Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'neurony'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 84 results

  1. Niewydolność serca wiąże się z pogorszeniem funkcjonowania poznawczego i utratą substancji szarej mózgu. Wg autorów badania, utrudnia to realizację zaleceń lekarza, np. pamiętanie o zażywaniu właściwych leków o wyznaczonej porze. Nasze wyniki pokrywają się z obserwacjami osób z niewydolnością serca, które mają problem z wdrożeniem złożonych zaleceń i sugerują, że wskazane są prostsze instrukcje. Prof. Osvaldo Almeida z Uniwersytetu Zachodniej Australii zbadał za pomocą testów poznawczych 35 pacjentów z niewydolnością serca (NS), 56 z chorobą niedokrwienną serca (ChNS), która często, ale nie zawsze towarzyszy niewydolności, oraz 64 zdrowe osoby (grupa kontrolna). Objętość istoty szarej w różnych częściach mózgu oceniano za pomocą rezonansu magnetycznego. Okazało się, że w porównaniu do grupy kontrolnej, pacjenci z niewydolnością serca wypadli gorzej pod względem pamięci bezpośredniej i długotrwałej, a także szybkości reakcji. W ramach naszego studium ustaliliśmy, że zarówno niewydolność, jak i choroba niedokrwienna serca wiążą się z utratą neuronów w określonych obszarach mózgu, które są ważne dla modulowania emocji i aktywności umysłowej. Jest ona silniej zaznaczona u osób z niewydolnością, ale może także występować u pacjentów z chorobą niedokrwienną bez niewydolności serca. [...] Ludzie z NS i ChNS wykazują, w porównaniu do grupy kontrolnej, drobne deficyty poznawcze. Ponownie są one bardziej widoczne u chorych z NS. Regiony, w których stwierdzono ubytki substancji szarej, odpowiadają za pamięć, wnioskowanie i planowanie. Istnieją dowody, że optymalizują one wydajność w wymagających wysiłku umysłowego złożonych zadaniach. W konsekwencji utarta komórek nerwowych w tych obszarach może upośledzić [...] pamięć, zdolność modyfikowania zachowania, hamowanie emocjonalne i poznawcze, a także organizację. O ile nam wiadomo, to pierwsze studium, w którym uwzględniono dodatkową grupę z ChNS, dzielącą czynniki ryzyka z NS. Pozwoliło nam to wykazać, że ubytki poznawcze mogą być niespecyficznym skutkiem narastającego wyniszczenia chorobą sercowo-naczyniową. Analizy ujawniły, że subtelnych deficytów nie da się wyjaśnić upośledzeniem frakcji wyrzutowej lewej komory, powszechnymi schorzeniami współwystępującymi czy markerami biochemicznymi. W przyszłości Almeida zamierza ustalić, za pośrednictwem jakich szlaków fizjologicznych HF prowadzi do utraty neuronów i pogorszenia funkcjonowania poznawczego i czy zmiany mają charakter postępujący.
  2. Betacellulina (BTC), białko wytwarzane przez naczynia krwionośne mózgu, może wspomóc regenerację przy pourazowym uszkodzeniu mózgu lub w przebiegu jakiejś choroby, np. demencji. Okazuje się, że u myszy BTC stymuluje mózgowe komórki macierzyste, by się dzieliły i tworzyły nowe neurony. Neurogeneza - powstawanie nowych neuronów - jest u ssaków ograniczona głównie do okresu prenatalnego i tuż po urodzeniu, jednak wykazano, że dzięki 2 niszom komórek macierzystych może zachodzić również w dorosłym mózgu. Nisze dostarczają neurony do opuszki węchowej, która odpowiada za powonienie i do zaangażowanego w pamięć i uczenie hipokampa (tutaj trafiają komórki z zakrętu zębatego formacji hipokampa). Nisze wytwarzają różne sygnały, które kontrolują tempo podziału komórek macierzystych i wpływają na to, do jakich komórek się one zróżnicują. W zwykłych warunkach komórki macierzyste z tych okolic wytwarzają neurony, ale w odpowiedzi na uraz, np. udar, mają tendencję do przekształcania się w glej, co prowadzi do powstawania blizn. Nisze komórek macierzystych w mózgu nie są dobrze poznane, ale wydaje się, że los komórek macierzystych kontroluje wiele współdziałających czynników. Sądzimy, że czynniki te są doskonałe wyważane, by precyzyjnie kontrolować liczbę nowych neuronów, które mają zaspokoić rozmaite zapotrzebowania zdrowego narządu. W przypadku urazu bądź choroby komórki macierzyste nie radzą sobie ze zwiększonym zapotrzebowaniem albo kosztem długoterminowych napraw, traktują priorytetowo kontrolę [świeżych] uszkodzeń - opowiada dr Robin Lovell-Badge z brytyjskiego Medical Research Council. Naukowcy pracowali na modelu mysim. Badali wpływ BTC, które powstaje w komórkach naczyń krwionośnych w obrębie nisz, na tempo neurogenezy. Okazało się, że betacellulina stanowi sygnał dla neuroblastów (komórek macierzystych neuronów i komórek gleju), by zaczęły się dzielić. Podanie gryzoniom dodatkowego BTC zwiększyło liczbę komórek macierzystych, prowadząc do powstania wielu nowych neuronów. Kiedy zwierzętom zaadministrowano przeciwciała blokujące aktywność BTC, neurogeneza została zahamowana. Ponieważ betacellulina powoduje, że komórki macierzyste przekształcają się raczej w neurony niż w glej, można ją wykorzystać w medycynie regeneracyjnej. W przyszłości akademicy zamierzają zbadać funkcje BTC w zdrowym mózgu oraz sprawdzić, jaką funkcję w uszkodzonym mózgu spełnia samo białko, a także BTC w połączeniu z przeszczepem nerwowych komórek macierzystych.
  3. Komórki gleju pełnią wiele różnych funkcji, m.in. stanowią zrąb dla neuronów mózgu, chronią je, odżywiają czy współtworzą barierę krew-mózg. Teraz okazało się, że nie są zwykłym klejem (ich nazwa pochodzi od gr. glia - klej), ale w znacznym stopniu odpowiadają za plastyczność mózgu. Wpływają na działanie synaps i w ten sposób pomagają segregować informacje potrzebne do uczenia. Komórki gleju są jak nadzorcy. Regulując synapsy, kontrolują przepływ danych między neuronami i oddziałują na przetwarzanie informacji oraz proces uczenia - tłumaczy Maurizio De Pittà, doktorant z Uniwersytetu w Tel Awiwie. Opiekunem naukowym De Pitty był prof. Eshel Ben-Jacob. Współpracując z kolegami z USA i Francji, student stworzył pierwszy na świecie model komputerowy, uwzględniający wpływ gleju na synaptyczny transfer danych. De Pittà i inni domyślali się, że glej może odgrywać ważną rolę w pamięci i uczeniu, ponieważ tworzące go komórki występują licznie zarówno w hipokampie, jak i korze mózgowej. Na każdy neuron przypada tam od 2 do 5 komórek gleju. Aby potwierdzić swoje przypuszczenia, naukowcy zbudowali model, który uwzględniał wyniki wcześniejszych badań eksperymentalnych. Wiadomości przesyłane w sieciach mózgu powstają w neuronach, ale glej działa jak moderator decydujący, które informacje zostaną przesłane i kiedy. Może albo wywołać przepływ informacji, albo zwolnić aktywność synaps, gdy staną się nadmiernie pobudzone. Jak nadmienia prof. Ben-Jacob, wygląda na to, że glej jest dyrygentem, który dąży do optymalnego działania mózgu. Wbrew pozorom, przydatność modelu De Pitty nie ogranicza się wyłącznie do lepszego zdefiniowania funkcji gleju, ponieważ może zostać wykorzystany np. w mikrochipach, które naśladują sieci występujące w mózgu czy podczas badań nad padaczką i chorobą Alzheimera. W przypadku epilepsji glej wydaje się nie spełniać funkcji modulujących, a w przebiegu demencji nie pobudza przekazywania danych.
