Search the Community
Showing results for tags 'pH'.
Found 8 results
-
Badania naukowców z Cardiff University pokazują, że jeśli zakwaszenie oceanów będzie postępowało tak, jak obecnie, to już wkrótce wody osiągną najwyższy od milionów lat poziom zakwaszenia. Do zakwaszenia oceanów dochodzi, gdy ich wody absorbują CO2 z atmosfery. Około 1/3 dwutlenku węgla emitowanego przez człowieka jest zostaje rozpuszczona w oceanach. Szacuje się, że od początku ery przemysłowej zaabsorbowały one około 525 miliardów ton CO2, czyli około 5,5 milionów ton dziennie. Naukowcy z Cardiff University na łamach Earth and Planetary Science Letters opublikowali artykuł na temat badań, w ramach których odtworzyli poziom atmosferycznego CO2 i zakwaszenia oceanów na przestrzeni ostatnich 22 milionów lat. Dokonali tego badając skamieniałości niewielkich stworzeń morskich, przede wszystkim zaś szczegółowo sprawdzając skład chemicznych ich muszli. Obecne przewidywania mówią, że jeśli nic się nie zmieni, to w roku 2100 poziom CO2 w atmosferze sięgnie niemal 930 części na milion. Obecnie jest to nieco ponad 400 ppm. Jednocześnie pH wody oceanicznej spadnie do roku 2100 poniżej 7,8, podczas gdy obecna wartość to 8,1. Jako, że skala pH jest skalą logarytmiczną spadek o 0,1 pH oznacza 25-procentowy wzrost kwasowości. Jak informują uczeni z Cardiff taki poziom atmosferycznego CO2 i zakwaszenia oceanów miał ostatnio miejsce w środkowym miocenie przed 14 milionami lat. Wówczas średnie temperatury były o około 3 stopnie wyższe niż obecnie. Profesor Carrie Lear, współautorka badań, mówi: Obecny poziom pH jest prawdopodobnie najniższy od 2 milionów lat. Aby zrozumieć, co to oznacza dla ekosystemu morskiego potrzebujemy długoterminowych badań polowych, laboratoryjnych oraz badań skamieniałości. « powrót do artykułu
- 4 replies
-
- zakwaszenie
- ocean
-
(and 3 more)
Tagged with:
-
Takie rozwiązanie to marzenie wielu lekarzy i laborantów: mikroigły, w których pustym wnętrzu znajdują się różne elektrochemiczne czujniki. W ten sposób można na bieżąco monitorować przez dłuższy czas chemię całego organizmu, w tym poziom cukru. Wewnątrz mikroigieł umieściliśmy kanaliki z szeregiem elektrochemicznych czujników, które można wykorzystać do wykrywania specyficznych cząsteczek albo wartości pH - wyjaśnia dr Roger Narayan z Uniwersytetu Stanowego Karoliny Północnej. Stosowane obecnie technologie bazują na pobieraniu próbek i badaniu ich. Tutaj badanie ma charakter ciągły, pozwalając np. na monitorowanie poziomu cukru we krwi diabetyka. Jak opowiada Narayan, w mikroigłach przynamniej jeden z wymiarów nie przekracza 1 milimetra. Pomysł jest taki, by dostosowane do indywidualnych potrzeb macierze czujników mikroigłowych wmontowywać w urządzenia przenośne, np. zegarki, znajdując dzięki temu odpowiedź na specyficzne pytania medyczne lub badawcze. Warto też zaznaczyć, że mikroigły są bezbolesne. Naukowcy z Uniwersytetu Stanowego Karoliny Północnej, Sandia National Laboratories i Uniwersytetu Kalifornijskiego w San Diego zbudowali na próbę mikroigłę z umieszczonymi wewnątrz czujnikami do pomiaru pH, glukozy i kwasu mlekowego (zastosowano detekcję amperometryczną). Z tym ostatnim wiążą sportowe nadzieje, wspominając, że za jego pomocą dałoby się określić stężenie metabolitu w mięśniach nie przed lub po wysiłku, ale w jego trakcie. Kiedy w ramach eksperymentu akademicy zmodyfikowali materiał za pomocą komórkoopornej powłoki (Lipidure), zahamowano przyleganie makrofagów. W ciągu 48 godzin nie doszło do rozwarstwienia powłoki.
