-
Similar Content
-
By KopalniaWiedzy.pl
Uczniowie jednej z kanadyjskich szkół podstawowych odkryli, że astronauci narażeni są na niebezpieczeństwo, o którym NASA nie miała pojęcia. Dzieci przeprowadziły badania, z których wynika, że EpiPen, autostrzykawka z epinefryną (adrenaliną) jest nieskuteczna poza atmosferą Ziemi. W nagrodę w czerwcu uczniowie pojadą do Wirginii, gdzie przedstawią swoje wyniki naukowcom z NASA.
Uczniowie z St. Brother André Elementary School’s Program for Gifted Learners wzięli udział w inicjatywie NASA o nazwie „Cubes in Space”. Jedną z części tego projektu jest prowadzenie w przestrzeni kosmicznej badań zaprojektowanych przez uczniów. Młodzi Kanadyjczycy w wieku 9–12 lat postanowili dowiedzieć się czy EpiPen działa w kosmosie. Epinefryna może bowiem uratować życie np. w przypadku nagłej ostrej reakcji alergicznej.
Projekt polegał na wysłaniu w przestrzeń kosmiczną zarówno próbki czystej epinefryny, jak i EpiPen. Jednak przesyłka musiała zmieścić się w opakowaniu o wymiarach 4x4 cm, nie było więc mowy o wysłaniu EpiPen. Po konsultacji z ekspertem z University of Ottawa, chemikiem Paulem Mayerem, dzieci opracowały odpowiedni sposób na wstrzyknięcie roztworu z EpiPen do małej próbówki. Jeden z zestawów składających się z czystej epinefryny i roztworu z EpiPen wysłano balonem, drugi zaś poleciał rakietą NASA. Próbki przeanalizowano przed wysyłką w kosmos, jak i po powrocie.
Mayer przyznaje, że sceptycznie podchodził do pomysłu, by promieniowanie kosmiczne mogło wpłynąć na epinefrynę. Okazało się jednak, że to dzieci miały rację. Po powrocie z przestrzeni kosmicznej okazało się, że czysta epinefryna przestała być czysta. W próbce epinefryna stanowiła jedynie 87%, reszta zamieniła się w bardzo toksyczne pochodne kwasu benzoesowego. Z kolei w roztworze EpiPen nie stwierdzono w ogóle obecności epinefryny po jego powrocie z przestrzeni kosmicznej. Okazuje się zatem, że EpiPen będzie nieskuteczny, a czysta epinefryna może być toksyczna, gdyby trzeba było zastosować je poza atmosferą Ziemi.
Uczniowie nie osiadają jednak na laurach. Już zapowiedzieli powtórzenie swojego eksperymentu, by potwierdzić jego wyniki. Pracują też nad kapsułą, która ochroni zawartość EpiPen w przestrzeni kosmicznej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.
« powrót do artykułu -
By KopalniaWiedzy.pl
Powierzchnia Marsa jest bez przerwy poddawana działaniu dużych dawek promieniowania kosmicznego, a jego intensywność może wzrastać nawet 50-krotnie w wyniku pojawiania się wysoko energetycznych rozbłysków na Słońcu. Naukowcy holenderskiego Uniwersytetu w Wageningen postanowili sprawdzić, jak w takich warunkach rosną rośliny. Ekolog Wieger Wamelink mówi, że irytuje go przedstawiany w filmach sposób upraw na Marsie. Często pokazują uprawy w szklarniach, ale to nie blokuje promieniowania kosmicznego, stwierdza.
Wysokoenergetyczne promieniowanie kosmiczne może zmieniać DNA roślin. A trzeba pamiętać, że powierzchnia Marsa nie jest chroniona ani przez atmosferę, ani przez pole magnetyczne, które zapewniają ochronę organizmom żywym na Ziemi.
Wamelink wraz z zespołem postanowili odtworzyć warunki panujące na Marsie. Dlatego też wykorzystali promieniowanie gamma, generowane przez radioaktywny kobalt. Co prawda promieniowanie docierające do powierzchni Marsa składa się w różnych typów promieni, w tym alfa i beta, jednak ich uzyskanie jest już znacznie trudniejsze. Cząstki alfa i beta można wytworzyć w akceleratorach i Wamelink z chęcią by któregoś użył, jednak wie, że to nie możliwe. "Musielibyśmy wsadzić rośliny do akceleratora na 2-3 miesiące. Biorąc pod uwagę, jak duże jest zapotrzebowanie na te urządzenia i jakie kolejki chętnych się do nich ustawiają, przeprowadzenie tak długotrwałego eksperymentu nie byłoby możliwe", stwierdza uczony.
