoniczne. Fizycy wiedzą, że jądra atomów o takich wartościach charakteryzują się zwiększoną stabilnością. Jądra o liczbie neutronów powyżej 126 są słabo zbadane, gdyż trudno je uzyskać. Wiedza o ich zachowaniu jest kluczowa dla zrozumienia procesu wychwytu neutronu (proces r), w wyniku którego powstaje wiele ciężkich pierwiastków.
      Obecnie obowiązujące teorie przewidują, że proces r zachodzi w gwiazdach. W tych bogatych w neutrony środowiskach jądra atomowe mogą rosnąć wychwytując neutrony i tworząc cięższe pierwiastki. Proces ten jest na tyle szybki, że nowe cięższe pierwiastki tworzą się zanim jeszcze dojdzie do rozpadu.
      Twórcy eksperymentu skupili się na izotopie rtęci 207Hg. Jego badanie może bowiem rzucić światło na ich bezpośrednich sąsiadów, jądra bezpośrednio zaangażowane w proces r. Naukowcy najpierw wykorzystali infrastrukturę HIE-ISOLDE w CERN. Wysokoenergetyczny strumień protonów skierowali na roztopiony ołów. W wyniku kolizji powstały setki egzotycznych radioaktywnych izotopów. Odseparowali z nich 206Hg i w akceleratorze HIE-ISOLDE wytworzyli strumień jąder o najwyższej osiągniętej tam energii. Strumień skierowali na deuter znajdujący się w ISOLDE Solenoidal Spectrometer.
      Żadne inne urządzenie na świecie nie jest w stanie wytworzyć strumienia jąder rtęci o tej masie i nadać mu takiej energii. To w połączeniu z wyjątkową rozdzielczością ISS pozwolió nam na przeprowadzenie pierwszych w historii obserwacji stanów wzbudzonych 207Hg, mówi Kay.  Dzięki ISS naukowcy mogli więc obserwować, jak jądra 206Hg przechwyciły neutron stając się 207Hg.
      Deuter to ciężki izotop wodoru. Zawiera proton i neutron. Gdy 206Hg przechwytuje z niego neutron, dochodzi do odrzutu protonu. Emitowane w tym procesie protony trafiają do detektora w ISS, a ich pozycja i energia zdradzają kluczowe informacje o strukturze jądra. Informacje te mają bardzo duży wpływ na proces r i uzyskane w ten sposób dane pozwalają na przeprowadzenie istotnych obliczeń.
      ISS korzysta z pionierskiej koncepcji opracowanej przez Johna Schiffera z Argonne National Laboratory. Na podstawie jego pomysłu zbudowano w Argone urządzenie HELIOS. Pozwoliło ono na badanie właściwości jąder atomowych, których wcześniej nie można było badać. HELIOS stał się inspiracją do zbudowania w CERN-ie ISS. Urządzenie to pracuje od 2008 roku i uzupełnia możliwości HELIOS.
      Przez ostatnich 100 lat fizycy mogli zbierać informacje o jądrach atomowych dzięki bombardowaniu ciężkich jąder lekkimi jonami. Jednak reakcja przeprowadzana w drugą stronę, gdy ciężkie jądra uderzały w lekkie cele, prowadziła do pojawiania się wielu zakłóceń, które trudno było wyeliminować. Udało się to dopiero za pomocą HELIOS.
      Gdy ciężka kula uderza w lekki cel dochodzi do zmiany kinematyki i uzyskane w ten sposób spektra są skompresowane. John Schiffer zauważył, że gdy do takiej kolizji dochodzi wewnątrz magnesu, wyemitowane w jej wyniku protony wędrują po spiralnym torze w kierunku detektora. Opracował pewną matematyczną sztuczkę, która opisuje tę kinematyczna kompresję, otrzymujemy więc zdekompresowane spektrum, z którego możemy wnioskować o strukturze jądrowej, wyjaśnia Kay.