-
Po złożeniu jaj naturalna ochrona przed patogenami, np. pałeczkami salmonelli, w postaci wysycenia dwutlenkiem węgla stopniowo się zmniejsza. Prof. Kevin Keener z Purdue University opracował proces szybkiego schładzania jaj, który pozwala odtworzyć to zabezpieczenie (Poultry Science). Świeżo złożone jaja są nasycone dwutlenkiem węgla, a ich pH wynosi ok. 7. Z czasem pH wzrasta do 9, a CO2 opuszcza jajo. W takich warunkach aktywność lizozymu chroniącego białko przed bakteriami spada. Podczas eksperymentów Keener nasycił oczyszczone lizozymy białka CO2 i sprawdzał, co będzie się działo przy różnych wartościach pH. Zauważył, że zarówno przy wysokim, jak i niskim pH dodatek dwutlenku węgla zwiększał aktywność enzymu nawet o 50%. Opracowany przez Amerykanina proces chłodzenia odtwarza te warunki. Kiedy chłodzimy jaja, dwutlenek węgla jest zasysany do ich wnętrza. Potrafimy [zatem] ponownie nasycić białko CO2, powracając do pierwotnych "ustawień", typowych dla jaj właśnie złożonych przez kurę. Wg Keenera, dodatkowa aktywność lizozymu daje jaju więcej czasu na samoczynne wyeliminowanie szkodliwych bakterii (oznacza to, że człowiek nie musi się wtrącać, by wspomóc dezynfekcję). Metoda specjalisty z Purdue University polega na wykorzystaniu suchego lodu. Jaja umieszcza się w komorze chłodniczej i wprowadza CO2 o temperaturze -78,88 st. Celsjusza. Gaz cyrkuluje w komorze i tworzy cienką warstwę wewnątrz skorupki jajek. Suchy lód sublimuje i szybko obniża wewnętrzną temperaturę jaj (spada ona poniżej 7 stopni Celsjusza). Udowodniono, że skorupka bez problemu wytrzymuje rozciąganie pod wpływem oddziaływania suchego lodu. W kolejnym etapie badań Keener będzie analizować zmiany molekularne zachodzące podczas ochładzania.
-
- salmonella
- bakterie
- (and 6 more)
-
By móc normalnie działać, komórka musi podtrzymywać odpowiednie pH. Dotąd naukowcy nie wiedzieli, za pomocą jakich mechanizmów odbywa się monitorowanie kwasowości/zasadowości, teraz okazuje się, że odpowiada za to wbudowany w błonę komórkową kwas tłuszczowy – kwas fosfatydowy. Naukowcy wiedzieli, że w pewnych okolicznościach określone białka są w stanie wykrywać zmiany pH. Odkryliśmy jednak, że w rzeczywistości to jeden z fosfolipidów, występujący we wszystkich komórkach kwas fosfatydowy, odpowiada za detekcję pH. Posługując się modelem drożdży piwnych, stwierdziliśmy, że w sytuacji pozbawienia składników odżywczych doszło do spadku komórkowego pH, a w konsekwencji do zmiany stanu chemicznego kwasu fosfatydowego. To z kolei zmieniło ekspresję genów oraz metabolizm komórki – wyjaśnia dr Chris Loewen z Uniwersytetu Kolumbii Brytyjskiej. Opisywane odkrycia mają duże znaczenie dla zrozumienia ludzkiego metabolizmu i patogenezy różnych chorób, ponieważ budowa i działanie lipidów są bardzo podobne u wszystkich organizmów. W przyszłości trzeba będzie stwierdzić, jak ma się ono do dwóch dziedzin: 1) rozrastania guza (w procesie tym ważną rolę odgrywają bowiem zarówno kwas fosfatydowy, jak i pH) oraz 2) pracy mózgu (ponieważ neurony dynamicznie zmieniają komórkowy odczyn, co wskazuje, że również dysponują czujnikiem pH). Ze szczegółowymi wynikami badań można się zapoznać na łamach pisma Science.