  4. Amerykańscy naukowcy odkryli lek, który odwraca w neuronach zmiany związane ze starzeniem. Zwiększa acetylację histonów (a częściowa dekondensacja chromatyny zwiększa jej dostępność dla czynników transkrypcyjnych) i wskutek tego plastyczność synaps. To bardzo ważne, bo na poziomie komórkowym warunkuje ona dobrą pamięć. Dr Cui-Wei Xie z Uniwersytetu Kalifornijskiego w Los Angeles ustaliła, że w porównaniu do młodych szczurów, w hipokampie (ośrodku pamięciowym) starszych osobników występuje mniej neurotropowego czynnika pochodzenia mózgowego (ang. brain-derived neurotrophic factor, BDNF) oraz słabsza acetylacja histonów genu Bdnf. Jedno jest powiązane z drugim, ponieważ słabsza ekspresja genu oznacza niższe stężenie białka. BDNF sprzyja plastyczności synaps, czyli zmianie siły i budowy połączeń między neuronami, jest więc ważnym graczem w sprawnie funkcjonującej pamięci. Gdy Amerykanie podali lek starszym gryzoniom, nasiliła się acetylacja histonów. Zwierzęta mogły więc produkować więcej BDNF, a plastyczność synaptyczna powróciła do poziomu występującego u młodych szczurów. Poza tym zespół stwierdził, że potraktowanie tkanki hipokampa innym lekiem, który aktywuje receptory BDNF, również likwiduje deficyty plastyczności synaptycznej. To z nim naukowcy wiążą spore nadzieje. Wydaje się, że następujące w ciągu życia zmiany w regulacji genów pozbawiają mózg kluczowego czynnika wzrostu i wywołują awarię maszynerii wspierającej pamięć, funkcje poznawcze i żywotność neuronów - podsumowuje dr Gary Lynch z Uniwersytetu Kalifornijskiego w Irvine.
  5. Ćmy rolnice tasiemki (Noctua pronuba) są tak wyczulone na ultradźwięki polujących nietoperzy, że neurony w ich uchu reagują na ruch błony bębenkowej odpowiadający wielkości atomu. Biolodzy z Uniwersytetu w Bristolu tłumaczą, że gdyby błonę bębenkową przeskalować, by miała grubość ściany z cegieł, owad byłby w stanie wykryć przemieszczenie ścianki na grubość włosa. Brytyjczycy tłumaczą, że u motyli występuje narząd tympanalny, który stanowi rodzaj rezonatora pokrytego cienką błoną bębenkową. Znajdują się na niej skolopofory, zbudowane z trzech komórek - jednej nerwowej i dwóch okrywających. Podobnie jak w naszym uchu wewnętrznym, drgania są przekształcane w impulsy elektryczne. Wibracje można opisać za pomocą częstotliwości (jak szybko błona się porusza) oraz natężenia (jak bardzo się przemieszcza). Dotąd nie wiedziano jednak, które z właściwości dźwięku są przekładane na sygnał nerwowy. Zespół dr Hannah ter Hofstede spróbował więc jednocześnie monitorować aktywność neuronów ćmy i drgania błony bębenkowej w czasie podawania dźwięków o różnych częstotliwościach i natężeniu. Brytyjczycy zauważyli, że do pobudzenia komórek nerwowych wystarczyło przemieszczenie błony rzędu 140 pikometrów, co odpowiada wielkości niektórych atomów. Gdyby neurony po prostu wykrywały dźwięki, to drobne przesunięcie byłoby takie samo dla wszystkich częstotliwości, różniłaby się tylko prędkość wibracji. [W świetle uzyskanych wyników wygląda jednak na to], że neurony słuchowe są aktywowane przez niewielkie przemieszczenia błony bębenkowej, a nie częstotliwość jej drgań - tłumaczy dr Holger Goerlitz. Pewnym wyjątkiem są niskie dźwięki o częstotliwości poniżej 15 kHz, w przypadku których do pobudzenia neuronów dochodziło przy większych przemieszczeniach błony bębenkowej. Ćmy są głuche na niskie, nieszkodliwe dźwięki z tła [muszą być naprawdę głośne, by je odnotowały], co umożliwia im dokładniejsze dostrojenie do ważniejszych odgłosów: ultradźwięków wydawanych przez polujące na nie drapieżniki - podsumowuje dr Hannah ter Hofstede.
  6. Głęboka stymulacja specyficznych obszarów mózgu prowadzi do powstawania nowych neuronów i polepszenia pamięci oraz uczenia. Głęboka stymulacja mózgu [ang. deep brain stimulation, DBS] okazała się dość skuteczna w leczeniu zaburzeń ruchowych, np. w chorobie Parkinsona, lecz ostatnio zaczęto badać jej efektywność w przypadku szeregu zaburzeń neurologicznych i psychiatrycznych – tłumaczy dr Paul Frankland z Hospital for Sick Children (SickKids) w Toronto. Wiele wskazuje na to, że DBS będzie można wykorzystać w terapii zaburzeń pamięci. W ciągu życia nowe neurony powstają w różnych rejonach hipokampa, który odpowiada m.in. za pamięć i uczenie. Zespół Franklanda wykazał, że u dorosłych myszy godzinna stymulacja kory śródwęchowej, która jest ściśle powiązana anatomicznie i funkcjonalnie z formacją hipokampa, skutkuje 2-krotnym zwiększeniem liczby nowych neuronów w hipokampie. Nasilenie produkcji nowych neuronów utrzymywało się co prawda tylko przez tydzień, ale wszystkie powstałe w tym czasie komórki rozwijały się normalnie i tworzyły połączenia z sąsiednimi neuronami. Po 6 tygodniach naukowcy postanowili przetestować pamięć gryzoni. Sprawdzali, jak szybko myszy nauczą się poruszać po podeście zanurzonym w niewielkiej kałuży. W porównaniu do zwierząt z grupy kontrolnej, przedstawiciele grupy DBS spędzali więcej czasu na pływaniu w pobliżu podestu, co wskazuje, że stymulacja kory śródwęchowej usprawniła uczenie przestrzenne.
  7. Ostatnie eksperymenty na szczurach wykazały, że wystąpienie tzw. fali śmierci – wolnej fali o dużej amplitudzie – wcale nie musi wskazywać na śmierć neuronów mózgu i nie oznacza, że procesy, które zaszły, są nieodwracalne. Zespół Michela van Puttena z Universiteit Twente dekapitował gryzonie. Minutę później pojawiało się trwające ok. 5-15 s wyładowanie (PLoS ONE). Naukowcy zaprezentowali model obliczeniowy pojedynczego neuronu, a także wewnątrz- i zewnątrzkomórkowego stężenia jonów. Obserwowana fala była powodowana przez oscylacje potencjału błonowego. Występują one po ustaniu działania pomp sodowo-potasowych, co prowadzi do nadmiaru zewnątrzkomórkowego potasu. Oscylacje można opisać za pomocą równań Hodgkina-Huxleya dla kanałów sodowych oraz potasowych. W połączeniu z działaniem filtra górnoprzepustowego, który tłumi część widma sygnału powyżej swojej częstotliwości odcięcia (jego rola polega na usunięciu z sygnału EEG zakłóceń z sieci zasilającej/urządzeń zewnętrznych oraz powstałych na granicy skóra-elektroda-elektrolit), nagła depolaryzacja błony daje w elektroencefalogramie zapis w postaci fali śmierci. W rzeczywistości ta fala nie wskazuje na śmierć ani neuronów, ani jednostki. Parę miesięcy przed van Puttenem Anton Coenen z Radboud Universiteit Nijmegen i jego zespół zastanawiali się, czy odbieranie życia szczurom laboratoryjnym przez dekapitację jest etyczne, czy nie: czy zwierzęta szybko tracą przytomność, czy też cierpią. Akademicy pozbawiali głowy przytomne i znieczulone zwierzęta i w tym czasie wykonywali im EEG. U obu grup szczurów zapis EEG stawał się płaski po ok. 17 s od dekapitacji. Aktywność mózgu zmieniała się w ten sposób, że w ciągu 3,7 s gryzonie musiały najprawdopodobniej tracić przytomność. Minutę po zabiegu pojawiała się fala śmierci, którą Holendrzy uznali za przejaw ostatecznego zaniku potencjału błonowego i nieodwracalnej śmierci mózgu. W badaniach van Puttena także wystąpiła fala śmierci, ale neurolog nie zgodził się z interpretacją poprzedników. Wg niego, fala śmierci nie jest jeszcze punktem, od którego nie ma odwrotu. Nawet po fali śmierci komórki nerwowe mogą, przynajmniej teoretycznie, przyjść do siebie, jeśli przywrócone zostaną dostawy tlenu i glukozy. Ekipa van Puttena powołała się w tym miejscu m.in. na badania z 2002 r., które dowiodły, że neurony z obszarów podkorowych, pobrane od osoby uznanej kilka godzin wcześniej za zmarłą, żyją w laboratoryjnych hodowlach tkankowych przez wiele tygodni (artykuł Verwera, Dubelaara i innych ukazał się w piśmie Journal of Cellular and Molecular Medicine), a także na raport z pisma Stroke z 1981 r., którego autorzy zaobserwowali u szczurów powrót aktywności elektrycznej neuronów po 10-min niedokrwieniu.
