Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Inżynier NASA prezentuje 'silnik spiralny'

Rekomendowane odpowiedzi

David Burns z ASA Marshall Space Flight Center opublikował dokument opisujący koncepcję nowatorskiego silnika rakietowego działającego bez paliwa czyli bez wyrzucanej w jednym kierunku masy, która nadaje silnikowi ruch w kierunku przeciwnym. Urządzenie, nazwane przez niego 'silnikiem spiralnym' wykorzystuje zjawisko zmiany masy, do którego dochodzi przy prędkościach bliskich prędkości światła.

Część specjalistów, którzy zapoznali się z koncepcją Burnsa, wyraża wątpliwość, czy zaprezentowany przez niego silnik w ogóle może działać, jednak inżynier nie przejmuje się tym zbytnio. Nie mam oporów przed opublikowaniem swojej koncepcji. Jeśli ktoś twierdzi, że to nie może działać, powiem, że mimo to warto się temu przyjrzeć.

Żeby zrozumieć, jak ma działać silnik, możemy wyobrazić sobie pudełko, wewnątrz którego znajduje się umieszczony poziomo pręt, a na nim jest pierścień. Jeśli teraz sprężyna popchnie pierścień w jednym kierunku będzie się on ślizgał po pręcie, dotrze do ściany pudełka i się od niej odbije. Pudełko zostanie więc popchnięte i przesunie się nieco. Jednak pierścień podąża teraz w przeciwnym kierunku, dociera do przeciwnej ściany pudełka, od której znowu się odbija. Pudełko przesuwa się, wracając na poprzednią pozycję. W ten sposób pudełko, czyli nasz silnik, będzie bez końca przesuwało się raz w jedną, raz w przeciwną stronę.

Jeśli jednak, jak zauważył Burns, pierścień będzie zmieniał masę i będzie ona znacznie większa gdy przesuwa się w jednym kierunku, niż gdy przesuwa się w drugim, wówczas pudełko będzie poruszało się w tym kierunku, w którym masa poruszającego się pierścienia jest większa.

Prawa fizyki nie zabraniają zmiany masy. Z prac Einsteina wiemy, że im prędkość poruszającego się obiektu jest bliższa prędkości światła, tym większą ma on masę. Możemy więc zastosować w 'silniku spiralnym' akcelerator cząstek, w którym jony są w jednym kierunku przyspieszane, a w drugim spowalniane. Taki akcelerator miałby kształt helisy.

Taki akcelerator musiałby mieć długość około 200 metrów i 12 metrów średnicy. Potrzebowałby też 165 megawatów do wygenerowania siły ciągu rzędu zaledwie 1 niutona. Biorąc to pod uwagę, silni mógłby osiągnąć znaczącą prędkość jedynie w środowisku, w którym nie występują opory. Jeśli będzie miał wystarczającą ilość czasu i mocy to może rozpędzić się do 99% prędkości światła, stwierdził Burns.

Silniki bez paliwa nie są nowym pomysłem. Już pod koniec lat 70. amerykański wynalazca Robert Cook opatentował silnik, który miał zamieniać siłę odśrodkową w ruch liniowy. Z kolei na początku bieżącego wieku Brytyjczyk Roger Shawyer wysunął głośną koncepcję „niemożliwego” relatywistycznego silnika elektromagnetycznego EM Drive.

Żadna koncepcji silnika bez paliwa dotychczas się nie sprawdziła. Fizycy zwracają uwagę, ze takie silniki łamią zasadę zachowania pędu.

Martin Tajmar z Drezdeńskiego Uniwersytetu Technologicznego, który prowadził testy EM Drive uważa, że 'silnik spiralny' nie zadziała. Żaden z inercyjnych systemów napędowych, o ile mi wiadomo, nie działał w środowisku wolnym od oporów", mówi. Co prawda propozycja Burnsa wykorzystuje teorię względności, co nieco komplikuje analizę, jednak, jak stwierdza Tajmar "zawsze jest akcja i reakcja.