-
- dr Chris Loewen
- zmiany
-
(and 6 more)
Tagged with:
-
Amerykanie ustalili, że do podtrzymania prawidłowego poziomu cukru we krwi potrzebny jest proces usuwania starych kości przez komórki kościogubne (tzw. resorpcja). Odkrycie można wykorzystać, projektując lepsze leki na cukrzycę typu 2. Zespół doktora Gerarda Karsenty'ego z Centrum Medycznego Columbia University zauważył, że resorpcja nie tylko stanowi część procesu ciągłego odnawiania kośćca, ale i stymuluje wydzielanie insuliny do krwioobiegu oraz wychwyt glukozy przez komórki całego ciała. Odkrycie sugeruje, że u niektórych osób cukrzyca typu 2. rozwija się w konsekwencji zmian w szkielecie i że leki stymulujące szlak kości-insulina mogą się lepiej sprawdzić w ich przypadku. Pierwsza wskazówka, że szkielet może odgrywać ważną rolę w kontroli poziomu cukru we krwi, pojawiła się już w 2007 r., kiedy doktor Karsenty stwierdził, że hormon wydzielany przez kości – osteokalcyna – może regulować stężenie glukozy. Osteokalcyna uruchamia wytwarzanie insuliny w trzustce oraz zwiększa zdolność komórek do pobrania glukozy (oba te procesy ulegają upośledzeniu w cukrzycy typu 2.). W najnowszym studium ekipa Karsenty'ego wykazała, że osteokalcyna nie może zadziałać, dopóki osteoklasty, czyli komórki kościogubne nie rozpoczną resorpcji. Kiedy niszczą one starą tkankę kostną, w wyniku wzrostu kwasowości w kościach osteokalcyna ulega przekształceniu do swej aktywnej formy. Co ważne, odkryto, że insulina sprzyja resorpcji kości. W pętli sprzężenia zwrotnego promuje to aktywację osteokalcyny, co z kolei napędza syntezę i wydzielanie insuliny – tłumaczy Karsenty. Insulina jest sprytną cząsteczką, która korzysta na funkcjonalnych oddziaływaniach wzajemnych między resorpcją kości a osteokalcyną, by włączyć sekrecję i produkcję większych ilości samej siebie. Najpierw więc insulina musi zadziałać na osteoblasty (komórki kościotwórcze), które nakazują osteoklastom rozpocząć destrukcję starej kości. Gdy potem w wyniku tego procesu dochodzi do spadku pH, uaktywnia się osteokalcyna. Aktywne białko podróżuje z kości do trzustki i stymuluje wytwarzanie większych ilości insuliny. Identyfikując ścisły związek między metabolizmem energii a fizjologią kośćca, opisywane badanie podkreśla bogactwo funkcji kontrolowanych przez ten ostatni. Sugeruje ono, że sposobem na leczenie cukrzycy może być zwiększanie stężenia osteokalcyny w organizmie. Ponieważ większość leków na osteoporozę działa na zasadzie hamowania resorpcji, terapia prowadzi do ograniczenia aktywności osteokalcyny i wykształcenia u niektórych pacjentów nietolerancji glukozy. Badanie ma ważne konsekwencje zarówno dla diabetyków, jak i pacjentów z osteoporozą. Po pierwsze, pokazuje, że osteokalcyna ma wpływ na zapoczątkowanie cukrzycy. Po drugie, ponieważ wydają się w znacznym stopniu przyczyniać do nietolerancji glukozy, kości mogą się stać nowym celem leków na cukrzycę typu 2., najpowszechniejszą formę cukrzycy. Po trzecie wreszcie, osteokalcyna ma szansę stać się lekiem na cukrzycę typu 2. U chorych z osteoporozą leki z wyboru – bifosfoniany – hamują resorpcję kości, dlatego są w stanie zwiększyć nietolerancję glukozy i [...] popchnąć kogoś w stronę pełnowymiarowej cukrzycy. Kwestia ta wymaga jednak dalszych badań.