Holendrzy musieli więc zadowolić się samym promieniowaniem gamma. Rozpoczęli więc pracę z radioaktywnym kobaltem i nasionami żyta i pieprzycy siewnej. Część z nich hodowali w standardowych warunkach panujących na Ziemi, a drugą część w takich samych warunkach z dodatkiem promieniowania gamma. Cztery tygodnie po kiełkowaniu ziaren naukowcy porównali rośliny i stwierdzili, że liście żyta i pieprzycy, które rosły w środowisku pełnym promieni gamma mają nienormalne kształty i kolory.
Ponadto żyto hodowane w promieniach gamma było o 48% lżejsze niż żyto z normalnych warunków. W przypadku pieprzycy siewnej okazało się, że rośliny z uprawy z dodanym promieniowaniem są o 32% lżejsze od roślin ze standardowych upraw. Naukowcy przypuszczają, że wszystkie te różnice są wynikiem uszkodzenia DNA i białek roślinnych przez promieniowanie.
Badania Holendrów pochwalił Michael Dixon z kanadyjskiego University of Guelph. Należy on do grupy, która ma zamiar w ciągu najbliższych 10 lat założyć eksperymentalną hodowlę jęczmienia na Księżycu. Jednym z pierwszych pytań, na jakie trzeba będzie odpowiedzieć, brzmi, czy rośliny są w stanie przeżyć promieniowanie docierające do Srebrnego Globu. Dixon mówi, że praca uczonych z Wageningen pokazuje, jak olbrzymie trudności może sprawić kolonizacja Marsa.
Dodaje, że idealne odtworzenie marsjańskich warunków na Ziemi jest niemożliwe, dlatego ostatecznym testem byłaby eksperymentalna uprawa roślin na Marsie. Dopiero ona pokaże, czy produkcja żywności na Czerwonej Planecie będzie możliwa.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy pracujący przy eksperymencie ALPHA prowadzonym w CERN-ie są pierwszymi, którym udało się schłodzić antymaterię za pomocą lasera. Osiągnięcie otwiera drogę do lepszego poznania wewnętrznej struktury antywodoru i zbadania, w jaki sposób zachowuje się on pod wpływem grawitacji.
Antywodór to najprostsza forma atomowej antymaterii. Teraz, gdy mamy możliwość ich chłodzenia, naukowcy będą mogli przeprowadzić porównania atomów antywodoru z atomami wodoru, dzięki czemu poznamy różnice pomiędzy atomami antymaterii i materii. Znalezienie takich ewentualnych różnic pozwoli na lepsze zrozumienie, dlaczego wszechświat jest stworzony z materii.
To zupełnie zmienia reguły gry odnośnie badań spektroskopowych i grawitacyjnych i może rzucić nawet światło na badania nad antymaterią, takie jak tworzenie molekuł antymaterii i rozwój interferometrii antyatomowej, mówi rzecznik prasowy eksperymentu ALPHA, Jeffrey Hangst. Jeszcze przed dekadą laserowe chłodzenie antymaterii należało do dziedziny science-fiction.
W eksperymencie ALPHA atomy antywodoru powstają dzięki antyprotonom uzyskiwanym w Antiproton Decelerator. Są one łączone z pozytonami, których źródłem jest sód-22. Zwykle tak uzyskane atomy antywodoru są więzione w pułapce magnetycznej, co zapobiega ich kontaktowi z materią i anihilacji. W pułapce tej najczęściej prowadzone są badania spektroskopowe, podczas których mierzona jest reakcja antyatomów na wpływ fali elektromagnetycznej – światła laserowego lub mikrofal. Jednak precyzja takich pomiarów jest ograniczona przez energię kinetyczną, czyli temperaturę, antyatomów.
Tutaj właśnie pojawia się potrzeba schłodzenia. Technika laserowego chłodzenia atomów polega na oświetlaniu ich laserem o energii fotonów nieco mniejszej niż energia przejść między poziomami energetycznymi dla danego pierwiastka. Fotony są absorbowane przez atomy, które wchodzą na wyższy poziom energetyczny. A wchodzą dzięki temu, że deficyt energii fotonu potrzebny do przejścia pomiędzy poziomami uzupełniają z własnej energii kinetycznej. Następnie atomy emitują fotony o energii dokładnie dopasowanej do różnicy energii poziomów atomu i spontanicznie powracają do stanu pierwotnego. Jako, że energia emitowanego fotonu jest nieco wyższa od energii fotonu zaabsorbowanego, wielokrotnie powtarzany cykl absorpcji-emisji prowadzi do schłodzenia atomu.
