Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'bakterie' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 147 wyników

  1. Głębiny oceanów są jeszcze bardzo mało poznane przez naukowców, wciąż odkrywamy nowe formy morskiego życia. Jeszcze mniej znamy dno oceanów, które przecież zajmuje znacznie większą powierzchnię naszej planety, niż lądy. Do niedawna uważano, że dno oceanicznych głębi pozbawione jest życia. A co można powiedzieć o skorupie ziemskiej pod oceanicznym dnem? To prawdziwa terra incognita. Okazuje się, że istnieje tam bardzo bogate życie, jakiego nie znamy. Może nawet bardziej liczne, niż to już poznane. Przebadaniem ziemskiej skorupy pod oceanicznym dnem postanowiła zająć się dr Beth Orcutt, pracownik duńskiego Uniwersytetu Aarhus oraz Uniwersytetu Południowej Kaliforni. Wespół z zespołem naukowców opracowała ona nową metodę drążenia otworów w dnie mórz, pozwalającą na badania bakteriologiczne osadów dennych. Automatyczna, zrobotyzowana łódź podwodna przeprowadziła odwierty na głębokości ponad 2,5 kilometra, drążąc podmorskie osady aż 260 metrów w głąb i pobierając próbki. Okazało się, że na takiej głębokości pod dnem, w skałach osadowych, nie tylko znaleźć można liczne gatunki bakterii, ale też występują one w dużej ilości. Wziąwszy pod uwagę rozmiar oceanów i powierzchnię ich dna, podmorska część skorupy ziemskiej może stanowić największy rezerwuar życia na naszej planecie. Co takiego ciekawego może być w podmorskich, glebowych bakteriach? Żyją one nie tylko bez dostępu światła, ale również praktycznie bez obecności tlenu. Studiowanie życia, które mimo takich warunków bujnie kwitnie to całkowicie nowy obszar dla nauki. Metabolizm odkrytych tam bakterii musi funkcjonować na całkiem innych zasadach, niż życia, które my znamy. Znamy bakterie beztlenowe, znamy bakterie żywiące się metanem i oddychające związkami siarki. Te żyjące w podmorskiej części litosfery być może opracowały całkiem nowe, inne strategie przeżycia. Studia nad nimi na pewno poszerzą nasze rozumienie tego, czym życie jest. Badania nad bakteriami żyjącymi w ekstremalnych warunkach będą miały również znaczenie dla poszukiwania życia na innych planetach. Jeśli u nas życie potrafi przystosować się do tak różnych i nieprzyjaznych warunków, to szanse na jego znalezienie poza Ziemią rosną. Dzięki takim badaniom wiemy także lepiej, gdzie jeszcze można tego życia szukać. Wyniki badań dr Orcutt zostały przedstawione na corocznej konferencji Goldschmidt 2010, której gospodarzami w tym roku były Uniwersytet Tennessee w Knoxville i Narodowe Laboratorium w Oak Ridge.
  2. Mocz dzieci z autyzmem ma inny skład chemiczny niż uryna zdrowych maluchów. Badacze z Imperial College London i Uniwersytetu Południowej Australii mają nadzieję, że dzięki ich odkryciu uda się opracować prosty test do wczesnego wykrywania zaburzenia. Uprzednio ustalono, że u wielu osób z autyzmem występują dolegliwości żołądkowo-jelitowe, takie jak biegunka czy bóle brzucha, oraz inny skład gatunkowy flory jelit. Najnowsze brytyjsko-australijskie studium pozwoliło wykazać, że da się odróżnić dzieci autystyczne od nieautystycznych, przyglądając się produktom działalności bakterii jelitowych oraz zmianom metabolicznym w składzie moczu. Na razie nie wiadomo, czy i ewentualnie jaką rolę w rozwoju autyzmu spełniają zaburzenia gastryczne, przeważnie jednak pojawiają się one w tym samym czasie co zaburzenia zachowania. Jedna z hipotez jest taka, że bakterie wytwarzają toksyny oddziałujące na rozwój mózgu. Co ważne, w moczu maluchów z autyzmem zidentyfikowano N-metylo-nikotynamid (NMND), który wykrywa się także u pacjentów z parkinsonizmem. Obecnie trudno jest postawić pewną diagnozę autyzmu, zanim dziecko nie skończy 18 miesięcy, niewykluczone jednak, że ważne zmiany w funkcjonowaniu organizmu zachodzą już wcześniej. Ważne tylko, by umieć je nazwać i wykryć... Autyzm jest zaburzeniem, które wpływa na umiejętności społeczne jednostki, dlatego początkowo może wydawać się dziwne, że istnieje związek między nim a tym, co dzieje się w czyimś przewodzie pokarmowym. Nie da się jednak zaprzeczyć, że metabolizm i skład flory bakteryjnej jelit odzwierciedlają wiele różnych czynników, w tym tryb życia oraz geny – opowiada prof. Jeremy Nicholson, szef Wydziału Chirurgii i Nowotworów na Imperial College London. Jednocześnie badacz przyznaje, że jego zespół zdaje sobie sprawę z tego, że opracowywanie testu na wykrywanie autyzmu z moczu naprawdę małych dzieci może potrwać całe lata. Obecnie akademicy zabierają się do sprawdzenia, czy różnice metaboliczne w autyzmie są związane z przyczynami zaburzenia, czy też stanowią raczej jego skutek. Za pomocą spektroskopii magnetycznego rezonansu jądrowego 1H NMR naukowcy badali próbki moczu 3 grup dzieci w wieku od 3 do 9 lat: 1) 39 maluchów, u których zdiagnozowano wcześniej autyzm, 2) rodzeństwa osób z autyzmem (28) oraz 3) 34 kontrolnych dzieci, które same nie zapadły na autyzm ani nie miały autystycznego rodzeństwa. Okazało się, że skład chemiczny moczu każdej z tych grup był jedyny w swoim rodzaju. Różnice pozostawały istotne statystycznie i widoczne na pierwszy rzut oka. Glenn Gibson z Uniwersytetu w Reading stwierdził w przeszłości, że w przewodzie pokarmowym dzieci z autyzmem występuje anormalnie dużo Gram-dodatnich bakterii z rodzaju Clostridium. Zespół Derricka MacFabe'a z Uniwersytetu Zachodniego Ontario ustalił natomiast, że produkowane przez te mikroorganizmy kwasy tłuszczowe o krótkich łańcuchach prowadzą u szczurów do autyzmopodobnych zmian, na szczęście odwracalnych, w zachowaniu i biochemii. Studium Nicholsona wskazało na pewne biomarkery populacji Clostridium, które wg nas, przyczyniają się wystąpienia objawów autystycznych – podkreśla MacFabe, który zaprezentował wyniki na konferencji Międzynarodowego Stowarzyszenia Badań nad Autyzmem.