  8. Niektóre komórki mózgu dysponują mechanizmem zabezpieczającym przed udarem niedokrwiennym. W jego trakcie i bezpośrednio po usuwają ze swojej powierzchni białka receptorów kwasu L-glutaminowego, wydzielanego w dużych ilościach podczas udaru. Zespół doktora Jacka Mellora z Uniwersytetu Bristolskiego badał dwa typy neuronów ze szczurzego hipokampa, który odgrywa ważną rolę w procesach pamięciowych oraz orientacji w przestrzeni. Podczas eksperymentów ograniczano dopływ tlenu, odtwarzając udar niedokrwienny. Brytyjczycy podkreślają, że choć wybrane do analiz neurony wykazują wiele podobieństw, jedna grupa (z obszaru CA1) jest wysoce podatne na uszkodzenie pod wpływem udaru, a druga (CA3) wykazuje o wiele większą oporność na uszkodzenia poudarowe. Mamy nadzieję, że jeśli zrozumiemy, dlaczego pewne neurony są oporne na uszkodzenia udarowe, będziemy w stanie opracować strategie, które pozwolą ochronić te bardziej wrażliwe. Dzięki modelowi laboratoryjnemu akademicy zauważyli, że neurony z obszaru CA3 dysponują mechanizmem zmniejszania podatności na uszkodzenia w czasie i tuż po udarze. Usuwanie receptorów kwasu L-glutaminowego jest wyzwalane przez pobudzenie receptorów adenozynowych A3 przez bardzo wysokie stężenia adenozyny, występujące wyłącznie podczas udaru. Co ciekawe, komórki CA1, które są podatne na uszkodzenia udarowe, nie mają receptorów A3. Nie mogą więc zareagować na udar, usuwając receptory kwasu L-glutaminowego.
  9. Neurony siatkówki potrzebują witaminy C do prawidłowego działania – ujawnili naukowcy z Oregon Health & Science University (OHSU). Odkryliśmy, że by poprawnie funkcjonować, komórki siatkówki muszą być skąpane w stosunkowo dużych dawkach witaminy C (i to zarówno z zewnątrz, jak i od środka) – wyjaśnia dr Henrique von Gersdorff. Ponieważ siatkówka stanowi część ośrodkowego układu nerwowego, sugeruje to, że prawdopodobnie witamina C odgrywa też znaczącą rolę w mózgu […]. Nikt nie zdawał sobie wcześniej sprawy z zakresu i stopnia wpływu kwasu askorbinowego na ten narząd. Receptory GABA, które wiążą kwas γ-aminomasłowy, są receptorami hamującymi, czyli obniżają aktywność neuronu postsynaptycznego. Naukowcy z OHSU odkryli, że przy niedoborach witaminy C receptory GABA przestają działać poprawnie. Jako że witamina C jest jednym z podstawowych przeciwutleniaczy, niewykluczone, że zapobiega przedwczesnemu zużyciu receptorów i komórek. Funkcja witaminy C w mózgu nie jest jeszcze dobrze poznana. Gdy organizm pozbawi się kwasu askorbinowego, najdłużej występuje on w mózgu. Być może mózg jest ostatnim miejscem, w którym powinno zabraknąć tej substancji – dywaguje von Gersdorff, który uważa, że doniesienia jego zespołu rzucą nieco światła na kilka chorób, w tym jaskrę i padaczkę. W ich przypadku dysfunkcyjne neurony w siatkówce i mózgu stają się zbyt pobudzone, bo receptory GABA nie działają, jak powinny. Być może dieta obfitująca w witaminę C będzie wpływać neuroochronnie na siatkówkę – zwłaszcza w przypadku osób szczególnie podatnych na jaskrę. Badania prowadzono na siatkówce karasi złocistych, która jest zbudowana podobnie do siatkówki ludzkiej.
  10. Podczas zawału część komórek serca obumiera. Dotąd chirurdzy nie umieli tego naprawić, jednak specjaliści z Brown University oraz India Institute of Technology Kanpur opracowali specjalną nanołatę. Stworzyli rodzaj rusztowania, w którego skład wchodzą nanowłókna węglowe i polimer - poli(kwas mlekowy–co–kwas glikolowy). Podczas testów udowodniono, że nanołata regeneruje zarówno kardiomiocyty, jak i neurony, co oznacza, że obumarły rejon powraca znów do życia (Acta Biomaterialia). Pomysł jest taki, by zastosować coś, co pomoże w regeneracji uszkodzonej tkanki, dzięki czemu otrzymamy zdrowe serce – opowiada David Stout ze Szkoły Inżynierii w Brown. Wzmocnienie serca jest bardzo istotne, ponieważ tkanka bliznowata osłabia narząd i zwiększa ryzyko kolejnych zawałów. Indyjsko-amerykański zespół nieprzypadkowo zdecydował się na nanorurki węglowe, są one bowiem doskonałymi przewodnikami, zapewniają więc sieć elektrycznych połączeń, na których serce polega, by móc stale bić. Naukowcy zespolili nanorurki, wykorzystując kopolimer kwasu mlekowego z kwasem glikolowym (PLGA). W ten sposób powstała siatka o długości ok. 22 milimetrów i grubości rzędu 15 mikronów. Wg Stouta, przypomina ona czarny bandaż. Podczas badań siatkę układano na podłożu szklanym i sprawdzano, czy kardiomiocyty ją skolonizują i się namnożą. Po 4 godzinach powierzchnię zaszczepionych kardiomiocytami włókien węglowych o średnicy 200 nanometrów kolonizowało 5-krotnie więcej komórek mięśnia sercowego niż próbkę kontrolną złożoną wyłącznie z kopolimeru. Po 5 dniach gęstość powierzchni była już 6-krotnie większa niż w próbce kontrolnej. Po 4 dniach gęstość neuronów również się podwoiła. Akademicy podkreślają, że nanołata działa, ponieważ jest elastyczna i wytrzymała, może się więc rozciągać i kurczyć jak prawdziwa tkanka serca. Zespół chce ulepszyć swój wynalazek, by dokładniej naśladować czynność elektryczną serca, a także zbudować model in vitro, żeby sprawdzić, jak materiał reaguje na bicie serca i jego napięcie elektryczne.
  11. Mózgowe ośrodki nagrody reagują również na negatywne doświadczenia. Naukowcy z Georgia Health Sciences University i East China Normal University uważają, że może to wyjaśnić pogoń niektórych osób za wrażeniami i dreszczykiem. Czekolada lub skok z wysokiego budynku, a nawet sama myśl o nich, wywołują produkcję dopaminy, czyli neuroprzekaźnika, który przyspiesza bicie serca i motywuje do działania – opowiada dr Joe Z. Tsien. Akademicy badali neurony dopaminergiczne w polu brzusznym nakrywki (łac. area tegmentalis ventralis) myszy. Wybrali właśnie ten rejon, ponieważ neurolodzy od dawna się nim interesują ze względu na rolę spełnianą w uzależnieniu od narkotyków i motywacji związanej z nagrodą. Chińsko-amerykański zespół ustalił, że wszystkie komórki reagowały w jakimś stopniu zarówno na dobre, jak i na złe doświadczenia, podczas gdy strach uaktywniał ok. 25% neuronów, prowadząc do wydzielenia większych ilości dopaminy. Tsien i inni posłużyli się warunkowaniem dźwiękiem, by skojarzyć określone parametry z dobrym lub złym doświadczeniem. Później do wywołania reakcji neuronów dopaminergicznych wystarczył sam dźwięk. Wierzyliśmy, że dopamina zawsze wiąże się z nagrodą i przetwarzaniem przyjemnych uczuć, tymczasem odkryliśmy, że neurony dopaminergiczne są również stymulowane [...] przez negatywne zdarzenia. Tsien podkreśla, że genetyka może wpłynąć na liczbę komórek nerwowych aktywowanych przez złe zdarzenia.