-
- komórki kościogubne
- pętla sprzężenia zwrotnego
- (and 6 more)
-
Doktorantka Uniwersytetu Kalifornijskiego w San Diego opracowała nowy sposób dostarczania w leczeniu trądziku kwasu laurynowego, występującego m.in. w oleju orzechów kokosowych czy ludzkim mleku. Wypełnione nim nanobomby zbliżają do wywołujących zmiany skórne Gram-dodatnich bakterii Propionibacterium acnes. Dissaya "Nu" Pornpattananangkul ma zaprezentować wyniki swoich badań na dorocznej konferencji Research Expo, która odbywa się na jej macierzystej uczelni. Wybór kwasu laurynowego nie był przypadkowy, gdyż wg Kalifornijczyków, pozwoli on uniknąć efektów ubocznych stosowania innych leków przeciwtrądzikowych, w tym zaczerwienienia i pieczenia skóry. Nowatorski system dostarczania leku składa się ze złotych nanocząstek, przyczepionych do wypełnionych kwasem laurynowym liposomów (nanobomb). Złoto nie dopuszcza do zlewania się pęcherzyków. Poza tym nanocząstki pomagają liposomom zlokalizować bakterie na podstawie specyficznego mikrośrodowiska skórnego, w tym pH. Kiedy nanobomby dotrą do błon komórkowych P. acnes, przy kwasowym odczynie nanocząstki złota odłączają się od kapsułek. Dzięki temu liposomy mogą się zlać z bakteryjnymi błonami i uwolnić swoją zawartość. Profesor Liangfang Zhang, w której laboratorium pracuje Pornpattananangkul, cieszy się z możliwości poprawy jakości leczenia zakażeń skórnych. Preparat stosowany jest powierzchniowo, w dodatku obiera sobie za cel wyłącznie P. acnes. Wszystkie składniki nanobomb są naturalne lub zostały dopuszczone do użytku klinicznego, co oznacza, że liposomy będą już w najbliższej przyszłości testowane na ludziach.
-
- kwas laurynowy
- Propionibacterium acnes
- (and 7 more)
-
Amerykanom udało się rozwikłać tajemnicę ruchu plemników, które, stosunkowo statyczne przed wytryskiem, w drogach rodnych kobiety zaczynają płynąć, przyspieszając dodatkowo w pobliżu komórki jajowej. Dotąd wiedziano, że ruch jest wyzwalany przez wzrost wewnętrznego pH wskutek wypływu protonów z komórki, należało jednak ustalić, jaki mechanizm reguluje ten proces. W tym celu Yuriy Kirichok i zespół z Uniwersytetu Kalifornijskiego w San Francisco posłużyli się techniką "patch clamping", która pozwala na umieszczenie elektrod w oraz na komórce i jest zazwyczaj wykorzystywana do badania neuronów. Dzięki temu naukowcy mogli śledzić przepływ protonów przez błonę. Zauważyli, że w witce plemnika znajduje się dużo kanałów protonowych Hv1, reagujących na zmiany pH oraz stężenia cynku na zewnątrz komórki. Kiedy kanał się otwiera, ze środka wypływają protony, przez co wewnątrz rośnie pH i plemnik zaczyna się poruszać. Ponieważ pH macicy jest wyższe niż nasienia, różnica wartości pobudza męskie gamety do płynięcia. Wysokie stężenie cynku, występujące w drogach rodnych samicy i płynie nasiennym, zapobiega przedwczesnemu otwarciu kanałów protonowych, zanim plemnik osiąga stan gotowości. Gdy męskie komórki płciowe docierają do jajowodu, stężenie Zn nagle spada, a pH rośnie, co może odpowiadać za nadanie wyścigowi jeszcze większego tempa. Skoro kanały są wrażliwe na cynk, wyjaśnia to, czemu mężczyźni z niedoborem tego pierwiastka są mniej płodni. "Możesz sobie wyobrazić, że jeśli nie masz wystarczająco dużo cynku, plemniki uaktywniają się za wcześnie i wypalają się, zanim osiągną cel". Kirichok i inni odkryli też, że kanały otwierają się pod wpływem anandamidu. Wysokie jego stężenia znajdują się w pobliżu jaja. Anandamid wiąże się jednak z tymi samymi receptorami, co kannabinoidy z marihuany. Skutek? Prawdopodobnie taki sam jak przy zbyt niskich stężeniach cynku, ale trzeba to jeszcze potwierdzić. Kanały Hv1 plemników można wykorzystać podczas opracowywania leków wspomagających lub obniżających męską płodność.