  3. Jednym z głównych celów bezzałogowych misji marsjańskich jest poszukiwanie śladów dawnego, a może i obecnego życia. Możliwości marsjańskich łazików są w tym względzie niewielkie i ograniczają się do prób wykrycia w marsjańskim gruncie obecności substancji organicznych, które mogłyby być wytworzone na przykład przez bakterie. Przyszłe misje na pewno jednak będą miały coraz lepsze narzędzia w tym celu, nie mówiąc już o - odległej co prawda - misji załogowej, czy przywiezieniu próbek marsjańskiej gleby na Ziemię. Co jednak możemy tam odkryć? W tym cały problem: naukowcy z Uniwersytetu Centralnej Florydy uważają, że istnieje duże ryzyko, iż odkryjemy na Marsie to, co sami tam zawieziemy. Czyli ziemskie mikroorganizmy, które dostaną się tam, lub co gorsza już dostały, wraz z ziemskimi pojazdami. Zespoły planujące misje od dawna zdają sobie sprawę z takiego ryzyka, dlatego wszystkie wysyłane pojazdy są przed startem dokładnie odkażane i sterylizowane. Ponadto dochodzi długi lot w warunkach kosmicznych, które życiu nie sprzyjają. Czy to jednak daje nam gwarancję, że nie zanieczyścimy Marsa ziemskim życiem organicznym? Otóż właśnie niekoniecznie. Niedawno wykonane testy dowiodły, że różne typy bakterii przeżywają wszystkie zabiegi i są obecne przynajmniej w chwili startu. Sterylna natura statku kosmicznego sprawia, że przeżywają tylko najbardziej odporne - to swoista selekcja naturalna. Badacze z Uniwersytetu Centralnej Florydy (University of Central Florida) odtworzyli na ziemi warunki panujące na Marsie: brak wilgoci, niskie ciśnienie, niską temperaturę i promieniowanie ultrafioletowe. Do badań wytypowano najbardziej odporne z powszechnie występujących gatunków bakterii: acinetobacter, bacillus, escherichia, staphylococcus oraz streptococcus. Po tygodniowym badaniu okazało się, że w takich warunkach, czyli na powierzchni Marsa, potrafią przeżyć - choć nie odnotowano namnażania się - przynajmniej bakterie e-coli, jeśli będą przykryte choćby cieniutką warstewką pyłu chroniącego je przed ultrafioletem, albo jeśli będą znajdować się w zakamarkach pojazdu. Czy ziemskie mikroorganizmy będą w stanie namnożyć się na powierzchni Marsa? Jeśli tak, to przyszłe misje bez wątpienia mogłyby zasiedlić Czerwoną Planetę ziemskim życiem. Z doświadczeń ziemskich wiemy, że niektóre organizmy potrafią żyć w bardziej ekstremalnych warunkach. Konieczne są zatem dalsze, rozległe badania nad zdolnością bakterii do przetrwania, mogące potwierdzić, lub wykluczyć ryzyko. A także zachowanie maksymalnej ostrożności.
  4. Wyciąg z opuncji figowej (Opuntia ficus indica) może w krajach rozwijających się zastąpić kosztowniejsze metody uzdatniania wody. Okazuje się bowiem, że ekstrakt z tego sukulenta usuwa zarówno osady, jak i szkodliwe bakterie. Norma Alcantar z Uniwersytetu Południowej Florydy podkreśla, że w biedniejszych krajach odrzuca się wiele metod uzdatniania wody, ponieważ ludzie nie mają pojęcia, jak choćby konserwować urządzenia. Stąd pomysł, by zespół z Tampa zbadał opuncję figową, która była wykorzystywana przez Meksykanów w XIX w. do uzdatniania wody. Co ważne, gatunek ten pochodzi z Meksyku, ale uprawia się go także w innych krajach o ciepłym klimacie, m.in. w południowej Europie. Ekipa sporządziła wyciąg ze śluzowatych soków kaktusa. Następnie dodawano go do wody zanieczyszczonej osadami bądź wywołującymi zatrucia pokarmowe laseczkami Bacillus cereus (różne szczepy tej bakterii wytwarzają toksynę wymiotną cereulidynę oraz enterotoksynę hemolityczną HBL i niehemolityczną NHE, czyli trójskładnikowe toksyny powodujące biegunki). Okazało się, że ekstrakt z opuncji figowej prowadził do flokulacji. Jest to końcowy etap pewnych rodzajów koagulacji, w którym zachodzi wypadanie osadu z koloidów. Między micelami utworzyły się wiązania chemiczne, dzięki czemu duża część zanieczyszczeń opadła na dno. Związaniu przez substancje śluzowe uległo również 98% B. cereus. W kolejnym etapie akademicy z Tampa zamierzają przeprowadzić eksperymenty z naturalną wodą. Alcantar uważa, że ludzie zamieszkujący kraje rozwijające się mogliby kroić opuncję i gotować ją, by uwolnić śluz. Potem, chcąc uzyskać wodę zdatną do picia, wystarczyłoby wrzucić tak uzyskaną pulpę do cieczy.
  5. Picie przynajmniej jednego kubka zielonej herbaty dziennie może zapobiec chorobom zębów i dziąseł. Trzeba pamiętać jednak o tym, że antybakteryjny wpływ napoju zanika po dodaniu do niego cukru. Artykuł Yasushi Koyamy z Tohoku University ukazał się w piśmie Preventive Medicine. Naukowiec uważa, że za zaobserwowane zjawisko odpowiadają występujące w zielonej herbacie katechiny, które zawiera, choć w mniejszych ilościach, również herbata ulong (znana też jako herbata niebieska bądź oolong). Jak ujawnił w artykule wstępnym do studium Japończyków Alfredo Morabia z Columbia University, dodatkowo badania ujawniły, że o ile sama kawa nie stanowi problemu, [...] słodka mała czarna może już być szkodliwa dla zębów. Akademicy z Kraju Kwitnącej Wiśni przyglądali się ponad 25. tys. kobiet i mężczyzn w wieku od 40 do 64 lat. Stwierdzili, że panowie, którzy dziennie wypijali przynajmniej jeden kubek zielonej herbaty, w porównaniu do rówieśników niegustujących w naparze, o 19% rzadziej mieli mniej niż 20 zębów. W takiej samej sytuacji w grupie kobiet ryzyko utraty zębów spadało o 13%. Skąd zaobserwowany efekt? Naukowcy zastanawiali się, czy nie chodzi przypadkiem o przepłukanie jamy ustnej ciepłym napojem. Problem jednak w tym, że kawa również powinna tak działać, a nie zaobserwowano korzystnych oddziaływań tego rodzaju. Dobrym wskazaniem są natomiast herbaciane przeciwutleniacze – katechiny – które zabijają bakterie powodujące próchnicę i choroby przyzębia.
