Search the Community
Showing results for tags 'walenie'.
Found 9 results
-
Dotąd sądzono, że minóg morski (Petromyzon marinus) wykorzystuje walenie jedynie jako środek transportu. Okazuje się jednak, że choć sam mierzy maksymalnie 120 cm, dużo większe ssaki, np. kilkumetrowe płetwale karłowate, stają się jego ofiarami (Journal of Fish Biology). Naukowcy, którzy prowadzili badania na terenie Zatoki Świętego Wawrzyńca, zauważyli, że po odczepieniu minogów na skórze waleni zostaje rozjątrzona rana. Wygląda więc na to, że podczas podróży żywią się one krwią uprzejmego gospodarza. Ich pysk ma postać dużej przyssawki z 7 oddzielnymi zębami na dole i dwoma zrośniętymi na górze. Przystosowaniem do takiej formy odżywiania jest także ostry jak brzytwa język. Wcześniej ślady zębów minogów widywano m.in. na ciałach morświnów. Sfotografowano je przyczepione do wielorybów biskajskich (Eubalaena glacialis) czy delfinowatych z rodzaju Sousa. Na tej podstawie część biologów zaczęła przypuszczać, że minogi żywią się nie tylko krwią różnych ryb, ale i waleni. Inni argumentowali, że krwawiące ślady nie pozostały wcale po jedzeniu, ale były wymogiem związanym z długą trasą. Jeśli bowiem ktoś chce ją pokonać, nie wypadając w międzyczasie za burtę, musi się dobrze i pewnie "zaokrętować". Owen Nichols, dyrektor Marine Fisheries Initiative przy Provincetown Center for Coastal Studies podkreśla, że Zatoka Świętego Wawrzyńca była świetnym miejscem do obserwacji. Widok płetwali karłowatych nie należy tu do rzadkości (rejon stanowi letnie żerowisko tego gatunku), poza tym zwierzęta często wynurzają się, przez co widać dużą część ich ciała. Szefowa Ocean Research and Education Society Ursula Tscherter odpowiadała za część eksperymentu, polegającą na fotografowaniu waleni przed, w czasie i po odłączeniu P. marinus. Wg naszej wiedzy, są to pierwsze obserwacje takiego zachowania w czasie rzeczywistym. Dostarczają one przekonujących dowodów, że minogi przyczepione do waleni naruszają raczej skórę i przystępują do jedzenia, a nie mocują się zwyczajnie na czas podróży – twierdzi Nichols.
- 1 reply
-
- Owen Nichols
- Zatoka Świętego Wawrzyńca
- (and 8 more)
-
Na szkieletach padłych waleni odkryto nowe gatunki zwierząt, które żywią się tylko i wyłącznie w ten sposób. To dość ryzykowne, bo choć wieloryby są duże, nigdy nie wiadomo, gdzie i kiedy umrą. Dzięki technikom badania DNA naukowcy z Uniwersytetu w Göteborgu stwierdzili, że zróżnicowanie gatunków "waleniożerców" jest o wiele większe niż dotąd sądzono. Szwedzi monitorowali ekosystem wokół ścierw wielorybów za pomocą podwodnych kamer. Jak zauważają biolodzy, jeden olbrzymi ssak to bogate źródło składników odżywczych i odpowiada takiej ich ilości, jaka spadałaby z powierzchni morza na dno przez 2000 lat. Nic dziwnego, że do takiej padliny tłumnie przybywają zainteresowane mięsem rekiny czy śluzice, a na końcu organizmy wykorzystujące szkielet. Na martwych wielorybach bardzo często znajduje się wieloszczety. Niektóre gatunki są tak wyspecjalizowane, że nie umiałyby przeżyć gdzie indziej. Osedax ukorzenia się np. w ścierwie wieloryba i drąży jego kości, a inne pożywiają się grubą warstwą bakterii zalegających na szkielecie. Akademicy z Göteborga opisali aż 9 nowych gatunków gustujących w bakteriach wieloszczetów. Cztery z nich znaleziono na ścierwach zlokalizowanych na głębokości 125 metrów na terenie Parku Narodowego Kosterhavet u wybrzeży Szwecji. Pozostałe występowały w wodach koło Kalifornii. Dzięki analizie molekularnej udało się wyróżnić ukryte gatunki. Ich przedstawiciele wyglądają identycznie jak inny gatunek (podobieństwo morfologiczne), ale różnią się genetycznie. Przystosowanie do żerowania na ścierwach wielorybów rozwinęło się u gatunków o różnym pochodzeniu ewolucyjnym. Miało to miejsce w różnym czasie. Okazało się też, że pewne gatunki, które dotąd uznawano za kosmopolityczne, tj. występujące w wielu miejscach na Ziemi, są w rzeczywistości gatunkami ukrytymi.