Burns, który pracował na swoją koncepcją prywatnie, niezależnie od pracy w NASA, zauważa, że taki silnik byłby całkowicie nieefektywny. Jednak widzi możliwości pozyskania dodatkowej energii z promieniowania cieplnego i synchrotronowego emitowanego przez akcelerator. Ponadto uważa, że udałoby się zachować pęd w spinie przyspieszanych jonów. Wiem, że istnieje ryzyko, iż mój pomysł zostanie odesłany tam, gdzie jest EM Drive i zimna fuzja. Jednak trzeba być gotowym na to, że ktoś nas zawstydzi. Bardzo trudno jest wynaleźć coś całkowicie nowego, co będzie działało, dodaje.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, KopalniaWiedzy.pl napisał:

zjawisko zmiany masy, do którego dochodzi przy prędkościach bliskich prędkości światła.

3 godziny temu, KopalniaWiedzy.pl napisał:

Z prac Einsteina wiemy, że im prędkość poruszającego się obiektu jest bliższa prędkości światła, tym większą ma on masę.

No nie całkiem to tak. W uproszczeniu, bo sprawa jest trochę bardziej skomplikowana - masa ("Ilość substancji") się nie zmienia, zmienia się energia/pęd. Niby można energię przeliczać na masę, ale tylko w niektórych przypadkach ma to sens. Akurat raczej nie w tym.
Ogólnie, pojęcia "masa relatywistyczna" już się praktycznie nie używa, wprowadza w błąd.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 godziny temu, ex nihilo napisał:

Ogólnie, pojęcia "masa relatywistyczna" już się praktycznie nie używa, wprowadza w błąd.

A to nie ta masa co to nie działa z grawitacją za to jest coraz bardziej (kwadratowo) bezwładna? Nie tak dawno @Astro przekonywał, że ściśnięta sprężyna jest cięższa, bo E=mc2. Zatem, Panowie Fizycy, temat masy bezwładnej, relatywistycznej, grawitacyjnej stanowczo domaga się uporządkowania.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zachowanie pędu jest bardzo głęboko np. w szczególnej teorii względności - podczas gdy "EM drive" jeszcze niby "wyrzucał" pęd w fali EM, tutaj jest proponowane czyste łamanie zachowania pędu - super dla rozgłosu, ale działać toto nie będzie.

Quote

temat masy bezwładnej, relatywistycznej, grawitacyjnej stanowczo domaga się uporządkowania.

Są przynajmniej 4 rodzaje masy/energii cząstek:

1) Inercyjna w F=ma,

2) Energia E=mc^2 np. uwalniana w anihilacji,

3) grawitacyjna w F ~ mM/r^2

4) wewnętrzne oscylacje (de Broglie/zitterbewegung): E=hf

Ze szczególnej teorii względności wiemy że 1) i 2) są równoważne.

Co do 3) to nawet nie mamy potwierdzenia dla elektronów ( https://indico.cern.ch/event/361413/contributions/1776296/attachments/1137816/1628821/WAG2015.pdf ), jest obecnie kilka eksperymentów które mają sprawdzić dla antymaterii.

O 4) wiemy niewiele, została zweryfikowana eksperymentalnie tylko dla elektronów (~10^21Hz): https://link.springer.com/article/10.1007/s10701-008-9225-1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 hours ago, Jajcenty said:

ściśnięta sprężyna jest cięższa

Czyli, że ściskamy sprężynę, machamy nią w lewo, potem ją rozprężamy i pchamy w prawo, znowu ściskamy, itd.. i mamy ten sam napęd co chce pan Burns?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
36 minut temu, Przemek Kobel napisał:

Czyli, że ściskamy sprężynę, machamy nią w lewo, potem ją rozprężamy i pchamy w prawo, znowu ściskamy, itd.. i mamy ten sam napęd co chce pan Burns?