  6. Doktorantka Uniwersytetu Kalifornijskiego w San Diego opracowała nowy sposób dostarczania w leczeniu trądziku kwasu laurynowego, występującego m.in. w oleju orzechów kokosowych czy ludzkim mleku. Wypełnione nim nanobomby zbliżają do wywołujących zmiany skórne Gram-dodatnich bakterii Propionibacterium acnes. Dissaya "Nu" Pornpattananangkul ma zaprezentować wyniki swoich badań na dorocznej konferencji Research Expo, która odbywa się na jej macierzystej uczelni. Wybór kwasu laurynowego nie był przypadkowy, gdyż wg Kalifornijczyków, pozwoli on uniknąć efektów ubocznych stosowania innych leków przeciwtrądzikowych, w tym zaczerwienienia i pieczenia skóry. Nowatorski system dostarczania leku składa się ze złotych nanocząstek, przyczepionych do wypełnionych kwasem laurynowym liposomów (nanobomb). Złoto nie dopuszcza do zlewania się pęcherzyków. Poza tym nanocząstki pomagają liposomom zlokalizować bakterie na podstawie specyficznego mikrośrodowiska skórnego, w tym pH. Kiedy nanobomby dotrą do błon komórkowych P. acnes, przy kwasowym odczynie nanocząstki złota odłączają się od kapsułek. Dzięki temu liposomy mogą się zlać z bakteryjnymi błonami i uwolnić swoją zawartość. Profesor Liangfang Zhang, w której laboratorium pracuje Pornpattananangkul, cieszy się z możliwości poprawy jakości leczenia zakażeń skórnych. Preparat stosowany jest powierzchniowo, w dodatku obiera sobie za cel wyłącznie P. acnes. Wszystkie składniki nanobomb są naturalne lub zostały dopuszczone do użytku klinicznego, co oznacza, że liposomy będą już w najbliższej przyszłości testowane na ludziach.
  7. Hiszpańscy naukowcy wskazują cebulę jako kandydatkę mającą zastąpić sztuczne konserwanty. Niektóre występujące w niej substancje wykazują bowiem właściwości przeciwutleniające oraz antybakteryjne (International Journal of Food Science and Technology). Akademicy z Politechniki Katalońskiej i Uniwersytetu Barcelońskiego wspominają, że flawonoidy cebuli są nie tylko zdrowe, ale i przedłużają przydatność pokarmów do spożycia. Wyniki potwierdzają, że zwłaszcza żółta odmiana jest dobrym źródłem tego rodzaju związków. Cebula może być skuteczna w opóźnianiu utleniania tłuszczów w emulsjach oleju i wody – systemach modelowych dla margaryn czy majonezów – poza tym hamuje wzrost zmieniających właściwości produktów mikroorganizmów – wyjaśnia Jonathan Santas. Hiszpanie przyglądali się efektom działania dwóch odmian białych (Fuentes de Ebro, Calçot de Valls) i jednej żółtej (Grano de Oro). Okazało się, że zapobiegały one rozwojowi, m.in.: Bacillus cereus, gronkowca złocistego (Staphylococcus aureus), Micrococcus luteus i Listeria monocytogenes. Flawonoidy cebuli są bardziej stabilne niż np. związki siarki. Tradycyjnie zaś to właśnie te ostatnie uznawano za substancje korzystne dla zdrowia, ponieważ odpowiadają za charakterystyczny smak i zapach Allium cepa oraz łzawienie oczu. Są one lotne i uwalniają się, gdy cebula ulegnie uszkodzeniu bądź zostanie przekrojona.
  8. Przy zwalczaniu lekoopornych bakterii szpitalnych olejki eteryczne mogą być tanią i skuteczną, a niekiedy również pięknie pachnącą alternatywą dla antybiotyków. Profesor Yiannis Samaras i dr Effimia Eriotou z Instytutu Edukacji Technologicznej Wysp Jońskich testowali aktywność mikrobiologiczną ośmiu roślinnych olejków eterycznych. Stwierdzili, że najskuteczniejszy był olejek tymiankowy, który w ciągu godziny eliminował niemal wszystkie bakterie. Olejki tymiankowy i cynamonowy okazały się najefektywniejszą bronią przeciwko gronkowcom (Staphylococcus). Bakterie te powszechnie występują na skórze i mogą wywoływać zakażenia u osób z upośledzoną odpornością. Szczególnie dużo problemów przysparzają metycylinooporne szczepy gronkowca złocistego (MRSA, ang. methicyllin-resistant Staphylococcus aureus). Olejki eteryczne nie tylko stanowią tanią i skuteczną opcję eliminowania szczepów antybiotykoopornych. Zmniejszone zużycie antybiotyków pozwoli bowiem dodatkowo zminimalizować ryzyko pojawienia się nowych antybiotykoopornych mikroorganizmów – podkreśla prof. Samaras. Olejki eteryczne są wykorzystywane w medycynie od setek lat. Nadal jednak niewiele wiadomo, na czym polega ich antyseptyczne działanie w organizmie człowieka. Badania wykazały, że olejki są dobrze tolerowane i działają na szerokie spektrum bakterii oraz grzybów. Sprawdzają się w terapii zarówno trądziku, jak i łupieżu, wszawicy czy zakażeń jamy ustnej. Grecy uważają, że olejki eteryczne, a właściwie ich aktywne składniki, będzie można łatwo dołączyć do składu przeciwbakteryjnych kremów i żeli do stosowania zewnętrznego. W przemyśle spożywczym sukcesem zakończyły się testy opakowań zaimpregnowanych właśnie olejkami. Warto też rozważyć zastąpienie nimi syntetycznych konserwantów żywności.
  9. Naukowcy uważają, że porównanie bakterii znalezionych na miejscu zbrodni z mikroorganizmami występującymi na czyichś dłoniach może być równie skuteczną metodą identyfikowania przestępcy jak daktyloskopia. Dlaczego? Ponieważ "zestaw" mikrobów jest unikatowy dla danej osoby i z biegiem czasu właściwie się nie zmienia (PNAS). Istnieją sytuacje, kiedy analiza ludzkiego DNA lub tradycyjne odciski palców się nie sprawdzają [lub nie da się nimi posłużyć]. Może w takim razie to jest właśnie to inne narzędzie? – dywaguje Noah Fierer, mikrobiolog z University of Colorado w Boulder. Jego zespół postanowił przetestować potencjalną metodę, pobierając wymazy z kilku klawiatur komputerowych i myszy oraz opuszków palców ich właścicieli. Posługując się pirosekwencjonowaniem DNA, Amerykanie zidentyfikowali na każdym obiekcie ok. 1400 różnych gatunków bakterii. Okazało się, że na podstawie struktury populacji można było określić, kto posługiwał się komputerowymi akcesoriami, nawet jeśli przed badaniem leżały niedotykane przez 2 tygodnie w temperaturze pokojowej. Fierer zaznacza, że na razie metoda nie będzie wykorzystywana w sądzie. Specjaliści pracują nad jej trafnością, choć już teraz wynosi ona od 70 do 90%. Akademicy z Boulder odtworzyli genetyczną sygnaturę bakteryjną 9 osób. Twierdzą oni, że materiał genetyczny mikrobów nie ulega zniszczeniu mimo zmieniających się temperatur, wilgotności i działania promieni słonecznych. Nawet na dłoniach najczystszego człowieka bytuje ok. 150 gatunków bakterii (wbrew pozorom nie zmienia tego regularne mycie, gdyż flora odtwarza się w ciągu kilku godzin od namydlenia), a dwie osoby dzielą ze sobą zaledwie 13% tej "menażerii". Na podstawie próbek bakterii z 3 klawiatur udało się ustalić właścicieli, w dodatku były one zupełnie inne od wymazów pobranych od losowych ochotników. Koniec końców ekipa Fierera ustaliła, że nawet identyczne bliźnięta jednojajowe różnią się znacznie pod względem mikroflory dłoni.