-
- gatunki ukryte
- żywić się
-
(and 7 more)
Tagged with:
-
Naukowcy z instytutu Scripps Oceanography opracowali metodę pozwalającą na ustalenie wielkości ciał oraz niektórych organów wewnętrznych kaszalotów na podstawie wytwarzanych przez nie dźwięków. Technika ta może stać się ważnym narzędziem dla badaczy pracujących nad ochroną tych morskich gigantów. Idea identyfikacji osobników kaszalota na podstawie dźwięków ma już kilkadziesiąt lat, lecz nigdy dotąd nie udało się połączyć analizy akustycznej oraz nagrywania zachowań zwierząt za pomocą kamer. Przełomu dokonało dwoje badaczy: Delphine Mathias i Aaron Thode. Przez długi czas za największą przeszkodę w badaniach nad kaszalotami uznawano znaczną głębokość, na której zwierzęta te polują. Naukowcy wykorzystali jednak fakt, iż te morskie olbrzymy podkradają się w pobliże łodzi rybackich i wyławiają ryby schwytane, lecz jeszcze nie wyłowione przez ludzi. Wyjątkowo atrakcyjnym celem dla waleni były kutry łowiące ryby zwane anoplopomami (A. fimbria). Ich załogi chwytają ryby na rzędy krótkich sznurów z doczepionymi hakami zawieszone wzdłuż kilkusetmetrowej liny. Badania ułatwiał dodatkowo fakt, iż dźwięki wytwarzane przez kutry najwyraźniej wabiły kaszaloty. Nietypowa forma "kradzieży" jest dla waleni na tyle atrakcyjną formą zdobywania pożywienia, że rezygnują one ze swojej naturalnej tendencji do polowania w samotności i pozyskują pokarm wspólnie. Nie jest to jednak proste - jeden z osobników musi chwycić linę i potrząsać nią, podczas gdy pozostałe czatują i chwytają ryby, które odczepiły się od haków. Przy tak skomplikowanej strategii polowań było oczywiste, że sprawna wymiana informacji jest rzeczą niezbędną. Dźwięki wabiące walenie do łodzi zidentyfikowano już kilka lat temu, lecz naukowcy postanowili pójść za ciosem i dokonać bardziej szczegółowych obserwacji zwierząt za pomocą kamer. Efektem takiego podejścia był przełomowy materiał dźwiękowo-wizualny, na podstawie którego udało się uzyskać nowe, istotne informacje na temat kaszalotów. Analiza zebranych informacji pozwoliła na zaobserwowanie wyraźnej zależności pomiędzy rozmiarem zwierzęcia i charakterystyką wytwarzanych przez nie fal dźwiękowych. Co więcej, analiza sygnałów akustycznych pozwala na określenie rozmiaru organów wewnętrznych odpowiedzialnych za wytwarzanie niektórych rodzajów cennego dla ludzi wielorybiego tłuszczu. Badania Mathias i Thode'a mogą mieć istotne znaczenie dla ochrony waleni. Dokładna identyfikacja ich populacji jest bowiem rzeczą kluczową dla ustalenia kondycji osobników oraz szans gatunku na przetrwanie.