  12. Podczas eksperymentu finansowanego przez amerykańskie Narodowe Instytuty Zdrowia naukowcy wyeliminowali u grupy szczurów szumy uszne (tinnitus). Dokonali tego, stymulując nerw błędny (X) i odtwarzając jednocześnie zestaw dźwięków o różnych częstotliwościach. Procedurę powtarzali kilkaset razy dziennie przez kilka tygodni. Dzwonienie w uszach bardzo uprzykrza ludziom życie, ale dotąd było nieuleczalne. Dotychczasowe terapie generalnie polegały na maskowaniu dźwięku lub nauce ignorowania go – opowiada dr James F. Battey, dyrektor Narodowego Instytutu Głuchoty i Innych Zaburzeń Komunikacyjnych (National Institute on Deafness and Other Communication Disorders, NIDCD). Najnowsza metoda przypomina zaś przyciśnięcie w mózgu guzika reset. Pomaga w ponownym przetrenowaniu części mózgu interpretującej dźwięki. W ten sposób nieprawidłowo działające neurony zostają zawrócone ze złej ścieżki i wracają do swojego pierwotnego stanu. Wskutek tego piszczenie ustaje. Badania zostały przeprowadzone przez naukowców z Uniwersytetu Teksańskiego oraz firmy MicroTransponder z Dallas. Tinnitus to objaw doświadczany przez niektóre osoby w wyniku utraty słuchu. Kiedy komórki czuciowe ucha wewnętrznego ulegają uszkodzeniu, np. pod wpływem głośnego dźwięku, doprowadza to do zmiany sygnału wysyłanego z ucha do mózgu. Z nie w pełni wyjaśnionych przyczyn część pacjentów zaczyna wtedy słyszeć szumy. Sądzimy, że [...] kora słuchowa deleguje za dużo neuronów do pewnych częstotliwości i wtedy wszystko zaczyna iść źle. Jako że zbyt wiele komórek nerwowych przetwarza te same częstotliwości, wyładowują się silniej, niż powinny – tłumaczy dr Michael Kilgard. Poza tym neurony wyładowują się częściej, gdy jest cicho. Na początku zespół próbował wywołać zmiany w korze słuchowej szczurów, kojarząc stymulację nerwu błędnego z odtwarzaniem pojedynczego dźwięku. Gdy nerw jest pobudzany, wydziela się acetylocholina, norepinefryna i inne związki, które wspomagają zachodzenie zmian w mózgu. Amerykanie chcieli sprawdzić, czy można spowodować, by po pewnym czasie więcej neuronów zaczęło reagować na odtwarzany dźwięk. Przez 20 dni 300 razy dziennie ośmiu gryzoniom odtwarzano wysoki dźwięk o częstotliwości 9 kiloherców. W czasie, gdy dźwięk wybrzmiewał, elektroda delikatnie stymulowała nerw błędny. Okazało się, że w porównaniu do kontrolnej grupy zwierząt, liczba neuronów dostrojonych do częstotliwości 9 herców wzrosła aż o 79%. W następnej grupie szczurów ekipa Kilgarda losowo odtwarzała dwa dźwięki – jeden o częstotliwości 4 kHz i drugi o częstotliwości 19 kHz. Nerw błędny stymulowano jednak wyłącznie przy odgrywaniu wyższego dźwięku. O ile liczba komórek nerwowych reagujących na 19 kHz wzrosła o 70%, o tyle w grupie 4-hercowej neuronów wręcz ubyło. W ten sposób wykazano, że nie wystarczy sam dźwięk i trzeba jeszcze pobudzać nerw X. Na kolejnym etapie eksperymentu badacze sprawdzali, czy można wyeliminować tinnitus u zwierząt wystawionych na oddziaływanie hałasu, zwiększając liczbę neuronów dostrojonych do częstotliwości innej niż częstotliwość szumów usznych. Grupa zwierząt przechodziła więc 300 razy na dobę stymulację nerwu błędnego (ang. vagus nerve stimulation, VNS), połączoną z odtwarzaniem różnych dźwięków o częstotliwości zbliżonej do szumów. Procedurę powtarzano przez ok. 3 tygodnie. Część grupy kontrolnej poddawano VNS, podczas gdy reszta nie robiła nic lub słuchała tylko dźwięków. W obu grupach pomiary przeprowadzono w miesiąc po ekspozycji na hałas, dziesięć dni po rozpoczęciu terapii oraz dzień, tydzień i 3 tygodnie po zakończeniu leczenia. U gryzoni z grupy eksperymentalnej obiecujące rezultaty występowały na każdym etapie terapii, także w połowie – wszystko wskazuje więc na to, iż tinnitus zniknął. U zwierząt z grupy kontrolnej szumy uszne cały czas były obecne. Gdy naukowcy obserwowali 2 szczury kontrolne i 2 eksperymentalne przez dodatkowe dwa miesiące, u leczonych VNS i dźwiękami osobników korzyści utrzymywały się przez 3,5 miesiąca od potraktowania uszkadzającym słuch hałasem. U szczurów kontrolnych deficyty były nadal zauważalne. Badanie kory słuchowej zademonstrowało, że w wyniku terapii neurony powróciły do pierwotnego (zdrowego) stanu. W zestawieniu z innymi metodami kluczowa różnica polega więc na tym, że my nie maskujemy szumów, ale przestrajamy mózg ze stanu, kiedy generuje on tinnitus, do stanu, kiedy tego nie robi. Eliminujemy więc źródło – cieszy się Kilgard. Akademicy nadal pracują nad ulepszeniem techniki. Ustalają, ile częstotliwości trzeba optymalnie zestawić ze stymulacją nerwu, jak długo terapia powinna trwać i czy równie dobrze sprawdzi się ona na nowych, jak i utrzymujących się od dawna przypadkach szumów usznych. W najbliższej przyszłości w Europie rozpoczną się pilotażowe testy metody na ludziach.
  13. Można sobie wyobrazić zdumienie naukowców, którzy zajmując się poważnym zadaniem (badaniem sieci naczyń krwionośnych w obrębie hipokampa), nagle ujrzeli sugestywny wizerunek czerwononosego renifera Rudolfa, uznawanego w tradycji niektórych krajów za pomocnika świętego Mikołaja. Podobieństwo było uderzające. Na głowie z wyraźnie zaznaczonym okiem pyszniły się oszronione rogi. Zwierzę miało też komplet nóg, a nawet ogon. Czerwony nos powstał przez przypadek podczas znakowania zdjęcia. Doktorzy Claudia Racca i David Cox z Newcastle University analizowali skrawek tkanki. Gdy zauważyli znajomy kształt, prześwietlili zdjęcie, przez co wiele szczegółów jeszcze bardziej się uwypukliło. Z naukowego punktu widzenia nie ma to, oczywiście, wielkiego znaczenia, ale bez wątpienia cieszy oko - podsumowuje Racca.