  10. Nasz przewód pokarmowy zamieszkuje tyle mikroorganizmów, że z powodzeniem możemy się uznać za chodzące kolonie bakterii. Są bardzo zróżnicowane i jak szacują autorzy badania nad wpływem chorób na florę jelit, łączna liczba ich genów 100-krotnie przekracza liczbę ludzkich genów. Mówienie o drugim genomie wcale nie jest więc pozbawione sensu. Jeden z autorów studium, profesor Jeroen Raes z Vrije Universiteit Brussel, dodaje też, że nosimy w sobie 10-krotnie więcej komórek bakteryjnych niż swoich własnych. Większość tych mikroorganizmów bytuje właśnie w przewodzie pokarmowym. Szefem projektu był profesor Jun Wang z Pekińskiego Instytutu Genomiki. Współpracowali z nim naukowcy z Chin, Niemiec, Belgii, Danii, Hiszpanii, Francji i Wielkiej Brytanii, którzy utworzyli konsorcjum European MetaHIT, koordynowane przez doktora Stanislava Dusko Ehrlicha. Badacze pracowali naprawdę szybko, mając na uwadze znaczenie bakteryjnej flory jelit dla naszego zdrowia. Pomaga nam ona w trawieniu, przyswajaniu witamin i zabezpiecza przed patogenami. Gdy coś szwankuje, pojawiają się choroba Leśniowskiego-Crohna czy wrzodziejące zapalenie jelita grubego. Odkryto również związki z otyłością – tłumaczy Raes. Akademicy sporządzili tzw. metagenom, czyli połączony genom wszystkich bakterii. To daje duży zestaw danych, które należy "rozsupłać". Na tym polega moja rola – wyjaśnia Belg. Zespół analizował odchody 124 Europejczyków. Okazało się, że u każdej osoby występowało ok. 160 gatunków bakterii. U większości ludzi były to w dużej mierze te same mikroorganizmy. Naukowcom udało się też obejść pewien problem. Skoro w przypadku hodowli wielu bakterii napotyka się na trudności, lepiej badać ich geny. W ten właśnie sposób dałoby się opisać wpływ określonej choroby na mikroflorę jelit. Zmiany można by uznać za markery diagnostyczne i prognostyczne oraz za wskaźnik powagi stanu lub podatności na chorobę.
  11. W kokonach os grzebaczowatych z rodzaju Philanthus występują Gram-dodatnie bakterie Streptomyces. Wytwarzają one 9 antybiotyków, które zabezpieczają owady przed atakiem patogenów. Naukowcy z Instytutu Ekologii Chemicznej Maxa Plancka w Jenie, Uniwersytetu w Ratyzbonie oraz Jena Leibniz Institute for Natural Product Research posłużyli się metodami obrazowania bazującymi na spektrometrii mas (obrazowaniem LDI). Dzięki temu mogli zademonstrować, w których rejonach zewnętrznej części kokonu żywych owadów znajdują się antybiotyki. Zastosowanie przez osy koktajlu złożonego z tylu substancji zapewnia ochronę przed całym wachlarzem szkodliwych mikroorganizmów. Wiele owadów spędza część swojego życia pod ziemią. Osy grzebaczowate ryją norki, w których rozwijające się larwy żywią się zakopanymi wraz z nimi sparaliżowanymi owadami. W wypełnionym materią organiczną podziemnym schronie panują jednak specyficzne warunki: jest gorąco i wilgotno, a to doskonałe warunki do rozwoju grzybów i bakterii, zagrażających zarówno nowemu pokoleniu os, jak i ich pożywieniu. Infekcje pleśniami dość często doprowadzają do śmierci larwy. Z tego powodu symbioza z promieniowcami zwiększyła szanse na przeżycie. Samice hodują bakterie z rodzaju Streptomyces w woreczkach gruczołów czułkowych i pokrywają nimi sufit komory wylęgowej. Larwy przenoszą potem bakterie do swoich kokonów. Dotąd nie było wiadomo, na czym dokładnie polega ich rola zabezpieczająca. Aleš Svatoš i Martin Kaltenpoth z Instytutu Maxa Plancka oraz ich zespół odkryli ostatnio, że symbionty wytwarzają aż 9 różnych antybiotyków. Po raz pierwszy biolodzy byli w stanie wyizolować te substancje w naturalnym środowisku, tj. w kokonie larwy. W ramach innych studiów udawało się jedynie wykryć antybiotyki po wyizolowaniu i sztucznej hodowli symbiontów. Niemcy zademonstrowali, że antybiotyki występują głównie w zewnętrznej warstwie kokonu, co zmniejsza ryzyko, że sama larwa ucierpi z powodu efektów ubocznych ich działania. Akademicy prowadzili testy z różnymi patogennymi grzybami i bakteriami. Stwierdzili, że streptochloryna i 8 piericydyn to naprawdę skuteczna broń przeciwko nim. Wspólnie mają szerokie spektrum działania, o którym można by tylko pomarzyć w przypadku pojedynczej substancji. Zakładamy, że symbioza ochronna, taka jak pomiędzy osami grzebaczowatymi a Streptomyces, jest w królestwie zwierząt bardziej rozpowszechniona niż wcześniej zakładano – podsumowuje Martin Kaltenpoth.
  12. Gady są rozmnażane w niewoli głównie dla skór, ale niektórym restauratorom i grupom etnicznym zależy również na ich mięsie. Po przeprowadzeniu odpowiednich analiz badacze wskazują jednak na liczne zagrożenia zdrowotne: infekcje wirusowe i bakteryjne, parazytozy oraz skażenie metalami ciężkimi oraz resztkami leków weterynaryjnych. Przed zjedzeniem potrawy z krokodyla, żółwia, jaszczurki czy węża warto się więc dobrze zastanowić (International Journal of Food Microbiology). Autorzy studium stwierdzili, że konsumując taki delikates, ludzie mogą zachorować na włośnicę, gnatostomozę, sparganozę czy zarazić się wrzęchami. Gnatostomoza to choroba pasożytnicza wywołana przez nicienie Gnathostoma spinigerum i Gnathostoma hispidum. Powoduje m.in. eozynofilowe zapalenia mózgu i opon mózgowo-rdzeniowych. Dorosłe postaci wrzęch pasożytują w płucach i drogach oddechowych węży i krokodyli. Larwy niektórych otorbiają się w płucach, a niekiedy również w wątrobie człowieka. Sparganozę wywołują larwy tasiemców z rodzaju Spirometra. Pasożyty wędrują wolno w tkankach, przyczyniając się do powstawania podskórnych obrzęków. Najbardziej oczywiste zagrożenie mikrobiologiczne wiąże się z ewentualną obecnością patogennych bakterii, zwłaszcza z rodzajów Salmonella, Campylobacter, Clostridium i Shigella, E. coli, pałeczek Yersinia enterocolitica czy gronkowca złocistego, które mogą powodować choroby o różnym nasileniu – podkreśla dr Simone Magnino, absolwent weterynarii na Uniwersytecie w Mediolanie, który obecnie pracuje dla Światowej Organizacji Zdrowia. Na razie wnioski są nierozstrzygające, ponieważ brakuje badań porównawczych, które łączyłyby spożycie mięsa z rozpowszechnieniem patogenów. Chociaż większość opublikowanych informacji dotyczy ryzyka związanego z gadami będącymi zwierzętami domowymi, niektóre studia dotyczą gatunków dzikich i hodowlanych. Eksperci zalecają, by mrozić mięso gadów. Pomaga też przemysłowa obróbka oraz właściwe gotowanie w domu. W sklepach Unii Europejskiej można kupić importowane mrożonki z gadów: krokodyli, kajmanów, iguan i pytonów. Z RPA, USA i Zimbabwe importuje się coraz większe ilości takiego towaru, który trafia głównie na stoły Belgów, Niemców, Francuzów, Holendrów i Brytyjczyków.