Ano.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czyli zmagazynowanie (przez ściśnięcie) energii wybuchu bomby wodorowej pozwoli na zaburzenie bezwładności rzędu... grama masy? dwóch gramów? Gdzie ci kosmici, kiedy potrzeba ich gadżetów?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To w ogóle nie ma szans działać. Jest tak jak pisze Jarek Duda. Zasady zachowania pędu i zachowania energii są gdzieś w STW wykorzystywane do wyprowadzenia jakichś wzorów, przynajmniej z tego co pamiętam z pewnej książki "dla opornych", którą czytałem jeszcze w liceum, fachowcem od tego zdecydowanie nie jestem;)

Edytowane przez darekp

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

ok, to i ja napiszę mój pomysł na bardzo podobny napęd z przed prawie 30 lat ;)

 

Więc aby go szybko obalić pytania pomocnicze na które odpowiedzi od razu powiedzą o tym czy to ma sens czy nie ;) (a nie jestem z tego zbyt mocny)

(analogia)

1. Wyobraźmy sobie łódź wioślarska w przestrzeni kosmicznej, na której końcu wioseł jest umieszczona pewna masa.

Gdy "machniemy" raz wiosłami, łódź przesunie się w jednym kierunku a masy na końcach wioseł w druga stronę.

Stosunek tych ruchów  jest proporcjonalny do mas łodzi vs ciężarów na końcu wioseł.

Prawda/fałsz? 

 

2. wyobraźmy sobie tę sama łódź tylko na końcu wioseł zamiast jakichś statycznych mas, ma umieszczone obracające sie prostopadle do łodzi talerze (żyroskopy).

i mamy przypadki 

a) gdy ruch obrotowy wynosi X

b) gdy ruch obrotowy wynosi 10x

Czy "machnąc" wiosłami, przesuniemy sie w obu przypadkach o ten sam dystans?

 

3. Jest tak samo jak w punkcie 2 tylko mamy takie scenariusze

a) obracające sie talerze sa ułożone prodtopadle

b) są ułożone równolegle do łodzi

ich prędkości sa takie same.

Czy "machnąc" wiosłami, przesuniemy sie w obu przypadkach o ten sam dystans?

 

PS.

Moją dziecięcą przesłanka jest to, że bak który się szybciej obraca trudniej "obrócić"

 

 

 

Edytowane przez Afordancja

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Żeby np. ścisnąć sprężynę potrzebujemy dostarczyć energii - jeśli jest to w układzie zamkniętym jak rakieta, całkowita energia jest zachowana, dla jej przekazywania konieczne są pędy ...

Można budować konstrukcje które wydają się łamać takie podstawowe zasady, ale jeśli dobrze rozpisać co tam się dzieje, bilansy np. pędu dla zamkniętego układu wychodzą zero.

Muszę przyznać że sam zacząłem studiować fizykę (prawie dwie dekady temu, jako trzeci kierunek) z powodu podobnej konstrukcji: koła z wbudowanym systemem odważników które naiwnie wydaje się że mogą doprowadzić do lotu - ale tylko wydaje się.

Podczas gdy są powody żeby nie mieć absolutnej pewność odnośnie np. drugiej zasady termodynamiki (bardziej fundamentalne modele są czasowo/CPT symetryczne), czy zasady zachowania liczby barionowej (łamanej np. w hipotetycznej bariogenezie czy promieniowaniu Hawkinga), nie znam porządnych argumentów na łamanie energii, pędu czy momentu pędu, które z tw. Noether biorą się po prostu z symetrii: translacyjnej w czasie, przestrzeni czy obrotu.

Inna pewna zasada zachowania to np. ładunku - dzięki tw. Gaussa, które mówi że pole elektryczne na brzegu jakiegoś obszaru determinuje ładunek w środku tego obszaru - on nie może się zmieniać bez zmiany tego pola elektrycznego. Dla liczby barionowej już nie mamy takiego strażnika jak prawo Gaussa.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie widzę tam jakiejś istotnie innej masy?