      Pierwsze analizy uzyskanych danych potwierdziły prawdziwość przewidywań teoretycznych. Naukowcy planują zatem kolejne eksperymenty, podczas których chcą wykorzystać inne jądra z obszaru 207Hg.
      Ze szczegółami badań zapoznamy się na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rząd Japonii dał zielone światło budowie Hyper-Kamiokande, największego na świecie wykrywacza neutrin, którego konstrukcja pochłonie 600 milionów dolarów. Gigantyczna instalacja powstanie w specjalnie przygotowanej dlań grocie niedaleko kopalni w miejscowości Kamioka. Pomieści ona 250 000 ton ultraczystej wody. To 5-krotnie więcej niż obecnie używany Super-Kamiokande. Ten z kolei jest następcą 300-tonowego Kamiokande, który działał w latach 1983–1995.
      Dzięki olbrzymim rozmiarom Hyper-K możliwe będzie zarejestrowanie większej liczby neutrin niż dotychczas. Będą one pochodziły z różnych źródeł – z promieniowania kosmicznego, Słońca, supernowych oraz z akceleratora cząstek. Instalacja posłuży też do ewentualnej obserwacji rozpadu protonów. Istnienie takiego zjawiska przewidują niektóre rozszerzenia Modelu Standardowego, jednak dotychczas nie udało się go zarejestrować.
      Budowa wykrywacza ma kosztować 600 milionów dolarów, z czego Japonia pokryje 85%, a resztę sfinansują inne kraje, w tym Wielka Brytania i Kanada. Dodatkowo Japonia wyda 66 milionów dolarów na rozbudowę akceleratora J-PARC. To znajdujące się 300 kilometrów dalej urządzenie będzie źródłem neutrin dla Hyper-K.
      Głównym elementem nowego wykrywacza będzie zbiornik o głębokości 71 i średnicy 68 metrów. Grota, do której trafi, powstanie 8 kilometrów od istniejącej infrastruktury Kamioka, by uniknąć wibracji mogących zakłócić prace przygotowywanego właśnie do uruchomienia wykrywacza fal grawitacyjnych KAGRA.
      Wnętrze zbiornika Hyper-K zostanie wyłożone fotopowielaczami, które będą przechwytywały fotony powstałe w wyniku zderzeń neutrino z atomami w wodzie.
      Hyper-Kamiokande będzie jednym z trzech dużych instalacji służących do wykrywania neutrin, jakie mają ruszyć w nadchodzącej dekadzie. Dwa pozostałe to Deep Underground Neutrino Experiment (DUNE), który ma zacząć pracę w USA w 2025 roku oraz Jiangmen Underground Neutrino Observatory (JUNO), jaki Chiny planują uruchomić w roku 2021.
      Takaaki Kajita, fizyk z Uniwersytetu Tokijskiego, mówi, że naukowcy są podekscytowani możliwościami Hyper-K, który ma pozwalać na badanie różnic w zachowaniu neutrin i antuneutrin. Już w Super-K zauważono istnienie takich różnic, jednak to Hyper-K i DUNE pozwolą na ich bardziej szczegółowe zbadanie. Zaś dzięki temu, że oba detektory będą korzystały z różnej techniki – w DUNE znajdzie się płynny argon a nie woda – będzie można nawzajem sprawdzać uzyskane wyniki.
      Jednak,jak podkreśla Masayuki Nakahata, fizyk z Uniwersytetu Tokijskiego i rzecznik prasowy Super-K, największą nadzieją, jaką pokłada się w Hyper-K jest odkrycie rozpadu protonu.
      Na razie rząd Japonii nie wydał oficjalnego oświadczenia w sprawie budowy Hyper-Kamiokande. Jednak japońscy naukowcy mówią, że właśnie zaproponowano poprawkę budżetową, w ramach której przewidziano pierwszą transzę w wysokości 32 milionów dolarów na rozpoczęcie budowy wykrywacza. Poprawka musi jeszcze zostać zatwierdzona przez parlament, co prawdopodobnie nastąpi w przyszłym miesiącu.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...