  13. Dermatolog dr Greg Pearson jest twórcą aplikacji na iPhone'a, która podczas rozmowy telefonicznej rozprawia się ponoć ze zmarszczkami i zmianami trądzikowymi na skórze właściciela. Emitowane światło niebieskie o długości fali wynoszącej 420 nanometrów oraz czerwone (550 nm) pomagają eliminować bakterie, działają przeciwzapalnie i stymulują wzrost kolagenu. Za dostępną od września ubiegłego roku aplikację trzeba zapłacić 1,99 dol. Można ją zainstalować również na iPodzie. Zanim będę mógł ocenić skuteczność AcneApp, musi jeszcze przejść wiele testów klinicznych – powiedział Pearson w komentarzu dla gazety The New York Times. Inni dermatolodzy są sceptycznie nastawieni do pomysłu kolegi po fachu. W badaniach, które przeprowadziliśmy, dane wskazywały na niską skuteczność światła niebieskiego i czerwonego w leczeniu trądziku. Potrzeba było aż [...] 88 sesji, zanim zobaczyliśmy jakiekolwiek efekty – opowiada dr Macrene Alexiades-Armenakas.
  14. Odchody niedźwiedzi polarnych pomagają zrozumieć naukowcom, jak rozprzestrzeniają się antybiotykooporne superbakterie. Zespół Trine Glad z Uniwersytetu w Tromso nie natrafił bowiem na zbyt wiele ich śladów w kale Ursus maritimus z Arktyki, a konkretnie z archipelagu Svalbard (BMC Microbiology). Norwegowie uważają, że sugeruje to, że przekazywanie genów oporności, które pojawiają się w odchodach innych zwierząt, może być skutkiem oddziaływań człowieka. Lekooporność zidentyfikowano u różnych gatunków bytujących w pobliżu ludzi, m.in. jeleni, kotów, lisów, psów i świń. Pani Glad jest przekonana, że badania jej zespołu wiele wyjaśniają w kwestii, czy antybiotykooporność występuje w naturze, czy też stanowi skutek kontaktu z lekami stosowanymi przez nas.
  15. Badacze z Argonne National Laboratory amerykańskiego Departamentu Energii i Northwestern University odkryli, że po zawieszeniu w roztworze pospolite bakterie mogą napędzać mikroskopijne koła zębate. Pozwala to mieć nadzieję na opracowanie zainspirowanych biologią rozwiązań energetycznych, które będą się dynamicznie dostosowywać do zmieniających się warunków. Zdolność okiełznania i kontrolowania mocy bakteryjnego ruchu jest istotnym wymogiem dla dalszego rozwoju napędzanych przez mikroorganizmy biomechanicznych systemów hybrydowych. W tym układzie koła zębate są miliony razy bardziej masywne od samych bakterii – wyjaśnia Igor Aronson. Mikroprzekładnie mają przekątną zaledwie 380 mikronów, wliczając w to także pochyłe "szprychy". Umieszcza się je w roztworze z tlenowymi laseczkami siennymi Bacillus subtilis. Andrey Sokolov z Princeton University, Igor Aronson z Argonne National Laboratory oraz Bartosz Grzybowski i Mario M. Apodaca z Northwestern University zaobserwowali, że bakterie wydawały się pływać w losowych kierunkach, ale od czasu do czasu zderzały się z zębami koła i zaczynały je obracać w oznaczonym kierunku. Przekręcenie przekładni wymagało współpracy kilkuset bakterii. Kiedy obok siebie umieszczano kilka kół, a ich wypustki zazębiały się jak w mechanizmie zegara, mikroorganizmy były w stanie wprawiać je w ruch w przeciwnych kierunkach; w parze jedno kręciło się w prawo, a drugie w lewo. Przekładnie obracały się synchronicznie nawet przez dłuższy czas. Nasze odkrycie demonstruje, jak mikroskopijne czynniki pływające, takie jak bakterie czy wykonane przez człowieka nanoroboty, mogą w połączeniu np. ze stalą czy plastikiem utworzyć inteligentne materiały, które dynamicznie zmienią swoją mikrostrukturę, zreperują uszkodzenia lub zasilą mikrourządzenia – podsumowuje Aronson. Prędkością obrotów kół da się zarządzać, manipulując zawartością tlenu w roztworze. Zmniejszając stężenie gazu, badacze spowalniali ruch bakterii i przekładni. Usunięcie go w całości zatrzymywało działanie mechanizmu. Po wprowadzeniu tlenu do układu bakterie ożywały i na nowo zaczynały pływać.
  16. W papierosach często występują bakterie, w tym bakterie chorobotwórcze – twierdzą po zakończeniu międzynarodowych badań Amy Sapkota z University of Maryland oraz jej współpracownicy z Ecole Centrale de Lyon (Environmental Health Perspectives). Naukowcy podkreślają, że w ramach ich studium po raz pierwszy ustalono, że papierosy same w sobie mogą stanowić bezpośrednie źródło szerokiego spektrum patogenów, groźnych zarówno dla palaczy, jak i dla osób narażonych na bierne palenie. Tak jak przypuszczaliśmy, badane przez nas dostępne w handlu papierosy były pełne bakterii, jednak nie spodziewaliśmy się, że znajdziemy tak wiele groźnych dla ludzkiego zdrowia. Jeśli organizmy te mogą przetrwać proces spalania – a wierzymy, że mogą – będą się prawdopodobnie przyczyniać do chorób zakaźnych i przewlekłych zarówno u czynnych, jak i biernych palaczy. Dlatego tak krytyczne jest zdobycie kolejnych informacji nt. flory bakteryjnej papierosów, używanych przez ponad miliard ludzi na świecie. Wcześniejsze badania polegały na pobieraniu próbek papierosów i sprawdzaniu, jakie bakterie uda się z nich wyhodować. Sapkota i inni poszli jednak o krok dalej i posłużyli się analizą mikromacierzy DNA, by określić tzw. bakteryjny metagenom, czyli bakteryjny materiał genetyczny obecny w testowanych papierosach. Dzięki temu okazało się, że w produktach tytoniowych występują tak różne organizmy, jak bakterie glebowe i bakterie chorobotwórcze. Po raz pierwszy udowodniono, że liczba mikroorganizmów w papierosach może dorównywać liczbie występujących w nich związków chemicznych. W jednym papierosie zidentyfikowano kilkaset gatunków bakterii, a eksperci wierzą, że dalsze testy wykażą, że w rzeczywistości jest ich jeszcze więcej. Nie zaobserwowano znaczącej zmienności w zakresie różnorodności bakterii żyjących w 4 analizowanych markach: Kool Filter Kings, Lucky Strike Original Red, Marlboro Red i Camel. We wszystkich testowanych papierosach odkryto Gram-dodatnie bakterie z rodzaju Acinetobacter (mogą one wywoływać zakażenia krwi i choroby płuc), laseczki Bacillus, bakterie z rodzaju Burkholderia (niektóre odpowiadają za infekcje dróg oddechowych), Gram-dodatnie bakterie z rodzaju Clostridium (mogą powodować zatrucia pokarmowe i infekcje płuc), pałeczki Klebsiella oraz pałeczki ropy błękitnej Pseudomonas aeruginosa. Wiedząc to, naukowcy zamierzają sprawdzić, jaką rolę odgrywają te mikroorganizmy w chorobach związanych z używaniem tytoniu. Czy na pewno przeżywają spalanie i kolonizują potem drogi oddechowe? Niektóre z wcześniejszych studiów sugerują, że tak się dzieje, ponieważ w drogach oddechowych palaczy występuje więcej bakteryjnych patogenów. Nie da się jednak wykluczyć, że palenie osłabia odporność, a bakterie pochodzą ze środowiska, a nie z tytoniu.