Natomiast 4) jest mniej znana, aczkolwiek wydaje się być dobrze umotywowana (też np. wynika z równania Diraca) i potwierdzona eksperymentalnie (dla elektronu) - nie wiadomo czy odnosi się tylko do elektronu, może leptonów, może innych cząstek, czy może dowolnej materii: https://en.wikipedia.org/wiki/Matter_wave_clock

STW jest konsekwencją skończonej prędkości propagacji, jej efekty jak transformacja masy/energii, skrócenie Lorenzowskie, czy dylatacja czasu są już w najprostszych modelach jak Sine-Gordon (phi_tt = phi_xx + sin(phi)): https://en.wikipedia.org/wiki/Sine-Gordon_equation

Czyli można powiedzieć że równoważność 1) i 2) wynika ze skończonej prędkości propagacji - co wydaje się dość dobrze ugruntowane.

Natomiast OTW jeszcze zawiera dużo ekstrapolacji i nie jest kompletne w skali mikro - z wnioskowaniem równoważności z 3) trzeba być dużo bardziej ostrożnym.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie wiem jak dotarliśmy do "ciemnej materii" - to już zupełne ekstrapolacje, spekulacje dla których tylko słyszymy kolejne "doniesienia o nieobserwacji" - tutaj jest konieczna niezwykła ostrożność przed narzucaniem naturze naszych wierzeń. Jeśli istnieje to stawiałbym na szum termiczny - który dla pola EM obserwujemy jako promieniowanie tła 2.7K, ale są też pola odpowiadające pozostałym oddziaływaniom - które też powinny mieć szum termiczny np. te 2.7K z termalizacji, ale jest on dużo trudniejszy niż EM do bezpośredniej obserwacji.

Co do do OTW, przyjmuje się że jego najlepszym potwierdzeniem jest Gravity Probe B ... który potwierdził grawitomagnetyzm ( https://en.wikipedia.org/wiki/Gravitoelectromagnetism ) - widziany jako pierwsza poprawka do Newtona, zresztą wprowadzona na długo przed Einsteinem: w 1893 przez Heavisidea w analogii do elektromagnetyzmu. Ta poprawka do Newtona jest konieczna dla Lorenzowskiej niezmienniczości i została potwierdzona eksperymentalnie - wygląda na bezpieczną. Natomiast OTW to jeszcze nieskończenie wiele dalszych poprawek, zaproponowanych z powodów estetycznych - możliwe że ta ekstrapolacja jest prawdziwa, ale równie dobrze może się okazać że dalsze poprawki są inne - tutaj trzeba zachować ostrożność.

Edytowane przez Jarek Duda

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, Astro napisał:

Niczego to nie przesądza; dla mnie mówi tylko jedno: czegoś fundamentalnie nie wiemy.

jeśli przyjąć że rzeczywiście nie widzimy 95% masy to wszystkie scenariusze są możliwe. nawet te zakładające że obiekty kultu religijnego naukowców, czyli wszystkie zasady zachowania, to tylko mrzonki. I nawet jak bilans będzie się zgadzał to niewiele to zmieni bo nigdy nie będzie pewności, że dotyczy to układu globalnego a nie jakiegoś małego lokalnego skrawka.

Kiedyś, ktoś zrobił ekstrapolację swojej wioski o kilka kilometrów za daleko i okazało się że płaski dysk stał się  kulą. i niestety układ stał się niestabilny więc spadła kulka z garbów słoni, a te ze skorup żółwi. trzeba było zaczynać od nowa :D i tak przynajmniej kilkukrotnie. Mam wrażenie że obecne modele mogą równie spektakularnie pierdyknąć :) i okazać się kiedyś równie niedorzeczne.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, tempik napisał:

Mam wrażenie że obecne modele mogą równie spektakularnie pierdyknąć :) i okazać się kiedyś równie niedorzeczne.