-
Badacze z Lawrence Berkeley National Laboratory, laboratorium należącego do Uniwersytetu Kalifornijskiego w Berkeley, odkryli białko działające niczym przeciwsłoneczna roleta chroniąca liście roślin przed uszkodzeniem przez nadmierne naświetlenie przez słońce. Odkrycie to może pewnego dnia pozwolić na produkcję doskonalszych ogniw słonecznych, naśladujących funkcjonowanie żywego liścia. Kluczowe dla badań białko nazywa się CP29. Zabezpiecza ono rośliny przed nadmiarem docierającego do tkanki promieniowania, przepuszczając wyłącznie określoną maksymalną dawkę światła. Przypuszcza się, że za regulacją aktywności tego filtra stoją zmiany pH wewnątrz komórki. Fotosynteza, efekt niezliczonych lat ewolucji, jest procesem o fenomenalnej wręcz wydajności. Szacuje się, że rośliny są w stanie zamienić w energię chemiczną aż do 97% energii pochodzącej z światła słonecznego. Stanowi to jednak pewne zagrożenie, gdyż przy intensywnym naświetlaniu powierzchni liścia pojawia się groźba uszkodzenia tworzącej go tkanki. Rośliny znalazły jednak sposób na ochronę przed tym zjawiskiem: wykrywają zmiany pH charakterystyczne dla zmiany ilości padającego na nie światła i po przekroczeniu pewnego limitu uruchamiają mechanizm, którego zadaniem jest rozproszenie nadmiaru energii w nieszkodliwy dla rośliny sposób. Trzy lata temu badacze z Lawrence Berkeley National Laboratory, pracujący pod przewodnictwem prof. Grahama Fleminga, odkryli zeaksantynę - barwnik z grupy karotenoidów, który chroni komórki przed nadmiarem padającego światła. Cząsteczka tego związku przyjmuje na siebie część docierającej do liścia energii i zużywa ją na wyrzucenie ze swojej struktury pojedynczego elektronu. Pozwala to na zamianę energii promieniowania w energię ruchu wspomnianego elektronu. Do tej pory nie było jednak wiadomo, jaki czynnik reguluje ilość produkowanej zeoksantyny oraz jej interakcje z chlorofilem, najważniejszym związkiem odpowiedzialnym za proces fotosyntezy. Aby rozwiązać tę zagadkę, zespół prof. Fleminga zastosował techniki spektrofotometryczne, tzn. badanie reakcji poszczególnych cząsteczek na światło. Odkryto w ten sposób, że trzy białka, nazwane CP29, CP26 i CP24, są zdolne do przeprowadzenia reakcji usunięcia elektronu ze struktury zeoksantyny. Dalsze badania objęły wyłącznie analizę funkcjonalną proteiny CP29 jako tej, która jest najlepiej znana pod względem struktury cząsteczki oraz czynników genetycznych wpływających na jej syntezę. Naukowcom udało się ustalić, że powstające pod wpływem intensywnego naświetlania zmiany w pH wywołują zmianę rozkładu atomów wewnątrz molekuł białka, umożliwiając mu przeprowadzenie reakcji oderwania elektronu od zeaksantyny. Gdy tylko uda się rozproszyć odpowiednio wiele energii, pH wraca do normy, a białko ponownie traci swoją zdolność. Dzięki wspomnianemu mechanizmowi komórka jest w stanie pochłonąć więcej energii do przeprowadzenia fotosyntezy bez obawy o "przegrzanie" od nadmiaru padającego światła. Szczegóły odkrycia opublikowano w czasopiśmie Science.