Podczas najnowszych eksperymentów naukowcy z ALPHA przez kilkanaście godzin chłodzili laserem chmurę atomów antywodoru. Po tym czasie stwierdzili, że średnia energia kinetyczna atomów obniżyła się ponad 10-krotnie. Wiele z atomów osiągnęło energię poniżej mikroelektronowolta, co odpowiada temperaturze około 0,012 kelwina. Następnie antywodór poddano badaniom spektroskopowym i stwierdzono, że dzięki schłodzeniu osiągnięto niemal 4-krotnie węższą linię spektralną niż przy badaniach prowadzonych bez chłodzenia laserowego.
Przez wiele lat naukowcy mieli problemy z laserowym chłodzeniem wodoru, więc sama myśl o chłodzeniu antywodoru była szaleństwem. Teraz możemy marzyć o jeszcze większych szaleństwach z udziałem antymaterii, mówi Makoto Fujiwara, który zaproponował, by przeprowadzić powyższy eksperyment.
« powrót do artykułu -
By KopalniaWiedzy.pl
Włosko-amerykański zespół kierowany przez Francesco Giggi z Uniwersytetu w Katanii, stworzył pełnowymiarowy tomograf mionowy, który pozwala skanować kontenery morskie pod kątem obecności w nich materiałów rozszczepialnych. Naukowcy wykorzystali dwie warstwy wykrywaczy mionów oraz wyspecjalizowany algorytm, który stworzył trójwymiarowy obraz ukrytego w kontenerze niewielkiego ołowianego pojemnika.
Wiele towarów jest przewożonych po całym świecie w kontenerach. Jako, że są one duże, a przez porty przewija się ich ogromna liczba, bardzo łatwo ukryć w nich niewielki przedmiot. Ekspertów ds. bezpieczeństwa coraz bardziej martwi niebezpieczeństwo przemycenia tą drogą materiałów rozszczepialnych. W związku z tym istnieje potrzeba stworzenia technologii, która pozwoli na szybkie i wiarygodne skanowanie kontenerów, bez zakłócania przepływu towarów.
Jedną z najbardziej obiecujących możliwości jest wykorzystanie naturalnych mionów docierających do powierzchni Ziemi. Powstają one, gdy wysokoenergetyczne promieniowanie kosmiczne zderza się z molekułami w górnych warstwach atmosfery. Gdy miony trafiają na gęstą materię, jak uran, rozpraszają się na niej i są absorbowane w charakterystyczny sposób, zależy od liczby atomowej pierwiastka, z którego zrobiony jest dany materiał.
Miony badane są od 90 lat, a naukowcy sporo wiedzą o ich energiach, przepływach czy rozkładzie. Porównując informacje o mionach uzyskane przed i po zetknięciu się ich z badanym materiałem, można określić jego skład i pozycję. Technikę taką wykorzystuje się w coraz większej liczbie zastosowań. W 2017 roku dzięki nim znaleziono wielką komorę w egipskiej piramidzie.
Wykorzystanie mionów jest bardzo kuszące, gdyż równomiernie docierają one do powierzchni planety. Ponadto penetrują gęste materiały lepiej niż inne techniki obrazowania, w tym promienie rentgenowskie. Ujemną cechą mionów jest to, że ich przepływ jest dość niski, zatem skanowanie za pomocą współczesnych technologii trwa długo.
Riggi i jego zespół połączyli kilka technik, dzięki którym poradzili sobie z niewielkim przepływem mionów i stworzyli pełnoskalowy tomograf. Ich urządzenie składa się z wielu warstw detektorów mionów bazujących na scyntylatorze. Detektory umieszczone są nad i pod badanym przedmiotem. Algorytm otrzymuje informacje, jakie cechy miały miony zanim trafiły na skanowany kontener i jaki miały po wyjściu z niego. Na tej podstawie oblicza trajektorie mionów i szacuje, w którym miejscu najbardziej zbliżyły się do atomów o ciężkich jądrach. Z tych informacji tworzony jest obraz 3D o gęstym materialne znajdującym się w skanowanym obszarze.
Wspomniany tomograf mionowy pozwala na umieszczenie w nim obiektu o powierzchni 18 m2 i jest w stanie odnaleźć i określić pozycję przedmiotu o boku ok. 20 cm znajdującego się w takim kontenerze.
Naukowcy zapewniają, że po skróceniu czasu pracy skanera może stać się on standardowym wyposażeniem terminali portowych na całym świecie.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.