Taka cena postępu i dobrze, że tak się dzieje. 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Była jeszcze "polska konstrukcja", Napęd Łągiewki :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      NASA zaprezentowała pierwsze zdjęcia pełnowymiarowego prototypu sześciu teleskopów, które w przyszłej dekadzie rozpoczną pracę w kosmicznym wykrywaczu fal grawitacyjnych. Budowane przez ekspertów z NASA teleskopy to niezwykle ważne elementy misji LISA (Laser Interferometer Space Antenna), przygotowywanej przez Europejską Agencję Kosmiczną (ESA).
      W skład misji LISA będą wchodziły trzy pojazdy kosmiczne, a na pokładzie każdego z nich znajdą się po dwa teleskopy NASA. W 2015 roku ESA wystrzeliła misję LISA Pathfinder, która przetestowała technologie potrzebne do stworzenia misji LISA. Kosmiczny wykrywacz fal grawitacyjnych ma rozpocząć pracę w 2035 roku.
      LISA będzie składała się z trzech satelitów, tworzących w przestrzeni kosmicznej trójkąt równoboczny. Każdy z jego boków będzie miał długość 2,5 miliona kilometrów. Na pokładzie każdego z pojazdów znajdą się po dwa identyczne teleskopy, przez które do sąsiednich satelitów wysyłany będzie impuls z lasera pracującego w podczerwieni. Promień będzie trafiał w swobodnie unoszące się na pokładzie każdego satelity pokryte złotem kostki ze złota i platyny o boku 46 mm. Teleskopy będą odbierały światło odbite od kostek i w ten sposób, z dokładnością do pikometrów – bilionowych części metra – określą odległość pomiędzy trzema satelitami. Pojazdy będą umieszczone w takim miejscu przestrzeni kosmicznej, że na kostki nie będzie mogło wpływać nic oprócz fal grawitacyjnych. Zatem wszelkie zmiany odległości będą świadczyły o tym, że przez pojazdy przeszła fala grawitacyjna. Każdy z pojazdów będzie miał na pokładzie dwa teleskopy, dwa lasery i dwie kostki.
      Formacja trzech pojazdów kosmicznych zostanie umieszczona na podobnej do ziemskiej orbicie wokół Słońca. Będzie podążała za naszą planetą w średniej odległości 50 milionów kilometrów. Zasada działania LISA bazuje na interferometrii laserowej, jest więc podobna do tego, jak działają ziemskie obserwatoria fal grawitacyjnych, takie jak np. opisywane przez nas LIGO. Po co więc budowanie wykrywaczy w kosmosie, skoro odpowiednie urządzenia istnieją na Ziemi?
      Im dłuższe ramiona wykrywacza, tym jest on bardziej czuły na fale grawitacyjne o długim okresie. Maksymalna czułość LIGO, którego ramiona mają długość 4 km, przypada na zakres 500 Hz. Tymczasem w przypadku LISY będzie to zakres 0,12 Hz. Kosmiczny interferometr będzie więc uzupełnienie urządzeń, które posiadamy na Ziemi, pozwoli rejestrować fale grawitacyjne, których ziemskie urządzenia nie zauważą.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      CERN pochwalił się osiągnięciem przez Wielki Zderzacz Hadronów (LHC) rekordowej świetlności. Obok energii wiązki, w przypadku LHC maksymalna energia każdej z wiązek ma wynieść 7 TeV (teraelektronowoltów), to właśnie świetlność jest najważniejszym parametrem akceleratora. Zintegrowana świetlność to najbardziej interesujący fizyka parametr urządzenia. Oznacza ona liczbę zderzeń zachodzących w urządzeniu. A im więcej zderzeń, tym więcej danych dostarcza akcelerator.