  17. Dotąd sądzono, że spotykane w jaskiniach kolorowe osady to minerały, teraz jednak okazuje się, że w niektórych przypadkach dokładnie tak samo wyglądają odchody nieznanych wcześniej mikroorganizmów. Badacze z Geological Society of America uważają, że opisywane odkrycie może pomóc podczas poszukiwania życia pozaziemskiego. Stwierdziliśmy, że na rzeczy wyglądające na pierwszy rzut oka na nieożywione trzeba patrzeć, jakby mogły mieć pochodzenie biologiczne – zaznacza Penelope Boston, badaczka jaskiń z Nowomeksykańskiego Instytutu Górnictwa i Technologii w Socorro. Mikroby znaleziono w jaskiniach lawowych – naturalnych tunelach, którymi lawa płynie pod powierzchnią ziemi – na Hawajach, w Nowym Meksyku oraz na Azorach. Jak opowiada prof. Diana Northup, geomikrobiolog z Uniwersytetu Nowego Meksyku, na Hawajach odkryto skapujący ze stropu niebieskozielony szlam, w Nowym Meksyku kruchy minerał, a na portugalskim archipelagu różowe sześciokąty. Od 1994 r. Northup i zespół poszukiwali w jaskiniach niezwykłych kryształopodobnych depozytów. Oglądali je potem pod mikroskopem lub badali DNA. Odkrycia tej ekipy potwierdzają to, co postulowano już wcześniej: że na innych planetach jaskinie lawowe mogą być najlepszymi miejscami do poszukiwania życia. W 2007 roku krążąca wokół Marsa sonda przysłała zdjęcia, na których widniały czarne dziury, będące najprawdopodobniej miejscami, gdzie zapadły się sklepienia wydrążonych przez lawę tuneli. Wg naukowców, jaskinie stanowią jedyne w swoim rodzaju środowisko, gdzie nie brakuje wytrącających się z wody minerałów i mikroorganizmów. Na Marsie woda mogła się przesączyć do podziemnych jaskiń już bardzo dawno temu, zapewniając pokarm mieszkającym tam stworzeniom. Dodatkowym plusem jest to, że pieczara jest zacisznym zakątkiem, z o wiele łagodniejszym klimatem niż ten panujący na powierzchni planety. W 2003 r. Northup, Penny Boston i Mike Spilde zjawili się w stale powiększającej się jaskini w południowym Meksyku, znanej jako Cueva de Villa Luz. Zauważyli, że stężenie siarkowodoru wynosi tam 210 części na milion (ppm), a to naprawdę bardzo dużo, ponieważ już przy poziomie H2S przekraczającym 10 ppm ludzie muszą wkładać ochronne respiratory, czyli maski z filtrem. Dla niektórych bakterii takie warunki to jednak raj. Utleniając siarczek wodoru, wydzielają one jako produkt uboczny kwas siarkowy. W jaskini Amerykanie natrafili na ociekające H2SO4 przypominające stalaktyty struktury. Nazwali je snotytami. Ich analiza molekularna wykazała, że były one wypełnione bakteriami blisko spokrewnionymi z siarkolubnymi Aciditheobacillus theooxidans.
  18. Adrian Ponce, chemik z NASA, opracował urządzenie, które pozwala wykryć patogeny w ciągu 15 minut. Dzięki niemu będzie można zminimalizować skażenie pozaziemskich środowisk naszymi bakteriami, które zawędrowałyby tam choćby na statku kosmicznym. W ciągu kwadransa dzieje się wszystko - od pobrania próbek po uzyskanie wyniku. Odpowiada to 2-3 dniom z wykorzystaniem standardowej, czyli obejmującej hodowlę, metody NASA – wyjaśnia Ponce. Departament Bezpieczeństwa Narodowego USA widzi też ziemskie zastosowanie wynalazku w postaci przenośnego wykrywacza bioskażenia. Ma on być gotowy do 2011 roku. Niewykluczone, że skorzystają z niego przedstawiciele różnych branż, m.in. służby zdrowia czy firm produkujących elektronikę. Nowa amerykańska technologia wskazuje bakteryjne endospory (przetrwalniki), wykorzystując swoisty wyłącznie dla nich kwas dipikolinowy, który występuje w protoplastach. Nanochemicy z NASA posłużyli się terbem (Tb). Po naświetleniu promieniami ultrafioletowymi pierwiastek ten powoduje, że endospory zaczynają się jarzyć na zielono. Detektor został częściowo sfinansowany przez NASA, ale zanim stanie się częścią oficjalnej procedury ochronnej, musi zostać zaaprobowany przez odpowiednią komisję.
  19. Związek wytwarzany przez bakterie glebowe Streptomyces może uszkadzać neurony produkujące dopaminę. Badacze z University of Alabama uważają, że ich działaniem można by wytłumaczyć przypadki choroby Parkinsona, w których nie da się wyróżnić czynnika genetycznego (PLoS ONE). Amerykanie sądzą, że w grę wchodzi związek nieznany jeszcze nauce, będący wtórnym metabolitem bakteryjnym. Eksperymenty laboratoryjne prowadzono na modelu zwierzęcym, a konkretnie z udziałem nicieni z gatunku Caenorhabditis elegans. Gdy wystawiano je na oddziaływanie wybranych szczepów bakteryjnych, zaczynały umierać ich neurony dopaminoergiczne. Generalnie nicienie miały się dobrze, lecz dochodziło do gwałtownego wymierania neuronów wydzielających jako neuroprzekaźnik dopaminę – tłumaczy dr Guy Caldwell z University of Alabama. Dalsze testy tajemniczego związku, prowadzone przy pomocy naukowców z Birmingham, wykazały, że na ludzkie komórki nerwowe działa on tak samo, jak na neurony C. elegans. Nicienie stanowią doskonały model wielu chorób, ponieważ są prostymi organizmami i łatwo je hodować, a jednocześnie występują u nich podstawowe neuroprzekaźniki, np. dopamina. Wyniki badań są na razie wstępne. Nie dysponując oczyszczonym związkiem, nie wiemy, czy jego ilość, z jaką ludzie stykają się ciągu całego życia, wystarczy do wywołania problemów [zdrowotnych] – zaznacza dr Julie Olson, współautorka studium. Biolodzy sądzą, że badana substancja bakteryjna zaburza działanie układu ATP-ubikwityna-proteasomy (ang. ubiquitin proteasome system, UPS). Mamy dowody komórkowe, że ten mechanizm może być zaburzony. W zwykłych okolicznościach pozbywa się on białek o nieprawidłowej budowie lub działaniu; w ramach wcześniejszych badań połączono go z rzadkimi postaciami genetycznymi parkinsonizmu. Pozostawione same sobie nieprawidłowe cząsteczki białek łączą się z innymi, tworząc ostatecznie rozbudowane kompleksy. Wiąże się to z uszkodzeniem neuronów i ich obumieraniem. Podczas eksperymentów biolodzy posłużyli się bakteriami glebowymi S. venezuelae. Wytwarzany przez nie metabolit zaburzał działanie UPS i powodował postępującą degenerację wszystkich uzwględnionych rodzajów neuronów, lecz najbardziej podatne na uszkodzenia wydawały się komórki nerwowe istoty czarnej (łac. substantia nigra). Analizy wykazały, że cząsteczki badanego związku są stabilne, lipofilne (wykazują powinowactwo do tłuszczów) i niewielkie.