-
Pierwsze zamieszkujące Ziemię walenie rodziły swoje potomstwo na lądzie - dowodzą naukowcy z amerykańskiej Narodowej Fundacji Nauki. O prawdziwości postawionej przez nich tezy mają świadczyć szczątki odkryte na terenie Pakistanu. Liczące 47,5 miliona lat pozostałości pradawnych, lądowo-morskich przodków waleni odkryto w latach 2000 oraz 2004, lecz obszerne dane na ich temat opublikowano dopiero teraz. Jak tłumaczy H. Richard Lane, kierownik projektu związanego z badaniem znalezisk, to niezwykłe odkrycie umacnia nasze przekonanie, że współczesne walenie wywodzą się od swoich lądowych przodków. Odnalezione w Pakistanie szczątki były z początku wielkim zaskoczeniem dla ich odkrywców. Kiedy pierwszy raz zobaczyliśmy małe zęby, pomyśleliśmy, że mamy do czynienia z niewielkim dorosłym waleniem, ale gdy odsłanialiśmy resztę znaleziska zauważyliśmy żebra, które był zbyt duże, by pasować do tych zębów, tłumaczy Philip Gingerich, szef zespołu pracującego przy wykopaliskach. Pod koniec dnia zdaliśmy sobie sprawę, że odnaleźliśmy samicę walenia wraz z płodem. Gatunek, do którego należały odnalezione organizmy, został nazwany Maiacetus inuus. Pierwsza część nazwy oznacza "walenią matkę", zaś druga pochodzi od imienia rzymskiego boga płodności. O tym, że odkryte zwierzęta mogły stanowić pośrednie ogniwo ewolucji pomiędzy ssakami lądowymi i wodnymi, może świadczyć położenie płodu w łonie matki. Był on skierowany głową w kierunku pochwy, zupełnie jak u ssaków lądowych, lecz nie u żyjących obecnie waleni. Sugeruje to, że poród odbywał się na lądzie. Co więcej, stosunkowo dobrze rozwinięte zęby płodu oznaczają według badaczy, że zwierzę to było od początku życia zmuszone do samoobrony i zdobywania pożywienia na własną rękę, co jest u współczesnych waleni niespotykane. Przedstawiciele Maiacetus inuus żyli najprawdopodobniej w stadach, w których obowiązywało najprawdopodobniej "równouprawnienie" obu płci. Świadczyć o tym mają podobne rozmiary ciał (samice były co prawda większe, lecz zaledwie o 12%). Oznacza to najprawdopodobniej, że przedstawiciele żadnej z płci nie byli w stanie ściśle kontrolować porządku w stadzie i dobierać sobie partnerów do rozrodu. Budowa szkieletu przedstawicieli odkrytego gatunku pozwalała im najprawdopodobniej na pływanie z wykorzystaniem wszystkich czterech kończyn. Dodatkowo przednie z nich pozwalały im na opieranie części masy ciała właśnie na nich, lecz, zdaniem Gingericha, były one zbyt słabe, by umożliwić wyprawy w rejony odległe od brzegu. Wiele wskazuje na to, że Maiacetus inuus był ogniwem pośrednim na drodze od ssaków lądowych do morskich. Dokładne analizy jego szkieletu dostarczają cennych informacji na temat procesu adaptacji do życia w wodzie oraz stopniowego przekształcania się ich fizjologii oraz zachowań. To istne kamienie z Rosetty, podsumowuje Gingerich i dodaje: umożliwiają one wgląd w historię życia wymarłych zwierząt, która nie mogłaby być poznana w żaden inny sposób.
-
Badając cieśniny Wetar i Ombai, naukowcy z Timoru Wschodniego i Australii natrafili na prawdziwy podwodny eden. W pobliżu głębokiego kanału morskiego zgromadziło się wiele rzadkich gatunków, m.in. płetwale błękitne, wale dziobogłowe, grindwale pacyficzne, zwane też pilotami, delfiny grubogłowe i 6 innych rodzajów delfinów. Naukowcy nazwali nowo odkryty obszar hot spotem. Zaskoczyła ich obfitość, zróżnicowanie i zagęszczenie zwierząt, z których większość podlega ochronie. W ciągu jednego tylko dnia w 8 "podzbiornikach" zlokalizowanych wzdłuż 48-km odcinka wybrzeża doliczono się aż 2000 waleni. Zespół Karen Edyvane posłużył się tradycyjną indonezyjską łodzią z drewna. Jest ona dość długa i mierzy 20 metrów. Obie eksplorowane cieśniny są głębokie (3000 m), przebiega przez nie trasa migracji zwierząt przemieszczających się między Pacyfikiem a Oceanem Indyjskim. Z możliwości oferowanych przez naturę korzystają także łodzie podwodne marynarek wojennych Australii i USA.