      Jednostką świetlności jest odwrócony barn (b-1) lub jego jednostki pochodne, jak femtobarny (fb-1). W trakcie pierwszej kampanii naukowej (Run 1), która prowadzona była w latach 2010–2012 średnia zintegrowana świetlność LHC wyniosła 29,2 fb-1. Przez kolejne lata akcelerator był remontowany i rozbudowywany. Druga kampania naukowa miała miejsce w latach 2015–2018. Wówczas, w ciągu czterech lat pracy, akcelerator osiągnął średnią zintegrowaną świetlnośc 159,8 fb-1.
      Obecnie trwająca kampania, zaplanowana na lata 2022–2025, rozpoczęła się zgodnie z planem. W roku 2022 efektywny czas prowadzenia zderzeń protonów wyniósł 70,5 doby, a średnia zintegrowana świetlność osiągnęła poziom 0,56 fb-1 na dzień. W roku 2023 rozpoczęły się problemy. Niezbędne naprawy urządzenia zajmowały więcej czasu niż planowano i przez cały rok zderzenia protonów prowadzono jedynie przez 47,5 dnia, jednak średnia zintegrowana świetlność wyniosła 0,71 fb-1 na dzień.
      Bieżący rok jest zaś wyjątkowy. Wydajność LHC przewyższyła oczekiwania. Do 2 września 2024 roku akcelerator zderzał protony łącznie przez 107 dni, osiągając przy tym średnią zintegrowaną jasność rzędu 0,83 fb-1 na dzień. Dzięki temu na kilka miesięcy przed końcem trzeciego roku obecnej kampanii naukowej jego średnia zintegrowana świetlność wyniosła 160,4 fb-1, jest zatem większa niż przez cztery lata poprzedniej kampanii.
      W bieżącym roku LHC ma też przeprowadzać zderzenia jonów ołowiu. Zanim jednak do tego dojdzie, będzie przez 40 dni pracował z protonami. Powinno to zwiększyć jego zintegrowaną świetlność o koleje 33 fb-1. To o 12 fb-1 więcej niż zaplanowano na bieżący rok.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Za nieco ponad tydzień wystartuje misja Psyche, która ma za zadanie zbadanie pochodzenia jąder planetarnych. Celem misji jest asteroida 16 Psyche, najbardziej masywna asteroida typu M, która w przeszłości – jak sądzą naukowcy – była jądrem protoplanety. Jej badanie to główny cel misji, jednak przy okazji NASA chce przetestować technologię, z którą eksperci nie potrafią poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera.
      Ludzkość planuje wysłanie w dalsze części przestrzeni kosmicznej więcej misji niż kiedykolwiek. Misje te powinny zebrać olbrzymią ilość danych, w tym obrazy i materiały wideo o wysokiej rozdzielczości. Jak jednak przesłać te dane na Ziemię? Obecnie wykorzystuje się transmisję radiową. Fale radiowe mają częstotliwość od 3 Hz do 3 THz. Tymczasem częstotliwość lasera podczerwonego sięga 300 THz, zatem transmisja z jego użyciem byłaby nawet 100-krotnie szybsza. Dlatego też naukowcy od dawna próbują wykorzystać lasery do łączności z pojazdami znajdującymi się poza Ziemią.
      Olbrzymią zaletą komunikacji laserowej, obok olbrzymiej pojemności, jest fakt, że wszystkie potrzebne elementy są niewielkie i ulegają ciągłej miniaturyzacji. A ma to olbrzymie znaczenie zarówno przy projektowaniu pojazdów wysyłanych w przestrzeń kosmiczną, jak i stacji nadawczo-odbiorczych na Ziemi. Znacznie łatwiej jest umieścić w pojeździe kosmicznym niewielkie elementy do komunikacji laserowej, niż podzespoły do komunikacji radiowej, w tym olbrzymie anteny.