  20. Na szkieletach padłych waleni odkryto nowe gatunki zwierząt, które żywią się tylko i wyłącznie w ten sposób. To dość ryzykowne, bo choć wieloryby są duże, nigdy nie wiadomo, gdzie i kiedy umrą. Dzięki technikom badania DNA naukowcy z Uniwersytetu w Göteborgu stwierdzili, że zróżnicowanie gatunków "waleniożerców" jest o wiele większe niż dotąd sądzono. Szwedzi monitorowali ekosystem wokół ścierw wielorybów za pomocą podwodnych kamer. Jak zauważają biolodzy, jeden olbrzymi ssak to bogate źródło składników odżywczych i odpowiada takiej ich ilości, jaka spadałaby z powierzchni morza na dno przez 2000 lat. Nic dziwnego, że do takiej padliny tłumnie przybywają zainteresowane mięsem rekiny czy śluzice, a na końcu organizmy wykorzystujące szkielet. Na martwych wielorybach bardzo często znajduje się wieloszczety. Niektóre gatunki są tak wyspecjalizowane, że nie umiałyby przeżyć gdzie indziej. Osedax ukorzenia się np. w ścierwie wieloryba i drąży jego kości, a inne pożywiają się grubą warstwą bakterii zalegających na szkielecie. Akademicy z Göteborga opisali aż 9 nowych gatunków gustujących w bakteriach wieloszczetów. Cztery z nich znaleziono na ścierwach zlokalizowanych na głębokości 125 metrów na terenie Parku Narodowego Kosterhavet u wybrzeży Szwecji. Pozostałe występowały w wodach koło Kalifornii. Dzięki analizie molekularnej udało się wyróżnić ukryte gatunki. Ich przedstawiciele wyglądają identycznie jak inny gatunek (podobieństwo morfologiczne), ale różnią się genetycznie. Przystosowanie do żerowania na ścierwach wielorybów rozwinęło się u gatunków o różnym pochodzeniu ewolucyjnym. Miało to miejsce w różnym czasie. Okazało się też, że pewne gatunki, które dotąd uznawano za kosmopolityczne, tj. występujące w wielu miejscach na Ziemi, są w rzeczywistości gatunkami ukrytymi.
  21. Choć wszędobylskość drobnych form życia nie powinna nikogo zaskakiwać, naukowcy z Instytutu Maxa Plancka musieli być solidnie zdziwieni, gdy na dnie Oceanu Arktycznego odkryli... przetrwalniki bakterii żyjących zwykle w podwodnych rezerwuarach gorącej wody. Pochodzenie mikroorganizmów nie zostało jeszcze ustalone, lecz już teraz oczekuje się, że wiedza na ten temat może się okazać niezwykle istotna. Odkrycia, o którym poinformowało czasopismo Science, dokonano u wybrzeży Spitsbergenu. Co prawda odnalezione przetrwalniki nie wykazywały aktywności metabolicznej w temperaturze typowej dla wód otaczających tę norweską wyspę, lecz krótka inkubacja w temperaturze 50°C wystarczyła, by przekształciły się one w formy dojrzałe i uruchomiły procesy rozkładu materii organicznej. Przeprowadzone testy genetyczne wykazały, że przetrwalniki odnalezione na dnie oceanu należą do różnych klas w obrębie typu Firmicutes. Naturalnym miejscem występowania odnalezionych okazów jest silnie rozgrzana woda otaczająca podwodne złoża ropy naftowej. Może to więc oznaczać, że albo przebyły one bardzo daleką drogę od swojego naturalnego siedliska, albo też w badanej okolicy występują bogate, lecz nieodnalezione jeszcze złoża czarnego złota. Odkryte bakterie mogą okazać się ważnymi organizmami modelowymi, przydatnymi podczas badań z zakresu biogeografii. Ustalenie tras migracji zarodników może bowiem dostarczyć wielu interesujących informacji na temat kierunków przemieszczania się mas wody oceanicznej oraz warunków życia panujących w głębinach.
  22. Jednym z lekceważonych, choć istotnych efektów konsumpcji alkoholu jest krótkotrwałe upośledzenie odporności. O zjawisku tym wiadomo od dawna, lecz winą za nie obarczano głównie ogólne obciążenie organizmu toksyną. Okazuje się jednak, że mechanizm ten jest znacznie bardziej ukierunkowany i wiąże się z zablokowaniem aktywności jednego z białek kluczowych dla szybkiej reakcji na infekcje. Już wcześniejsze eksperymenty, prowadzone głównie na myszach, potwierdziły negatywny wpływ konsumpcji uderzeniowych dawek alkoholu na produkcję substancji prozapalnych. Dopiero teraz, dzięki zespołowi Stephena Pruetta z Mississippi State University, udało się zidentyfikować dokładną przyczynę tego zjawiska - upośledzenie funkcji białka zwanego TLR4. Badana proteina jest jednym z podstawowych receptorów dla lipopolisacharydu (LPS) - składnika ścian bakterii Gram-ujemnych. W prawidłowo funkcjonującym systemie odpornościowym przekazuje ona informację o obecności LPS w organizmie do innych komórek odpornościowych, czego efektem jest uruchomienie stanu zapalnego i reakcji przeciwko obcemu obiektowi. Jak ustalono, podanie etanolu blokuje szlak sygnałowy związany z TLR4 i uniemożliwia aktywację mechanizmów obrony przed zakażeniem. Co ważne, zaobserwowane zjawisko utrzymuje się nawet po usunięciu alkoholu z organizmu. Okres obniżenia odporności trwa bowiem aż do 24 godzin, a więc dłużej, niż sama obecność etanolu w ustroju. Dlaczego tak się dzieje, nie ustalono.