-
- Wetar
- kanał morski
- (and 5 more)
-
W jaki sposób poruszały się w wodzie prehistoryczne walenie? Czy służył do tego ogon, czy kończyny? Do niedawna, z braku dostępu do skamieniałości, odpowiedź na to pytanie była trudna. Wygląda jednak na to, że naukowcy przybliżyli nas do rozwiązania tej zagadki. Odkrycia dokonał zespół prowadzony przez dr. Marka D. Uhena, paleontologa pracującego dla Uniwersytetu Alabama. Naukowcy odnaleźli wyjątkowo dobrze zachowane szczątki pradawnego walenia na terenach należących do stanów Alabama i Mississippi. Dotychczasowe badania sugerowały, że pierwsi przedstawiciele tych morskich zwierząt poruszali się dość niezgrabnie wiosłując wszystkimi czterema kończynami, zachowując przy tym zdolność życia na lądzie. Wiadomo było także, że niektóre żyjące znacznie później walenie miały płetwy ogonowe, lecz nie było jasne, jak wyglądały kolejne etapy ich przeobrażenia do ich dzisiejszej formy. Teraz, dzięki badaniom amerykańskiego paleontologa, posiadamy potrzebną wiedzę. Najlepiej zachowanym (i przez to najważniejszym) wykopaliskiem odnalezionym przez dr. Uhena jest szkielet przedstawiciela wymarłego już gatunku Georgiacetus vogtlensis. Zwierzęta te były znane wcześniej i wiadomo było, że posiadały cztery w pełni wykształcone kończyny (w tym potężnie zbudowane tylne), lecz nie było jasne, czy były one samodzielnym organem "napędowym", czy też równolegle z nimi zwierzę używało płetwy ogonowej. Szkielety odkryte na terenie Alabamy i Mississippi są pierwszymi odkrytymi okazami zawierającymi nieznane dotąd kości ogona. Ich analiza wykazuje, że waleń nie posiadał szerokiej płetwy ogonowej, co oznacza, że przedstawiciele tego rzedu ssaków poruszali się w wodzie dzięki ruchom potężnych nóg. Dopiero z czasem doszło do ich stopniowej degeneracji i przejęcia funkcji napędowej przez ogon. Co ciekawe, poruszanie w wodzie było najprawdopodobniej możliwe dzięki ruchom bioder z lewa na prawo i odwrotnie, nie zaś w płaszczyźnie pionowej, jak ma to miejsce u dzisiejszych waleni. Dodatkowych informacji o odkryciu dostarcza czasopismo Journal of Vertebrate Paleontology.
-
Uwaga, delfiny: ograniczenie prędkości do 54!
KopalniaWiedzy.pl posted a topic in Nauki przyrodnicze
Gil Iosilevskii i Danny Weihs, naukowcy z Instytutu Technologii Technion w Hajfie, określili największą dopuszczalną dla delfina prędkość. Płynąc blisko powierzchni wody, nie może on przekraczać 54 km/h, ponieważ wywołuje to ból. Z kolei tuńczyki nie mają już tego typu ograniczeń (Journal of the Royal Society Interface). Badacze przeprowadzili wyliczenia, które pozwoliły im skonstruować model ogona i płetw ryb, takich jak wspominany tuńczyk czy makrela, oraz waleni, np. delfina. W ten sposób chcieli wyznaczyć maksymalną osiąganą przez te zwierzęta prędkość. Stwierdzili, że o ile u mniejszych ryb czynnikiem ograniczającym jest siła mięśni, o tyle u większych istot (tuńczyków i delfinów) zależy to chociażby od częstotliwości, z jaką są one w stanie poruszać ogonem, by wprawić się w ruch ku przodowi. Inną kwestią, którą należy wziąć pod uwagę, jest tzw. kawitacja, czyli tworzenie się wokół ogona mikroskopijnych bąbli. Dzieje się tak, gdyż pod wpływem zmiany ciśnienia zachodzi gwałtowne przejście substancji, tutaj wody, z fazy ciekłej do gazowej. Delfiny, ale nie tylko one, mają w ogonie zakończenia nerwowe, co sprawia, że przy pewnej prędkość kawitacja zaczyna generować nieprzyjemne doznania. Pod wpływem ruchów płetw woda przyspiesza, a więc, zgodnie z zasadą zachowania energii, musi zmaleć ciśnienie statyczne płynu. Im niższe ciśnienie, tym niższa temperatura wrzenia. Po opuszczeniu przez ciecz okolicy przyspieszonego przepływu pęcherzyki gazu zaczynają się zapadać (implozja), a fale uderzeniowe wywołują mikrouszkodzenia. Trudno się dziwić, że dla delfina jest to nieprzyjemne... Z tego powodu nie może on przekroczyć 54 km/h, a byłoby najlepiej, gdyby utrzymał prędkość poniżej 36 km/h. Tuńczyki nie mają w ogonie zakończeń nerwowych i dlatego płynąc, mogą wyjść poza granicę wyznaczoną dla waleni. Nie oznacza to wcale, że nic im się przy tym nie dzieje. Widywano już tuńczyki z uszkodzeniami ciała wywołanymi przez kawitację. Kawitacja nie tylko wyrządza krzywdę, ale i spowalnia tuńczyki. Kiedy bąble implodują, zaburzają bowiem przepływ wody nad płetwami i ogonem. Chcąc rozwinąć większą szybkość, i delfiny, i tuńczyki muszą zejść głębiej, bo tam zmniejsza się kawitacja. Nie wiadomo, jakiego rzędu rekordy prędkości są tam bite. -