      Gdyby jednak było to tak proste, to od dawna posługiwalibyśmy się laserami odbierając i wysyłając dane do pojazdów poza Ziemią. Tymczasem inżynierowie od dziesięcioleci próbują stworzyć system skutecznej komunikacji laserowej i wciąż im się to nie udało. Już w 1965 roku astronauci z misji Gemini VII próbowali wysłać z orbity sygnał za pomocą ręcznego 3-kilogramowego lasera. Próbę podjęto na długo zanim w ogóle istniały skuteczne systemy komunikacji laserowej. Późniejsze próby były bardziej udane. W 2013 roku przesłano dane pomiędzy satelitą LADEE, znajdującym się na orbicie Księżyca, a Ziemią. Przeprowadzono udane próby pomiędzy Ziemią a pojazdami na orbicie geosynchronicznej, a w bieżącym roku planowany jest test z wykorzystanim Międzynarodowej Stacji Kosmicznej. Psyche będzie pierwszą misją, w przypadku której komunikacja laserowa będzie testowana za pomocą pojazdu znajdującego się w dalszych partiach przestrzeni kosmicznej.
      Psyche będzie korzystała ze standardowego systemu komunikacji radiowej. Na pokładzie ma cztery anteny, w tym 2-metrową antenę kierunkową. Na potrzeby eksperymentu pojazd wyposażono w zestaw DSOC (Deep Space Optical Communications). W jego skład wchodzi laser podczerwony, spełniający rolę nadajnika, oraz zliczająca fotony kamera podłączona do 22-centymetrowego teleskopu optycznego, działająca jak odbiornik. Całość zawiera matrycę detektora składającą się z nadprzewodzących kabli działających w temperaturach kriogenicznych. Dzięki nim możliwe jest niezwykle precyzyjne zliczanie fotonów i określanie czasu ich odbioru z dokładnością większa niż nanosekunda. To właśnie w fotonach, a konkretnie w czasie ich przybycia do odbiornika, zakodowana będzie informacja. Taki system, mimo iż skomplikowany, jest mniejszy i lżejszy niż odbiornik radiowy. A to oznacza chociażby mniejsze koszty wystrzelenia pojazdu. Również mniejsze może być instalacja naziemna. Obecnie do komunikacji z misjami kosmicznymi NASA korzysta z Deep Space Network, zestawu 70-metrowych anten, które są drogie w budowie i utrzymaniu.
      Komunikacja laserowa ma wiele zalet, ale nie jest pozbawiona wad. Promieniowanie podczerwone jest łatwo blokowane przez chmury i czy dym. Mimo tych trudności, NASA nie rezygnuje z prób. System do nadawania i odbierania laserowych sygnałów ma znaleźć się na pokładzie misji Artemis II, która zabierze ludzi poza orbitę Księżyca. Jeśli się sprawdzi, będziemy mogli na żywo obserwować to wydarzenie w kolorze i rozdzielczości 4K.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Centrum Badań Kosmicznych PAN zakończyła się budowa modelu inżynierskiego instrumentu GLOWS (GLObal solar Wind Structure). GLOWS to fotometr, który będzie liczył fotony odpowiadające długości fali promieniowania Lyman-α (121,56 nm). Zostanie on zainstalowany na pokładzie sondy kosmicznej IMAP (The Interstellar Mapping and Acceleration Probe), która rozpocznie swoją misję w 2025 roku.
      Sonda IMAP zostanie umieszczona w punkcie libracyjnym L1 i stamtąd będzie badała przyspieszenie cząstek pochodzących z heliosfery oraz interakcję wiatru słonecznego z lokalnym medium. Dane będą przesyłane na Ziemię w czasie rzeczywistym i posłużą do prognozowania pogody kosmicznej.
      Polski GLOWS będzie jednym z 10 instrumentów naukowych znajdujących się na pokładzie IMAP. Jego oś optyczna będzie odchylona o 75 stopni od osi obrotu satelity. Wraz z obrotem IMAP GLOWS będzie skanował okrąg, który codziennie będzie się przesuwał wraz ze zmianą orientacji całego IMAP. W ramach przygotowania eksperymentu zaprojektowaliśmy cały przyrząd: układ optyczny, elektronikę, system zasilania elektrycznego, oprogramowanie do zbierania danych na pokładzie i ich transmisji na Ziemię oraz koncepcję systemu przetwarzania danych na Ziemi, informuje profesor Maciej Bzowski, szef zespołu GLOWS.