  23. W dzisiejszych czasach trudno wyobrazić sobie dziedzinę, w której nie znalazłoby się zastosowania dla nanotechnologii. Na rozwoju tej nauki mogą skorzystać także mikrobiolodzy, o czym świadczy aparat zaprezentowany przez naukowców z Universitat Rovira i Virgili w hiszpańskiej Tarragonie. Stworzony przez Hiszpanów prototyp, opisany na łamach międzynadorowego wydania czasopisma Angewandte Chemie jest zdolny do wykrywania bakterii Salmonella typhi, odpowiedzialnych za ciężkie i trudne do wyleczenia infekcje u ludzi. Zaprezentowany aparat jest tak czuły, że nie stanowi dla niego większego problemu detekcja nawet pojedynczej komórki bakteryjnej znajduącej się w badanym materiale. Sercem opracowanego urządzenia są nanorurki o ścianach zbudowanych z pojedynczej warstwy atomów węgla. Ich wnętrze zostało zmodyfikowane na drodze chemicznej, a następnie przyłączono do niego aptamery - syntetyczne fragmenty RNA zaprojektowane w celu wybiórczego wiązania jednego z antygenów znajdujących się na powierzchni komórek S. typhi. Wykrywanie bakterii odbywa się dzięki pomiarowi zmian siły elektromotorycznej podczas przyłączenia się bakterii do aptamerów. Odczyt niezbędnych parametrów odbywa się w czasie rzeczywistym i jest na tyle precyzyjny, że możliwe jest dokładne określenie liczby komórek znajdujących się w badanej próbce. Istotny jest także fakt, iż opracowany sensor jest wysoce swoisty, tzn. nie wykrywa bakterii należących do gatunków innych niż S. typhi. Hiszpańscy badacze nie sprecyzowali, czy - i jeśli tak, to kiedy - ich wynalazek mógłby trafić na rynek. Jeżeli jednak będzie on tak skuteczny, jak wynika z dotychczasowych eksperymentów, możemy być niemal pewni, że jego jego komercjalizacja stanie się faktem.
  24. Bakterie wytwarzające hydroksyapatyt (HA) można wykorzystać do uzyskania bardziej wytrzymałych implantów kości. Nową metodę opracowała profesor Lynne Macaskie z University of Birmingham. Podczas badań okazało się, że bakterie z rodzaju Serratia ściśle przylegają do różnych powierzchni, m.in. stopów tytanu, polipropylenu, porowatego szkła i pianki poliuretanowej, ponieważ tworzą biofilm zawierający biopolimery działające jak klej. Na tej warstwie tworzy się następnie powłoka z hydroksyapatytu. Aby dało się to wykorzystać w praktyce, warstwa HA musi ściśle przylegać. Materiał jest zatem suszony i podgrzewany (ma to zabić niepotrzebne już bakterie). Mikromanipulacyjna technika, którą wykorzystano do zmierzenia sił potrzebnych do rozerwania biokleju, wykazała, że by zniszczyć wysuszoną jego wersję, trzeba ciągnąć 20-krotnie mocniej niż w przypadku wersji świeżej. Po pokryciu hydroksyapatytem przyleganie stało się jeszcze kilkukrotnie silniejsze. Efektywność kleju zwiększała się, gdy powierzchnia nie była gładka, lecz lekko szorstka. Obecnie implanty kości uzyskuje się przez "nasprejowanie" hydroksyapatytu. Nie mogą się one jednak pochwalić dobrą wytrzymałością mechaniczną, poza tym sprej sięga tylko do widocznych obszarów. Z bakteriami nie ma tego problemu, bo dotrą wszędzie. Co więcej, bakteryjny HA ma lepsze właściwości niż minerał uzyskany chemicznie. Dzieje się tak, gdyż nanokryształy tego pierwszego są o wiele mniejsze i to właśnie to zapewnia im większą wytrzymałość. Bakterie są niszczone przez podgrzewanie, pozostawiając HA przylegający do danej powierzchni dzięki ich własnemu klejowi – przypomina to sos, który przywarł do patelni – podsumowuje prof. Macaskie.
  25. Już od kilku lat leki wytwarzane przez zmodyfikowane genetycznie komórki należą do najważniejszych produktów rynku farmaceutycznego. Ostatnio jednak pojawia się coraz więcej pomysłów na wykorzystanie do leczenia całych, żywych komórek GMO. Najnowszym przykładem takiego podejścia jest mikroorganizm wytworzony przez naukowców z University of Delaware, który w testach na myszach okazał się skutecznym środkiem przeciwko cukrzycy. Pomysł zespołu dr. Johna Marcha polega na zastosowaniu bakterii E. coli, podstawowego elementu flory bakteryjnej przewodu pokarmowego. Genom tego mikroorganizmu wzbogacono o tzw. konstrukt genowy wytwarzający peptyd glukagonopodobny 1 (ang. glucagon-like peptide 1 - GLP-1), białko zdolne do stymulowania produkcji insuliny przez komórki żywiciela. Idea wykorzystania GLP-1 zamiast samej insuliny wynika z kilku czynników. Po pierwsze, insulina wytworzona we wnętrzu jelit byłaby bezużyteczna, gdyż nie wydostałaby się do krwiobiegu. Rok temu zespół dr. Marcha zaobserwował jednak, że w warunkach hodowli tkankowej można za pomocą GLP-1 wymusić produkcję insuliny w komórkach nabłonka jelit, czyli w miejscu, w którym normalnie ona nie powstaje (naturalnym miejscem jej syntezy jest trzustka). Powstający w takich warunkach hormon jest wydzielany do krwiobiegu, dzięki czemu działa na wszystkie tkanki organizmu. Konstrukt genowy stworzony przez badaczy z University of Delaware zaprojektowano tak, by reagował na stężenie glukozy w miejscu przebywania bakterii, a więc pośrednio także na jej zawartość w spożywanych pokarmach. Efektem takiego podejścia jest wytwarzanie przez bakterie insuliny w ilości odpowiadającej bieżącym potrzebom organizmu. Gdyby podobna terapia znalazła zastosowanie u ludzi, oznaczałoby to koniec kłopotliwego mierzenia poziomu cukru we krwi oraz dobierania dawki leku - zamiast tego kontrolowaniem terapii zajmowałyby się same bakterie. Eksperymentalny mikroorganizm przetestowano na myszach cierpiących na cukrzycę typu 1., tzn. wariant tej choroby polegający na niedostatecznej produkcji insuliny. Jak się okazało, po 80 dniach od spożycia pokarmu zawierającego lecznicze bakterie diabetyczne myszy zostały całkowicie wyleczone ze swojej choroby. Dotychczas nie ustalono z całkowitą pewnością, czy mechanizm wytwarzania insuliny in vivo jest identyczny z procesem obserwowanym w warunkach in vitro. Sam fakt wyleczenia cukrzycy jest jednak na tyle obiecujący, że możemy się spodziewać dalszych badań nad tym zagadnieniem. Gdyby efekty podobne do tych uzyskanych w testach na zwierzętach udało się uzyskać także w organizmie człowieka, mogłoby to oznaczać prawdziwy przełom w leczeniu cukrzycy. Któż z chorych chciałby bowiem regularnie mierzyć poziom glukozy i dobierać stosowną dawkę insuliny, gdyby mógł zamiast tego zjeść probiotyk zawierający terapeutyczne mikroorganizmy?
×
×
  • Dodaj nową pozycję...