  14. Skupiając się na tym, czego słuchamy, mózg wycisza wszystkie zakłócające dźwięki. Sytuacja wygląda jednak zupełnie inaczej, gdy słyszymy i monitorujemy swoją własną mowę na tle hałasu. Okazuje się, że dysponujemy całą siecią ustawień, która pozwala nam wybiórczo wyciszyć i pogłośnić wydawane i słyszane dźwięki. Naukowcy z Uniwersytetu Kalifornijskiego w Berkeley i San Francisco oraz z Uniwersytetu Johnsa Hopkinsa śledzili aktywność elektryczną mózgów pacjentów z padaczką. Odkryli, że neurony jednej części kory słuchowej się wygaszały, a w innych się rozświetlały. Wcześniejsze badania wykazały, że małpy dysponują wybiórczym układem słuchowym, który pozwala im "podkręcić" wydawane przez siebie zawołania związane z rozrodem, pokarmem czy alarmowe. Dotąd nie było jednak wiadomo, jak taki system jest zorganizowany u ludzi. Zwykliśmy myśleć, że ludzki układ słuchowy jest w dużej mierze hamowany podczas mówienia, ale my odkryliśmy ciasno upakowane placki kory o bardzo różnej wrażliwości na własną mowę, co daje znacznie bardziej złożony obraz – tłumaczy Adeen Flinker, doktorant z Berkeley. Znaleźliśmy dowody na istnienie milionów neuronów wyładowujących się naraz za każdym razem, gdy słyszymy jakiś dźwięk. Znajdują się one tuż obok milionów neuronów ignorujących zewnętrzne dźwięki, ale wyładowujących się razem za każdym razem, gdy sami coś mówimy. Taka mozaika reakcji może odgrywać ważną rolę w tym, jak rozróżniamy własną mowę od mowy innych. Choć studium nie daje odpowiedzi na pytanie, po co tak bacznie śledzimy własną mowę, Flinker sądzi, że da się wskazać kilka powodów. Na pewno przydaje się to podczas nauki języka, do monitorowania wypowiadanych kwestii oraz dostosowywania się do rozmaitych głośnych środowisk. "Bez względu na to, czy chodzi o naukę nowego języka, czy rozmowę ze znajomymi w hałaśliwym barze, musimy słyszeć, co mówimy i zmieniać dynamicznie naszą mowę, dostosowując się do wymogów otoczenia". Amerykanin przypomina, że schizofrenicy nie potrafią odróżnić swoich wewnętrznych głosów od głosów innych ludzi, co sugeruje, że nie mają opisywanego wybiórczego mechanizmu słuchowego. Poszczególne regiony mózgu odpowiadają za kontrolę innej głośności, a są od siebie oddalone o zaledwie kilka milimetrów. Uzyskane przez akademików wyniki pozwolą opracować bardziej szczegółowe mapy kory słuchowej, wykorzystywane podczas operacji na mózgu. W ramach opisywanego eksperymentu naukowcy śledzili aktywność elektryczną zdrowej tkanki mózgu hospitalizowanych epileptyków. Pacjenci mieli powtarzać słyszane słowa i samogłoski. Porównano sygnały elektryczne związane z mówieniem i słyszeniem. Dzięki temu ustalono, że niektóre regiony kory słuchowej są mniej aktywne w czasie mówienia, podczas gdy inne utrzymują lub zwiększają swoją aktywność.
  15. Genisteina, izoflawonoid występujący m.in. w soi, wydaje się skutecznym lekiem na rzadką chorobę genetyczną należącą do lizosomalnych chorób spichrzeniowych, a mianowicie na zespół Sanfilippo, inaczej mukopolisacharydozę III (MPS III). Dr Brian Bigger z Uniwersytetu w Manchesterze zauważył, że genisteina, zarejestrowana w USA jako lek przeciwko osteoporozie, silnie wpływa na myszy cierpiące na nieuleczalny dotąd ludzki zespół Sanfilippo. Maluchy z zespołem Sanfilippo doświadczają we wczesnym dzieciństwie postępującej deterioracji funkcji intelektualnych, która przypomina demencję. Objawy obejmują poważne zaburzenia zachowania, nadaktywność oraz śmierć we wczesnym wieku nastoletnim. W ramach brytyjskiego eksperymentu myszom z MPS III przez dziewięć miesięcy podawano z pokarmem wysokie dawki genisteiny. U gryzoni objętych terapią udało się opóźnić demencję; o 1/3 zmniejszyła się ilość odkładających się w neuronach mózgu mukopolisacharydów, a o 1/6 odgraniczono stan zapalny dotyczący tego narządu. Co ważne, naukowcom, którzy współpracowali z lekarzami z St Mary's Hospital w Manchesterze, udało się zademonstrować, że dzięki genisteinie całkowicie wyeliminowano zarówno nadpobudliwość, jak i inne zaburzenia zachowania. Wyróżnia się cztery podtypy zespołu Sanfilippo (IIIA, IIIB, IIIC, IIID). Są one wywołane mutacjami w różnych genach, które prowadzą do różnych bloków metabolicznych. Zespół z Manchesteru ma nadzieję, że już wkrótce rozpoczną się testy kliniczne na ludziach z grupą kontrolną zażywającą placebo.
  16. Dieta obfitująca w luteolinę ogranicza związany z wiekiem stan zapalny mózgu oraz będące jego skutkiem deficyty pamięciowe. Przeciwutleniacz, który należy do grupy flawonów i występuje m.in. w selerze, zielonej papryce, marchwi, oliwie czy oregano, hamuje wydzielanie związków prozapalnych (Journal of Nutrition). Zespół profesora Rodneya Johnsona z University of Illinois badał wpływ luteoliny na modelu mysim. Amerykanie skupili się na mikrogleju, czyli nieneuronalnych komórkach centralnego układu nerwowego (makrofagach), które biorą udział w odpowiedzi immunologicznej. Zakażenie stymuluje je do wytwarzania cytokin, które uruchamiają całą kaskadę chemicznych zmian w mózgu. Cytokiny prozapalne odpowiadają za poczucie bycia chorym, w tym za senność, depresyjność, problemy z pamięcią i brak łaknienia. Stan zapalny wydaje się również kluczowym czynnikiem w przypadku związanych z wiekiem zaburzeń pamięci. Wcześniej odkryliśmy, że w czasie normalnego starzenia mikroglej się rozregulowuje i zaczyna produkować nadmierne ilości cytokin prozapalnych. Sądzimy, że przyczynia się to do starzenia w wymiarze poznawczym i predysponuje do rozwoju chorób neurodegeneracyjnych. W ramach wcześniejszych studiów zespół Johnsona wykazał, że luteolina działa na organizm przeciwzapalnie. Teraz po raz pierwszy zademonstrowano jednak, że flawon poprawia kondycję intelektualną, bezpośrednio oddziałując na mikroglej, by ograniczyć wytwarzanie cytokin prozapalnych. Akademicy pokazali, że gdy komórki mikrogleju zetknęły się z toksyną bakteryjną, zaczęły produkować cytokiny, co mogło zabić neurony. Kiedy jednak przed kontaktem z toksyną wystawiono je na oddziaływanie luteoliny, neurony mimo wszystko przeżyły. Było to możliwe, ponieważ przeciwutleniacz zahamował produkcję neurotoksycznych mediatorów stanu zapalnego. Eksponowanie wyłącznie neuronów na działanie luteoliny przed podaniem toksyny nie miało żadnego wpływu na ich przeżywalność. Oznacza to, że luteolina nie ochrania komórek nerwowych bezpośrednio. Dokonuje się to przez mikroglej. Ekipa Johnsona badała wpływ luteoliny na mózg i zachowanie młodych (3-6-miesięcznych) i starych myszy (2-letnich). Gryzoniom podawano standardową karmę lub przez miesiąc uzupełniano ją luteoliną. Naukowcy oceniali pamięć przestrzenną zwierząt oraz mierzyli stężenie markerów zapalnych w hipokampie (to obszar mózgu istotny zarówno dla pamięci, jak i orientacji przestrzennej). Zwykle w mózgach starych myszy występuje więcej cytokin prozapalnych i wypadają one gorzej w testach pamięciowych od osobników młodych. Stare gryzonie, którym podawano suplementy luteoliny, wypadały jednak lepiej od swoich rówieśników, a stężenie cytokin w ich mózgach przypominało poziomy widywane u młodszych dorosłych zwierząt. Sądzimy, że luteolina z diety dociera do mózgu i zmniejsza aktywację mikrogleju oraz wydzielanie związków prozapalnych. Opisywany efekt jest zapewne mechanizmem, który pozwala odzyskać dawną sprawność pamięci roboczej.
  17. Kobiety są 2-krotnie bardziej niż mężczyźni podatne na stres, ponieważ wykazują większą wrażliwość na hormon wydzielany w nerwowych sytuacjach – kortykoliberynę (ang. corticotropin-releasing factor, CRH). Dr Rita Valentino ze Szpitala Dziecięcego w Filadelfii wyraża nadzieję, że jej zespołowi udało się znaleźć biologiczną przyczynę, dla której panie częściej cierpią na depresję oraz zaburzenia stresowe, np. zespół stresu pourazowego. Amerykanie zauważyli, iż żeńskie mózgi są nie tylko wrażliwsze na niskie stężenia kortykoliberyny, ale i gorzej sobie radzą przy wysokim poziomie neuroprzekaźnika. Co prawda eksperyment przeprowadzono na szczurach, lecz kortykoliberyna spełnia podobną funkcję u wszystkich ssaków. Chociaż trzeba wdrożyć kolejne badania, by sprawdzić, czy uzyskane wyniki przekładają się na ludzi, doniesienia te mogą pomóc wyjaśnić, czemu kobiety są 2-krotnie bardziej niż mężczyźni podatne na zaburzenia związane ze stresem. Podczas badań szczury zmuszano do pływania. To wtedy okazało się, że neurony samic wykazywały większą wrażliwość na oddziaływanie CRH. Valentino stwierdziła, że samce przystosowywały się, zmniejszając reaktywność na hormon, ale samice tego nie robiły. Niewykluczone, że farmakolodzy badający antagonistów CRH w roli leków antydepresyjnych będą musieli wziąć pod uwagę występujące na poziomie molekularnym różnice międzypłciowe. Wcześniej większość studiów na modelu zwierzęcym uwzględniała tylko samce, co z pewnością prowadziło do skrzywienia uzyskiwanego obrazu.