      Zbudowaliśmy komputerowy model poświaty heliosferycznej, zbadaliśmy tło pozaheliosferyczne oczekiwane w eksperymencie, zidentyfikowaliśmy i wprowadziliśmy do modelu znane źródła astrofizyczne promieniowania Lyman-alfa, zbudowaliśmy listę gwiazd, które posłużą do kalibracji przyrządu. Zbudowaliśmy też prototyp GLOWS i uruchomiliśmy go w warunkach laboratoryjnych. Wreszcie sprawdziliśmy, że przyrząd widzi promieniowanie Lyman-alfa, które ma obserwować w kosmosie. Oznacza to, że zarejestrowaliśmy pierwsze światło, dodaje uczony.
      GLOS to pierwszy całkowicie polski instrument i eksperyment przygotowany na misję NASA. Otrzymaliśmy możliwość zarówno zaplanowania eksperymentu, zbudowania absolutnie własnego przyrządu i śledzenia rejestrowanych przez niego danych. Sądzę też, że jako pierwsi będziemy mogli przedstawić własne wyniki tych unikatowych pomiarów. Jesteśmy przekonani, że wkrótce po tym przedstawimy na forum międzynarodowym potwierdzenie naszych teorii które, były inspiracją tego kluczowego eksperymentu, podkreśliła profesor Iwona Stanisławska, dyrektor CBK PAN.
      Przed trzema miesiącami dokonano Critical Design Review instrumentu. Obok Polaków wzięli w nim udział m.in. eksperci z NASA, Uniwersytetu Johnsa Hopkinsa i Southwest Research Institute. Przegląd wypadł pomyślnie, co oznacza, że wydano zgodę na rozpoczęcie budowy właściwego urządzenia, które poleci w kosmos.
      Prace przy GLOWS pozwalają naszym naukowcom zdobyć cenne doświadczenie i umiejętności. Mogą one skutkować otwarciem w Polsce nowych perspektyw badawczych. Obserwacje satelitarne w zakresie UV to wciąż nowatorska i przyszłościowa dziedzina badań kosmosu. Unikatowe doświadczenia i bardzo specjalistyczna infrastruktura techniczna, w obu przypadkach zdobyte w trakcie realizacji GLOWS, stanowią doskonałą podstawę do realizacji w Polsce przyszłych misji satelitarnych. Tym bardziej, że obserwacje w zakresie UV proponuje szereg ważnych ośrodków naukowych, również polskich, wyjaśnia doktor habilitowany Piotr Orleański, zastępca dyrektora CBK PAN ds. rozwoju technologii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA wyznaczyła datę kolejnej próby startu misji Artemis I. Będzie ona miała miejsce 14 listopada, a 69-minutowe okienko startowe otworzy się o godzinie 6:07 czasu polskiego. Dotychczas podjęto dwie próby startu, a po drugiej z nich nie było pewne, czy we wrześniu uda się przeprowadzić trzecią próbę. Mimo, że usterki, które uniemożliwiły obie próby, udało się usunąć, do Florydy zaczął zbliżać się huragan Ian, w związku z czym podjęto decyzję o przetransportowaniu rakiety do hangaru.
      Przeprowadzone po przejściu huraganu inspekcje i analizy wykazały, że przygotowanie rakiety i stanowiska startowego nie wymaga zbyt dużo pracy. Zdecydowano więc o podjęciu drobnych napraw w systemie ochrony termicznej, ponownym załadowaniu lub wymianie akumulatorów, przeprowadzeniu niewielkich zmian w systemie awaryjnego przerwania lotu. Rakieta wyjedzie z hangaru w kierunku stanowiska startowego 4 listopada.
      NASA zarezerwowała sobie dwa rezerwowe okna startowe, na 16 i 19 listopada. Wystrzelenie misji podczas którejś z trzech wymienionych dat – 14, 16 lub 19 listopada – będzie oznaczało, że misja Artemis I potrwa około 26 dni.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...