Walenie, grupa ssaków morskich, do której należą m.in. delfiny i humbaki, posiadają nadzwyczajne zdolności słuchowe i komunikacyjne, a także przejawiają złożone zachowania społeczne. W ramach najnowszych badań, opublikowanych 27 listopada w Anatomical Record (oficjalnym magazynie Amerykańskiego Stowarzyszenia Anatomów), porównano mózgi humbaków z mózgami kilku innych gatunków waleni. Wykazały one, że w mózgach tych pierwszych występują typy neuronów znajdowane także w mózgach ludzi. Sugeruje to, że ewolucja określonych gatunków waleni i hominidów przebiegała podobnymi ścieżkami. Mimo świetnego zrozumienia biologii humabków, praktycznie nie zajmowano się budową ich mózgu, pozostawiając tym samym bez odpowiedzi pytanie, w jaki sposób struktura mózgu wpływa na złożone zdolności behawioralne i komunikacyjne tych zwierząt. Chociaż stosunek masy mózgu do masy ciała jest u fiszbinowców (podrzędu waleni, do którego należą humabki) mniejszy niż wśród zębowców (drugiego z 2 podrzędów waleni, który reprezentują np. delfiny), struktura i rozmiary ich mózgu sugerują, że one również mogą się poszczycić skomplikowaną historią ewolucyjną. Patrick R. Hof oraz Estel Van der Gucht z Wydziału Neuronauk nowojorskiej Mount Sinai School of Medicine zbadali mózgi dorosłych humbaków i porównali je z mózgami innych fiszbinowców (finwali) i mózgami kilku gatunków zębowców, m.in.: delfinów butlonosych, delfinów słodkowodnych z dorzecza Amazonki, kaszalotów oraz wali białych (biełuch). Naukowcy odkryli, że kora mózgowa humbaków przypomina pod względem stopnia złożoności korę mniejszych gatunków waleni, takich jak delfiny. Duży obszar kory prawdopodobnie odpowiada za zdolności słuchowe tych ssaków. Obecne studium wykazało, że jest on zorganizowany w jądra i zakręty. Największe zróżnicowanie odnotowano w zakresie budowy neuronów tworzących korę. Autorzy przypuszczają, że może ono wskazywać na różnice w funkcjonowaniu mózgu i zachowaniu, które nie zostały jeszcze rozpoznane i wyjaśnione. W mózgach humbaków, finwali i in. natrafiono na ślad wysp, czyli grup wyspecjalizowanych neuronów. Są to struktury, które powstały w toku ewolucji najprawdopodobniej po to, by usprawnić komunikowanie się między różnymi komórkami. Inną ważną cechą budowy ośrodkowego układu nerwowego humbaków jest obecność komórek wrzecionowatych w tych samych obszarach, co u człowiekowatych. Mimo że rola tych komórek nie jest dobrze poznana, uważa się, iż są one zaangażowane w procesy poznawcze i podlegają wyniszczeniu przez choroby neurodegeneracyjne, np. chorobę Alzheimera, oraz u pacjentów ze schizofrenią czy autyzmem. Komórki wrzecionowate znaleziono także w analogicznych obszarach mózgów zębowców z większymi mózgami, co sugeruje, że ich występowanie wiąże się w jakiś sposób z rozmiarami omawianego organu. Hof i Gucht uważają, że komórki wrzecionowate pojawiły się u człowiekowatych ok. 15 mln lat temu i od tej pory można je znaleźć w mózgach tak dużych małp, jak i ludzi, ale nie u mniejszych małp i innych naczelnych. U waleni wyewoluowały one wcześniej, mniej więcej 30 mln lat temu. Możliwe, że występowały u wszystkich przodków wali, ale przetrwały jedynie u gatunków z większymi mózgami. Nie da się też wykluczyć teorii, iż pojawiały się w toku ewolucji kilkakrotnie, w różnym czasie u różnych podrzędów. Jeden z tych razów przypadkowo zbiegł się w czasie z procesem mającym miejsce u dużych małp i w ten sposób staliśmy się świadkami jednego z rzadkich przykładów ewolucji równoległej. Wspólne cechy w budowie mózgów humbaków i ludzi doprowadziły do wytworzenia podobnych złożonych zachowań społecznych. Humbaki posługują się narzędziami, współpracują, tworzą koalicje. W ich szeregach zaobserwowano także zjawisko transmisji kulturowej.