  18. Istnieje wiele chorób neurodegeneracyjnych, jedną z najgorszych jest stwardnienie rozsiane (SR). W SR i podobnych chorobach dochodzi do uszkodzenia mieliny - otoczki chroniącej połączenia między komórkami mózgu, a w rezultacie do zniszczenia samych połączeń. Nie są znane przyczyna ani mechanizm tego zjawiska, choć najczęściej uważa się, że jest to choroba autoimmunologiczna. U pacjentów ze stwardnieniem rozsianym naprawa mieliny przebiega nieprawidłowo z przyczyn, których dotychczas nie znamy - mówi Robyn Klein, wykładowca medycyny i neurobiologii w Szkole Medycznej Uniwersytetu Waszyngtońskiego w St. Louis. Najważniejsze jest zrozumienie natury problemu, bo nieodbudowane otoczki mielinowe oznaczają drastycznie większe ryzyko poważnej szkody dla układu nerwowego. Choć nie zbliżono się za bardzo do zrozumienia przyczyn zanikania mieliny, pojawiła się nadzieja na skuteczny sposób odbudowywania mielinowych otoczek, co pozwoliłoby zatrzymać lub nawet cofnąć rozwój choroby. Taką nadzieją stało się białko o nazwie CXCR4, znane dotychczas z udziału w procesach kształtowania się mózgu u dzieci. Właśnie kształtowania, a nie naprawy, dlatego odkrycie wprawiło uczonych z Uniwersytetu Waszyngtońskiego w zdumienie. Na ślad naprowadził zespół dr Klein fakt, że uszkodzenie mózgu powoduje wzrost liczby komórek wytwarzających białko CXCR4. Uznano więc, że warto się temu przyjrzeć. Badania przeprowadzano na mysim modelu SR. Takie modele zwykle imitują skutki choroby poprzez wywoływanie procesów zapalnych, jednak takie podejście - zdaniem autorek badań - utrudnia skupienie się na tym, w jaki sposób przebiega regeneracja otoczek mielinowych. Zamiast tego dr Klein oraz główna autorka pracy, dr Jigisha Patel, zastosowały model niezapalny, podając w pożywieniu czynnik powodujący śmierć oligodendrocytów - komórek formujących mielinę. Po sześciu miesiącach diety wzbogaconej bis(cykloheksylidenohydrazydem) kwasu szczawiowego i śmierci komórek ciało modzelowate - połączenie nerwowe pomiędzy półkulami mózgu - zostało pozbawione swojej ochronnej otoczki. Kiedy następnie usunięto czynnik z diety, nowe komórki zaczęły migrować do miejsca naprawy mieliny, stając się nowymi oligodendrocytami. Kiedy komórki macierzyste nie mogą już naprawić zniszczeń? Badanie zaczęło się jednak wcześniej, kiedy jeszcze umierające oligodendrocyty wywoływały interesujące badaczy procesy i aktywowały inne komórki, skłaniając je do wytwarzania czynników zapalnych. Liczba receptorów CXCR4 osiągała szczyt w ciągu sześciu tygodni. Jeśli myszy karmiono bis(cykloheksylidenohydrazydem) kwasu szczawiowego (C14H22N4O2) dłużej, przez 12 tygodni, poziom czynnika zapalnego i jego receptorów znacząco spadał. Po 12 tygodniach myszy nie były już zdolne do odbudowy mielinowej otoczki. Sugeruje to związek pomiędzy odbudową mieliny a białkiem CXCR4. Wykazano także, że w komórkach mających stać się dojrzałymi oligodendrocytami występowały wysokie stężenia interesującego nas białka. Zablokowanie jego aktywacji lub ograniczenie jego produkcji w komórkach również powodowało niemożliwość odbudowy mieliny. Najwyraźniej komórki prekursorowe muszą przestać się mnożyć, zanim zaczną migrować do celu, a CXCR4 odgrywa w tym jakąś rolę - tłumaczy dr Klein. Wydaje się też istotne dla zdolności komórek do przekształcania się w dojrzałe oligodendrocyty i formowania mieliny. W planach są badania na myszach modyfikowanych genetycznie i wykorzystanie podczas studiów zaawansowanych technik obrazowania do dokładnego określenia związku pomiędzy uszkodzeniem mieliny a utratą połączeń międzykomórkowych. Nie wiemy jeszcze, czy ta procedura naprawy mieliny jest u pacjentów z SR uszkodzona, czy w jakiś sposób nieskuteczna - mówi dr Klein. Ale bardzo intrygujący jest pomysł, żeby włączyć w mózgu coś, co potrafi on wykorzystać do samoleczenia przy wykorzystaniu własnych zasobów.
  19. Naukowcy z Centrum Medycznego Vanderbilt University odkryli, że istnieje związek między zaburzoną sygnalizacją insulinową w mózgu a zachowaniami paraschizofrenicznymi. To bez wątpienia nowe spojrzenie na zaburzenia psychiatryczne i poznawcze występujące u diabetyków. Wiemy, że chorzy z cukrzycą z większą częstotliwością doświadczają m.in. zaburzeń nastroju [...]. Myślimy, że te dwie przypadłości naraz sprawiają, że pacjenci mają problem z kontrolowaniem cukrzycy – przekonuje dr Kevin Niswender. Wiele wskazuje na to, że wszystkiemu winna jest nieprawidłowa sygnalizacja insulinowa w mózgu. W przeszłości zespół pod przewodnictwem doktora Aurelia Galliego wykazał, że insulina oddziałuje nie tylko na metabolizm glukozy, ale i reguluje mózgowy poziom dopaminy – tzw. hormonu szczęścia, zaangażowanego zarazem w procesy uwagi oraz aktywność ruchową. Zaburzenie sygnalizacji dopaminowej skutkuje np. depresją, ADHD, parkinsonizmem czy schizofrenią. W ramach najnowszego eksperymentu Amerykanie wyhodowali myszy, u których nieprawidłowa sygnalizacja insulinowa występowała wyłącznie w neuronach. Akademicy z Vanderbilt University zaburzyli działanie proteiny Akt – kinazy białkowej przekazującej sygnały insulinowe wewnątrz komórki. Okazało się, że u gryzoni pojawiły się nieprawidłowe zachowania, w dużym stopniu przypominające działania ludzi ze schizofrenią. Co ciekawe, nastąpiły wyraźne zmiany w chemii mózgu: w płatach przedczołowych spadł poziom dopaminy, a wzrósł norepinefryny. Doprowadziło to do skoku stężenia transportera norepinefryny (ang. norepinephrine transporter, NET), który usuwa dopaminę i norepinefrynę ze szczeliny synaptycznej. Sądzimy, że nadmiar NET wysysa całą dopaminę i przekształca ją w norepinefrynę, doprowadzając w obrębie kory do sytuacji zwanej hipodopaminergią – tłumaczy Galli. Niedobór dopaminy przyczynia się do deficytów poznawczych i wiązanych ze schizofrenią objawów, w tym depresji i społecznego wycofania. Kiedy myszom podano inhibitory NET, przechodzące właśnie testy kliniczne na schizofrenikach, udało się przywrócić prawidłowy poziom dopaminy w korze. Zniknęły też wszelkie psychotyczne zachowania. Wyniki uzyskane przez Amerykanów uzupełniają wcześniejsze doniesienia o niedoborach Akt u chorych ze schizofrenią (stwierdzano je w czasie badań pośmiertnych, genetycznych czy obrazowych). Galli uważa, że działanie ścieżki sygnałowej może zostać zaburzone przez cukrzycę typu 1., zbyt tłustą dietę, narkotyki lub "urodę genetyczną" danej osoby. Zwiększa to ryzyko wystąpienia wspomnianych wyżej chorób psychicznych.
  20. Przed trzema laty w mediach pojawiły się doniesienia, że bakterie glebowe poprawiają nastrój. Teraz okazuje się, że mogą też zwiększać zdolność mózgu do uczenia się nowych umiejętności czy strategii. Mycobacterium vaccae to naturalna bakteria glebowa, którą ludzie trawią lub połykają, spędzając czas na dworze – opowiada Dorothy Matthews z The Sage Colleges. Wcześniejsze badania wykazały, że wstrzykiwanie myszom M. vaccae stymuluje wzrost pewnych neuronów w mózgu, co skutkuje zwiększonym wydzielaniem serotoniny i spadkiem niepokoju. W 2007 r. naukowcy z Uniwersyteckiego College'u Londyńskiego i Uniwersytetu Bristolskiego odkryli, że myszy potraktowane wspomnianymi bakteriami zaczynały się zachowywać jak po podaniu leków antydepresyjnych. Ponieważ serotonina jest neuroprzekaźnikiem istotnym także dla uczenia, Matthews i Susan Jenks karmiły myszy laboratoryjne żywymi bakteriami i oceniały ich umiejętność nawigowania po labiryncie. Okazało się, że gryzonie karmione żywymi M. vaccae poruszały się po labiryncie 2-krotnie szybciej i słabiej demonstrowały zachowania lękowe niż myszy kontrolne. Po trzech tygodniach przerwy przyszedł czas na ostateczny test. Zwierzęta eksperymentalne nadal pozostawały szybsze od kontrolnych, jednak różnica nie była istotna statystycznie. Oznacza to, że bakterie glebowe działają tylko przez pewien okres. Wg głównej autorki badań, skoro M. vaccae wydają się odgrywać pewną rolę w uczeniu i kontrolowaniu lęku u ssaków, warto wziąć pod uwagę zajęcia szkolne związane z brudzeniem, np. lekcje biologiczne w ogródku, bo mogłoby to w znaczący sposób wspomóc wysiłki pedagogów i samych zainteresowanych, czyli dzieci. Amerykanki zaprezentowały uzyskane rezultaty na 110. konferencji Amerykańskiego Stowarzyszenia Mikrobiologicznego w San Diego.
  21. Dzięki akupunkturze szczury z uszkodzonym rdzeniem mogą na powrót chodzić. Naukowcy wyjaśniają, że dzieje się tak, gdyż poprzez zmniejszenie stanu zapalnego metoda ta zapobiega programowanej śmierci, czyli apoptozie neuronów i oligodendrocytów (Neurobiology of Disease). Znając rezultaty wcześniejszych studiów, które wskazywały, że akupunktura poprawia funkcjonowanie czuciowe i ruchowe ludzi z urazami rdzenia, Doo Choi i jego zespół z Kyung Hee University w Seulu postanowili sprawdzić, dlaczego się tak dzieje. Koreańczycy uszkodzili rdzeń kręgowy 75 szczurów. U jednej trzeciej zastosowali potem nakłuwanie w dwóch miejscach akupunkturowych: 1) Shuigou (GV26; między górną częścią pyska a jamą gębową) i 2) Yanglingquan (GB34; w górnej części tylnej łapy). U pozostałych zwierząt symulowano leczenie starożytną metodą. Po 35 dniach grupa akupunkturowa była w stanie ustać na bardziej stromym wzniesieniu i lepiej chodziła. Gdy spody łap zabarwiono tuszem, okazało się, że u jej przedstawicieli koordynacja tylnych i przednich łap była dość dobra i występowało jedynie lekkie powłóczenie stopami. W grupie kontrolnej stale obserwowano ciągnięcie za sobą kończyn. U zwierząt przechodzących akupunkturę obumierało mniej komórek nerwowych, poza tym wykryto mniejsze stężenia białek wywołujących stan zapalny po uszkodzeniu rdzenia: czynnika martwicy nowotworu, interleukiny-1β, interleukiny-6, syntazy tlenku azotu, cyklooksygenazy 2 (COX-2) czy metaloproteazy macierzy pozakomórkowej 9 (MMP-9). Naukowcy wyliczają, że akupunktura hamuje aktywację enzymu kaspazy 3, która odgrywa centralną rolę w apoptozie (jest ona kaspazą egzekutorową, a że aktywuje endonukleazę DFF40/CAD, odpowiada za fragmentację DNA), zmniejsza wielkość uszkodzenia rdzenia i stopień utraty aksonów. Dzięki niej złagodzeniu ulega też aktywacja p38 kinazy białkowej aktywowanej mitogenem oraz mikrogleju. Jak to wyjaśnić? Koreańczycy sugerują, że być może nakłuwanie ostrymi igłami wywołuje reakcję stresową tłumiącą stan zapalny. Na razie nie wiadomo, czy wyniki badań na szczurach przekładają się jakoś na nasz gatunek. W ramach studium z Seulu terapię rozpoczynano niemal natychmiast po urazie, a ludzie nie korzystają raczej z akupunktury przed upływem przynajmniej 3 miesięcy od wypadku.
  22. Naukowcy zamierzają zbadać ewolucję morfologii i patologii ludzkiego mózgu dzięki zmumifikowanej lewej półkuli żyjącego w średniowieczu 18-miesięcznego chłopca. Znaleziono ją w drewnianej trumnie z XIII wieku w okolicach Quimper w Bretanii (Neuroimage). Mumifikacja zaszła dzięki gliniastej kwaśnej glebie i zasolonej wodzie - dziecko pogrzebano w strefie pływowej u zbiegu 3 rzek. Po ekshumacji w 1998 r. mózg umieszczono w formalinie. Chłopiec zmarł najprawdopodobniej z powodu pęknięcia czaszki. Jego głowę schowano w skórzanej pochwie i ułożono na poduszce. W ciągu 10 lat badań udało się natrafić na nietknięte neurony. Chociaż, w porównaniu do pierwotnej masy, ich waga jest zredukowana o ok. 80%, zachowały swoje cechy anatomiczne i co najważniejsze – do pewnego stopnia również organelle komórkowe – podkreśla Frank Ruhli, szef Szwajcarskiego Projektu Mumia z Uniwersytetu w Zurychu. Twierdzi on, że przypadek tak doskonałego naturalnego zakonserwowania mózgu pozwoli lepiej zrozumieć zarówno jego naturę, jak i sposoby działania. Co ciekawe, mózg był jedyną tkanką miękką zachowaną w szkielecie. Nadal widoczne były bruzdy i zakręty, a także płaty czołowy, skroniowy i potyliczny. Poza tym naukowcy zauważyli, że w znacznym stopniu utrwaliła się struktura komórkowa mózgu. Badanie mikroskopowe ujawniło bowiem istoty szarą i białą, naczynia krwionośne, duże neurony w okolicach hipokampa oraz tigroid (ciałka Nisla) w obrębie kory ruchowej. Komórki nerwowe w większości zachowały swój oryginalny kształt, a także dendryty. Znalezienie podczas wykopalisk archeologicznych nietkniętej tkanki mózgu jest niezwykle rzadkie, m.in. dlatego, że organ ten często usuwano podczas balsamowania. W obecności enzymów bakteryjnych tłuszcze ciała reagują z wodą i wodorem, przez co wytwarza się spowalniający rozkład tłuszczowosk [przebiega przemiana tłuszczowo-woskowa, która często zachodzi równolegle do stupieszczenia, czyli mumifikacji] – tłumaczy autorka badań nad średniowiecznym mózgiem Christina Papageorgopoulou. Międzynarodowy zespół próbował określić przyczynę zgonu chłopca. Na podstawie badań histologicznych i radiologicznych wykluczono wcześniejszą diagnozę – krwotok mózgowy. Silny krwotok wystąpił na zewnętrznej powierzchni kory co najmniej kilka dni przed śmiercią. To dowód na pęknięcie czaszki. Nie mamy jednak pewności, czy to przyczyna zgonu – wyjaśnia Raffaella Bianucci, antropolog z Uniwersytetu w Turynie.
  23. Progesteron to żeński hormon płciowy, najbardziej znany ze swej roli w podtrzymywaniu ciąży. W marcu rozpocznie się jednak trzecia faza testów klinicznych nad zastosowaniem go w zapobieganiu urazom czaszkowo-mózgowym u ofiar wypadków, żołnierzy itp. Naukowcy z Emory University w Atlancie sądzą, że podanie w ciągu kilku godzin od zdarzenia kroplówki z hormonem ograniczy lub wyeliminuje uszkodzenie mózgu. Na trop takiej metody postępowania naprowadziło naukowców przypadkowe odkrycie sprzed ponad 25 lat. Wtedy to Donald Stein – również z Emory – badał skutki urazów głowy u szczurów. Stwierdził, że u samic wystąpiło mniej niekorzystnych objawów niż u samców. Poza tym najlepiej czuły się szczurzyce, które podczas eksperymentu znajdowały się w fazie cyklu związanej z najwyższym stężeniem progesteronu. W prowadzonych później testach na innych gatunkach zwierząt również zademonstrowano neuroochronne właściwości hormonu wytwarzanego przez ciałko żółte i łożysko w czasie ciąży. Co ważne, występuje on w mózgach zarówno samców, jak i samic. Dwa przeprowadzone niedawno badania kliniczne sugerowały, że progesteron ogranicza śmiertelność i stopień niepełnosprawności u osób po urazach czaszkowo-mózgowych. Najnowsze studium Davida Wrighta obejmie 1140 pacjentów z 17 centrów medycznych z różnych rejonów USA, w tym z ośrodka Uniwersytetu Kalifornijskiego w San Francisco. U każdego pacjenta będzie zastosowany dożylny wlew z progesteronu. Lekarze rozpoczną procedurę w ciągu 4 godzin od wypadku i będą ją prowadzić przez 4 kolejne dni. Ponieważ terapię trzeba wdrożyć jak najszybciej, amerykańska Agencja ds. Żywności i Leków wydała zgodę na podłączenie do kroplówki bez zgody pacjenta, jeśli jest nieprzytomny, a w ciągu godziny nie uda się nawiązać kontaktu z kimś z najbliższej rodziny. Gdy dana osoba chce, by w razie wypadku nie objęło jej hormonalne leczenie, naukowcy utworzyli specjalną witrynę, na której można się dopisać do listy. Takie badania są naprawdę potrzebne, ponieważ dotąd, mimo wielu prób, nie udało się uzyskać skutecznego leku na ograniczenie uszkodzenia. Niektóre pogarszały nawet stan chorych. Specjaliści pokładają w progesteronie spore nadzieje, ponieważ oddziałuje on na wiele ścieżek chemicznych w organizmie. Na razie nie wiadomo, jak dokładnie wpływa na mózg. Pewne jest tylko, że zapobiega stanowi zapalnemu oraz apoptozie uszkodzonych neuronów.
  24. Obserwując skutki wyobrażania sobie ruchu w określonym kierunku, mózg bardzo szybko potęguje siłę sygnału, by zwiększyć przesunięcie kursora. Oznacza to, że interfejsy mózg-komputer naprawdę mają przyszłość, a wbrew sceptycznemu nastawieniu niektórych naukowców, proces uczenia powinien przebiegać szybciej, niż ktokolwiek się spodziewał. Eksperci z University of Washington współpracowali z ośmioma pacjentami ze szpitali w Seattle, którzy chorowali na padaczkę i czekali na operację. Do powierzchni ich mózgów przyczepiono rejestrujące siłę sygnału elektrody. Proszenie ludzi, by wyobrazili sobie wykonywanie jakiegoś ruchu, np. przemieszczania ramienia, to powszechna praktyka, w wyniku której ma powstać sygnał pozwalający kontrolować jakieś urządzenie, np. komputer bądź protezę. Dotąd proces ten był słabo poznany. Przeprowadzono wiele badań na nieczłekokształtnych naczelnych. Ale jak poprosić zwierzę o wyobrażenie robienia czegoś? Nawet nie wiemy, czy to potrafią – tłumaczy doktorant Kai Miller. Dlatego postanowiono przeprowadzić podobny eksperyment z ludźmi. Na początku zmierzono natężenie sygnału, gdy ochotnicy ściskali i rozluźniali pięść, wystawiali język, wzruszali ramionami lub wymawiali słowo "ruch". Potem Amerykanie prosili o wyobrażenie sobie wykonywania tych samych czynności i ponownie przeprowadzali pomiar. Jak oczekiwano na podstawie wcześniejszych studiów, sygnał był podobny jak przy rzeczywistych działaniach, ale o wiele słabszy. Ostatecznie naukowcy obserwowali aktywność mózgu, gdy chorzy wyobrażali sobie dany ruch, a sygnał wykorzystywano do przesunięcia kursora w stronę celu widocznego na ekranie komputera. Po mniej niż 10 min treningu sygnały związane z wyobrażonym ruchem stały się znacznie silniejsze niż służące do wykonania fizycznego ruchu w rzeczywistym świecie. Szybki wzrost aktywności [...] potwierdza tezę o niesamowitej plastyczności mózgu podczas uczenia się kontroli niebiologicznych urządzeń – podkreśla prof. Rajesh Rao. Nie minęło 10 min, kiedy dwóch ochotników donosiło, że nie muszą już myśleć o ruchach części ciała, by przemieścić kursor. Zdolność badanych do zmiany sygnału pod wpływem sprzężenia zwrotnego była o wiele większa, niż się spodziewaliśmy – cieszy się kolejny współautor studium neurochirurg dr Jeffrey Ojemann. Badacze z University of Washington porównują to, co zaszło w mózgu, to rozrostu mięśni kulturysty pod wpływem podnoszenia ciężarów. Posłużenie się interfejsem doprowadziło do pojawienia się w mózgu populacji superaktywnych neuronów. Odkrycie to daje nadzieję na opracowanie skuteczniejszych metod rehabilitacji pacjentów po udarach. Amerykanom udało się też najprawdopodobniej stwierdzić, które sygnały mózg wychwytuje. Porównali wzorce sygnałów o niskiej częstotliwości, które są wykorzystywane do kontroli zewnętrznych urządzeń, i o wysokiej częstotliwości, które uznaje się przeważnie za szum. Odkryli, że dla każdego typu ruchu najbardziej specyficzne były właśnie te ostatnie. Ponieważ każdy obejmuje niewielką część mózgu, można jednocześnie wychwytywać kilka sygnałów o wysokiej częstotliwości, aby kontrolować bardziej złożone urządzenia.
  25. Proste i nieinwazyjne badanie oczu może już niedługo znacząco wspomóc dotychczasowe, kłopotliwe i mało wiarygodne metody wykrywania choroby Alzheimera - zapowiadają naukowcy z University College London (UCL). Dotychczasowe testy na zwierzętach wskazują, że nowa technika znacząco poprawia jakość diagnostyki i pozwala na ocenę tempa rozwoju schorzenia. Diagnozowanie choroby Alzheimera opiera się dziś głównie na wykrywaniu charakterystycznych, postępujące w czasie objawów, takich jak upośledzenie pamięci czy pogorszenie mowy. Bardziej wiarygodnych testów, takich jak ocena stężenia niektórych białek w płynie mózgowo-rdzeniowym, często unika się ze względu na komfort pacjenta. Naukowcy z UCL opracowali jednak prosty test, który może pomóc w wykryciu alzheimeryzmu w oparciu o ocenę liczby obumierających neuronów siatkówki oka. Skuteczność nowej metody oceniano na transgenicznych myszach wykazujących wysokie ryzyko choroby Alzheimera. Po osiągnięciu odpowiedniego wieku zwierzętom podano fluorescencyjne związki stosowane powszechnie w hodowlach tkankowych do znakowania obumierających komórek. Po pewnym czasie, potrzebnym dla przyłączenia się barwników do komórek, oczy gryzoni oświetlono laserem i przeprowadzono pomiary fluorescencji. Przeprowadzone badanie wykazało, że intensywność fluorescencji neuronów siatkówki była skorelowana ze stadium choroby i była znacznie wyższa niż u zwierząt z grupy kontrolnej, wolnych od choroby Alzheimera. Zaletą nowej metody jest przede wszystkim wygoda stosowania. Jeden z autorów studium, prof. Francesca Cordeiro, zaznacza: aktualnie największą przeszkodą w badaniach nad nowymi lekami [przeciw chorobie Alzheimera - przyp. red.] jest brak techniki umożliwiającej obserwację reakcji mózgu na nowe terapie; ta technika mogłaby pomóc w pokonaniu tego problemu. W swojej publikacji badacze zastrzegają, że opracowana przez nich metoda mogłaby posłużyć także do wykrywania innych chorób neurodegeneracyjnych, takich jak stwardnienie rozsiane czy jaskra. Z jednej strony oznacza to szansę na rozszerzenie spektrum zastosowań nowej techniki, lecz trzeba się liczyć z tym, że nie będzie ona mogła stanowić jedynej metody wykrywania choroby Alzheimera.
×
×
  • Create New...