Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'archeowce'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 2 results

  1. Inżynierowie z MIT-u odkryli, że za pomocą żółtozielonego światła można wyłączyć neurony z ogniska padaczkowego. Najpierw w komórkach tych należy jednak umieścić pewne białko. Efekt takiego zabiegu jest natychmiastowy i odwracalny. Odkrycia zespołu Edwarda Boydena pozwalają nie tylko na leczenie zaburzeń neurologicznych, ale także rzucają nieco – nomen omen - światła na rolę spełnianą przez różne typy neuronów w prawidłowych obwodach neuronalnych. Dzięki temu da się stwierdzić, co konkretnie ulega zakłóceniu i na czym polega usterka. Mamy nadzieję umożliwić stworzenie szerokiej platformy molekularnych narzędzi do kontrolowania aktywności mózgu. Oznacza to nowe narzędzia terapeutyczne, ale również nowe sposoby badania funkcjonowania mózgu – przekonuje Boyden. Po raz pierwszy Amerykanin zademonstrował użycie światła do zmniejszenia aktywności mózgu w 2007 roku. Próby prowadzono jednak na komórkach, a nie na żywych organizmach i dodatkowo wyciszenie nie było zbyt precyzyjne. Obecnie naukowcy z MIT-u wykorzystali inne białko o nazwie Arch. Silniej hamuje ono neurony, oddziałuje na większą część tkanki i może być pobudzane wielokrotnie, ponieważ w ciągu milisekund od aktywacji światłem powraca do stanu pierwotnego. Z białkiem Arch wyciszanie mózgu jest niesamowicie precyzyjne i cyfrowe. To drugie było bardziej jak gałka do skręcania i pogłaśniania dźwięku. Amerykanie odwołali się do podejścia zwanego optogenetyką. Najpierw, a to działka inżynierów genetycznych, należało sprawić, by w neuronach żywych myszy dochodziło do ekspresji białka Arch, które działa jak pompa protonowa – przeprowadza protony przez błonę komórkową, by zmienić napięcie komórki. Pompy protonowe są światłoczułe, dlatego pod wpływem pobudzenia żółtozielonym światłem usuwają protony z komórki. Wskutek tego dochodzi do spadku napięcia wewnątrz neuronu i zatrzymania wyładowywania się, czyli przesyłania informacji. Wcześniej badacze posługiwali się inną światłoczułą pompą – integralnym białkiem błonowym halorodopsyną. Zmienia ona napięcie komórki, wprowadzając do wnętrza jony chlorkowe. Wyniki ich jednak nie zadowoliły, dlatego szukali lepszej pompy chlorkowej wśród licznych bakterii, roślin i grzybów. Szybko okazało się, że żadna pompa chlorkowa nie zapewniała żądanego stopnia kontroli, ale u archeowców Halorubrum sodomense z Morza Martwego odkryto idealną pompę protonową Arch. Nowa pompa regeneruje się w ciągu milisekund. Zanim halorodopsyna nadawała się do ponownego użycia, mijały minuty. To daje szanse na szybkie porównywanie pracy poszczególnych rodzajów neuronów w różnych warunkach, np. przy wykonywaniu różnorakich zadań. Na potrzeby eksperymentu naukowcy z MIT-u wszczepiali do mózgów myszy zewnętrznie sterowane źródła światła. Były one bezprzewodowe, co znacznie ułatwiło obsługę. By ocenić bezpieczeństwo i potencjał metody w zakresie leczenia padaczki, przewlekłego bólu i zespołu stresu pourazowego, grupa Boydena prowadzi przedkliniczne testy z udziałem nieczłowiekowatych naczelnych. Pracownicy MIT-u odkryli również inne pompy protonowe, którą aktywuje się za pomocą światła niebieskiego bądź czerwonego. W przyszłości zamierzają wypróbować nowe narzędzia na obwodach związanych z poznaniem i emocjami oraz określić, czy są one skuteczne i niegroźne dla małp.
  2. Jak głęboko sięga życie? Trudno tu o właściwą odpowiedź, ponieważ organizmy biją naprawdę imponujące rekordy. Ostatnio zespół Johna Parkesa z Uniwersytetu w Cardiff odkrył mikroby w skale sprzed 111 mln lat, która tkwi 1,6 km pod dnem oceanu (Science). Skałą tą jest uboga w magmę Krawędź Nowofunlandzka Oceanu Atlantyckiego. Wiercenia prowadzono z pokładu statku-platformy JOIDES Resolution. Poprzedni rekord to "zaledwie" 842 metry pod dnem Oceanu Spokojnego. Obowiązywał przez 6 lat, od 2002 roku, i został odnotowany również przez ekipę Parkesa. Eksperci sądzą, że nowy rekord nie utrzyma się zbyt długo, ponieważ, wg nich, maleńkie żyjątka zasiedlają tereny sięgające 5 km pod dnem. Niektórzy postulują nawet, że ¾ biomasy mikroorganizmów można znaleźć właśnie pod dnem. Im głębsza warstwa osadów, tym trudniej się w niej żyje. W starszych skałach znajduje się mniej pożywki dla mikrobów, w dodatku stale rosną ciśnienie i temperatura (w niektórych rejonach każdy dodatkowy kilometr pod dnem oznacza skok temperatury aż o 20 stopni Celsjusza). Obecnie za najwyższą temperaturę, z jaką życie może sobie jeszcze poradzić, uznaje się pułap 120°C. Jeśli temperatura jest ostatecznym czynnikiem ograniczającym, z przyczyn racjonalnych można się spodziewać, że biosfera sięga głębokości 5 km pod dnem – tłumaczy Steven D’Hondt, oceanograf z University of Rhode Island. JOIDES Resolution (Joint Oceanographic Institutions Deep Earth Sampler) służyła pierwotnie do wydobycia ropy. Ponad dwadzieścia lat temu przerobiono ją na pływające laboratorium naukowe. Zespół Parkesa wyekstrahował mikroby z rdzenia wydrążonej próbki, który z zasady jest rzadziej skażony przez słoną wodę. Mikroorganizmy wykryto dzięki fluorescencyjnemu zielonemu barwnikowi, który zaczyna się jarzyć po dostaniu do wnętrza żywych komórek. Naukowcom udało się też zdobyć i zsekwencjonować DNA. Na głębokości 1000 metrów natrafiono na przedstawicieli archeowców (łac. Archaea), głównie na gorącolubne Pyrococcus. Wraz z głębokością zwiększało się stężenie metanu, dlatego też niżej wyodrębniono kolejne sekwencje DNA, które wskazywały na obecność mikroorganizmów uzyskujących energię z utleniania gazu błotnego. Parkes nie może się nadziwić, jak można przetrwać w tak trudnych warunkach. Skała jest tak stara, że jakiekolwiek biodegradowalne substancje dawno stamtąd zniknęły. Naukowiec domyśla się, że nowo odkryci rekordziści zadowalają się bardzo niedużą ilością pożywienia. W sytuacji braku drapieżników, przed którymi należałoby uciekać, mikroby mogą utrzymywać się przy życiu, uzupełniając raz na jakiś czas niedobory ATP. W przyszłości Parkes zamierza wiercić jeszcze głębiej, być może w okolicach 6. km poniżej dna. W ten sposób stwierdzono by, czy biosfera rzeczywiście kończy się na piątym kilometrze.
×
×
  • Create New...