-
Delfiny mogą mieć duże mózgi, ale, jak twierdzi naukowiec z RPA, szczury laboratoryjne, a nawet złote rybki z łatwością go przechytrzą. Paul Manger z University of the Witwatersrand w Johannesburgu twierdzi, że duże mózgi delfinów, waleni oraz morświnów są wynikiem bycia organizmem ciepłokrwistym w zimnej wodzie, a nie przejawem inteligencji. Utożsamiamy nasz duży mózg z inteligencją. Przez lata patrzyliśmy na inne mózgi, mając to w pamięci i zakładaliśmy, że w takim razie delfiny muszą być inteligentne — twierdzi Manger. Błąd logiczny takiego rozumowania tkwi w założeniu, że wszystkie mózgi są zbudowane w ten sam sposób. Kiedy przyglądamy się strukturze mózgu delfina, widać, że nie jest przystosowany do przetwarzania złożonych informacji. Neuroetolodzy przyglądający się poglądom Mangera na ewolucję mózgu są pewni, że wywołają one burzę, ponieważ większość ludzi kojarzyła delfiny z inteligencją, emocjami i innymi ludzkimi wartościami. Delfiny są postrzegane jako jedne z najmądrzejszych ssaków. Manger, którego badania opisano na łamach Biological Reviews of the Cambridge Philosophical Society, twierdzi, że w rzeczywistości jest zupełnie inaczej. Mózgi są zbudowane z neuronów i tkanki glejowej. Ta ostatnia ma tworzyć odpowiednie środowisko dla neuronów, by mogły prawidłowo funkcjonować, produkuje też ciepło, aby je ogrzać. Delfiny mają spory nadmiar tkanki glejowej i niewiele neuronów... Ich mózg nie jest stworzony do przetwarzania informacji, zaprojektowano go do zmagania się z wyzwaniami termicznymi. Manger twierdzi, że obserwacja zachowania tych ssaków potwierdza jego obrazoburczą teorię. Kiedy wkładasz zwierzę do skrzynki, nawet laboratoryjnego szczura lub gerbila, pierwszą rzeczą, jaką chce zrobić, jest wydostanie się z niej. Gdy nie przykryjesz słoja ze złotą rybką wieczkiem, w końcu z niego wyskoczy, by powiększyć swoją przestrzeń życiową. Ale delfin nigdy tego nie zrobi. W oceanariach murki oddzielające od siebie poszczególne baseny znajdują się tylko stopę lub dwie nad powierzchnią wody. Dlaczego tego nie robią? Ponieważ, jak twierdzi Manger, taka myśl nie przemknie nawet przez ich nieskomplikowany umysł. Delfiny przeskakują w parkach rozrywki przez obręcze, gdyż przysposobiono je do tego, stosując nagrody z jedzenia. Delfiny rzeczywiście mogą się wyuczyć do 16 reakcji na bodźce, ale jest to kwestia dobrego trenera, a nie inteligencji. Zachowanie oparte na schemacie bodziec-reakcja nie jest uważane za przejaw wysokiej inteligencji. Manger przypomina też, że pod wpływem nacisków opinii publicznej połowy tuńczyka przeniesiono w inne rejony, by uniknąć przypadkowego chwytania i zabijania delfinów. Gdyby naprawdę były inteligentne, wydostałyby się z sieci rybackich, ponieważ nie są wyciągane z wody.
- 6 replies
-
- delfin
- inteligencja
-
(and 9 more)
Tagged with: